Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU)
Normandie Univ., UNIROUEN, INRAE, ECODIV, Rouen, France
Laboratoire de Géologie, École normale supérieure, CNRS,
PSL Univ., IPSL, Paris, France
François Baudin
Institut des Sciences de la Terre de Paris, Sorbonne Université,
CNRS, 75005 Paris, France
Claire Chenu
UMR 1402 ECOSYS, INRAE, AgroParisTech, Univ. Paris Saclay,
78850 Thiverval-Grignon, France
Bent T. Christensen
Department of Agroecology, Aarhus University, AU Foulum, 8830 Tjele,
Denmark
Uwe Franko
Department of soil system science, Helmholtz Centre for Environmental
Research, UFZ, 06120 Halle, Germany
Sabine Houot
UMR 1402 ECOSYS, INRAE, AgroParisTech, Univ. Paris Saclay,
78850 Thiverval-Grignon, France
Eva Kanari
Laboratoire de Géologie, École normale supérieure, CNRS,
PSL Univ., IPSL, Paris, France
Institut des Sciences de la Terre de Paris, Sorbonne Université,
CNRS, 75005 Paris, France
Thomas Kätterer
Department of Ecology, Swedish University of Agricultural Sciences,
75007 Uppsala, Sweden
Ines Merbach
Department Community Ecology, Helmholtz Centre for Environmental
Research, UFZ, 06246 Bad Lauchstädt, Germany
Folkert van Oort
UMR 1402 ECOSYS, INRAE, AgroParisTech, Univ. Paris Saclay,
78850 Thiverval-Grignon, France
Christopher Poeplau
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Juan Carlos Quezada
Laboratory of Ecological Systems ECOS and Laboratory of Plant Ecology
Research PERL, School of Architecture, Civil and Environmental Engineering
ENAC, École Polytechnique Fédérale de Lausanne EPFL, 1015
Lausanne, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
1015 Lausanne, Switzerland
Ecosystem Management, Institute of Terrestrial Ecosystems, Department
of Environmental Systems Science, ETHZ, 8092 Zürich, Switzerland
Florence Savignac
Institut des Sciences de la Terre de Paris, Sorbonne Université,
CNRS, 75005 Paris, France
Laure N. Soucémarianadin
ACTA – les instituts techniques agricoles, 75595 Paris, France
Pierre Barré
Laboratoire de Géologie, École normale supérieure, CNRS,
PSL Univ., IPSL, Paris, France
Related authors
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Naoise Nunan, Claire Chenu, Valérie Pouteau, André Soro, Kevin Potard, Célia Regina Montes, Patricia Merdy, Adolpho José Melfi, and Yves Lucas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3356, https://doi.org/10.5194/egusphere-2025-3356, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The vulnerability to decomposition of organic C in Amazonian podzols as a result of predicted drier soil moisture regimes was tested: more than four times as much CO2 was released from soils under oxic conditions with the addition of N relative to soils under the prevailing anoxic conditions. An extrapolation of the data to the whole of the Amazonian podzols suggests that this increased C-CO2 flux to the atmosphere could be equivalent to 8 % of the current net global C flux to the atmosphere.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
SOIL, 11, 467–488, https://doi.org/10.5194/soil-11-467-2025, https://doi.org/10.5194/soil-11-467-2025, 2025
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Johanne Lebrun Thauront, Philippa Ascough, Sebastian Doetterl, Negar Haghipour, Pierre Barré, Christian Walter, and Samuel Abiven
EGUsphere, https://doi.org/10.5194/egusphere-2025-2693, https://doi.org/10.5194/egusphere-2025-2693, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Fire-derived carbon is a form of organic carbon that has a long persistence in soils. However, its persistence at the landscape scale may be underestimated due to lateral and vertical redistribution. We measured fire-derived carbon in soils of a hilly agricultural watershed to identify the result of transport processes on the centennial time-scale. We show that the subsoil stores a large amount of fire-derived carbon and that erosion can redistribute it to localized accumulation zones.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Maria Regina Gmach, Martin Anders Bolinder, Lorenzo Menichetti, Thomas Kätterer, Heide Spiegel, Olle Åkesson, Jürgen Kurt Friedel, Andreas Surböck, Agnes Schweinzer, and Taru Sandén
SOIL, 10, 407–423, https://doi.org/10.5194/soil-10-407-2024, https://doi.org/10.5194/soil-10-407-2024, 2024
Short summary
Short summary
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden and 16 in Austria) using long-term field experiments with the Tea Bag Index (TBI) approach. We found that the decomposition rate (k) and stabilization factor (S) were mainly governed by climatic conditions. In general, organic and mineral fertilization increased k and S, and reduced tillage increased S. Edaphic factors also affected k and S.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Abiven, S., Menasseri, S., and Chenu, C.: The effects of organic inputs over
time on soil aggregate stability – A literature analysis, Soil Biol.
Biochem., 41, 1–12, https://doi.org/10.1016/j.soilbio.2008.09.015,
2009.
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and
Sparks, D. L.: Soil and human security in the 21st century, Science, 348,
1261071–1261071, https://doi.org/10.1126/science.1261071, 2015.
Ansorge, H.: Die Wirkung des Stallmistes im “Statischen
Düngungsversuch” Lauchstädt, 2. Mitteilung: Veränderung des
Humusgehaltes im Boden, 10, 401–412, 1966.
Avery, B. W. and Catt, J. A.: The soil at Rothamsted, Lawes Agricultural
Trust, Harpenden, 1995.
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting
contents of carbon and its component fractions in Australian soils from
diffuse reflectance mid-infrared spectra, Soil Res., 51, 577,
https://doi.org/10.1071/SR13077, 2013.
Balesdent, J.: The significance of organic separates to carbon dynamics and
its modelling in some cultivated soils, Eur. J. Soil Sci., 47, 485–493,
https://doi.org/10.1111/j.1365-2389.1996.tb01848.x, 1996.
Balesdent, J. and Guillet, B.: Les datations par le 14C des matières
organiques des sols. Contribution à l'étude de l'humification et du
renouvellement des substances humiques, Science du sol, 2, 93–112, 1982.
Balesdent, J. and Mariotti, A.: Measurement of soil organic matter turnover
using 13C natural abundance, in: Mass spectrometry of soils, edited by:
Boutton, T. W. and Yamasaki, S. I., 83–111, 1996.
Balesdent, J., Mariotti, A., and Guillet, B.: Natural 13C abundance as a
tracer for studies of soil organic matter dynamics, Soil Biol.
Biochem., 19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9,
1987.
Balesdent, J., Wagner, G. H., and Mariotti, A.: Soil organic matter turnover
in long-term field experiments as revealed by carbon-13 natural abundance,
Soil Science Society of America Journal, 52, 118–124,
https://doi.org/10.2136/sssaj1988.03615995005200010021x, 1988.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere–soil carbon transfer as a
function of soil depth, Nature, 559, 599–602,
https://doi.org/10.1038/s41586-018-0328-3, 2018.
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer, T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V., and Chenu, C.: Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments, Biogeosciences, 7, 3839–3850, https://doi.org/10.5194/bg-7-3839-2010, 2010.
Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F.,
Bernard, S., Christensen, B. T., Eglin, T., Fernandez, J. M., Houot, S.,
Kätterer, T., Le Guillou, C., Macdonald, A., van Oort, F., and Chenu,
C.: The energetic and chemical signatures of persistent soil organic matter,
Biogeochemistry, 130, 1–12, https://doi.org/10.1007/s10533-016-0246-0,
2016.
Behar, F., Beaumont, V., and De B. Penteado, H. L.: Rock-Eval 6 technology:
performances and developments, Oil Gas Sci. Technol., 56, 111–134, https://doi.org/10.2516/ogst:2001013, 2001.
Beleites, C. and Sergo, V.: hyperSpec: a package to handle hyperspectral
data sets in R, R package version 0.99-20201127, available at: https://github.com/cbeleites/hyperSpecm (last access: 15 June 2021), 2020.
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M., and
McBratney, A.: Critical review of chemometric indicators commonly used for
assessing the quality of the prediction of soil attributes by NIR
spectroscopy, TrAC-Trend Anal. Chem., 29, 1073–1081,
https://doi.org/10.1016/j.trac.2010.05.006, 2010.
Borchers, H. W.: racma: Practical Numerical Math Functions. R package version 2.2.9, available at: https://CRAN.R-project.org/package=pracma (last access: 22 June 2021), 2019.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Buyanovsky, G. A. and Wagner, G. H.: Carbon cycling in cultivated land and
its global significance, Glob. Change Biol., 4, 131–141,
https://doi.org/10.1046/j.1365-2486.1998.00130.x, 1998a.
Buyanovsky, G. A. and Wagner, G. H.: Changing role of cultivated land in the
global carbon cycle, Biol. Fert Soils, 27, 242–245,
https://doi.org/10.1007/s003740050427, 1998b.
Canty, A. and Ripley, B.: boot: Bootstrap R (S-Plus) Functions, R package version 1.3-28, 2020.
Cardinael, R., Eglin, T., Guenet, B., Neill, C., Houot, S., and Chenu, C.:
Is priming effect a significant process for long-term SOC dynamics? Analysis
of a 52-years old experiment, Biogeochemistry, 123, 203–219,
https://doi.org/10.1007/s10533-014-0063-2, 2015.
Cécillon, L.: lauric-cecillon/PARTYsoc: Second version of the PARTYsoc statistical model (Version v2.0), Zenodo, https://doi.org/10.5281/zenodo.4446138, 2021.
Cécillon, L., Cassagne, N., Czarnes, S., Gros, R., and Brun, J.-J.:
Variable selection in near infrared spectra for the biological
characterization of soil and earthworm casts, Soil Biol. Biochem.,
40, 1975–1979, https://doi.org/10.1016/j.soilbio.2008.03.016, 2008.
Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A. F., Savignac, F., Soucémarianadin, L. N., and Barré, P.: A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, 2018.
Cerri, C., Feller, C., Balesdent, J., Victoria, R., and Plenccassagne, A.:
Application du traçage isotopique naturel en 13C, à l'étude de
la dynamique de la matière organique dans les sols, Cr.
Acad. Sci., 300,
423–428, 1985.
Christensen, B. T. and Johnston, A. E.: Soil organic matter and soil
quality – Lessons learned from long-term experiments at Askov and
Rothamsted, Dev. Soil Sci., 25, 399–430,
https://doi.org/10.1016/S0166-2481(97)80045-1, 1997.
Christensen, B. T., Thomsen, I. K., and Eriksen, J.: The Askov long-term
experiments: 1894–2019: a unique research platform turns 125 years, DCA –
Nationalt Center for Fødevarer og Jordbrug, Tjele, 2019.
Clivot, H., Mouny, J.-C., Duparque, A., Dinh, J.-L., Denoroy, P., Houot, S.,
Vertès, F., Trochard, R., Bouthier, A., Sagot, S., and Mary, B.:
Modeling soil organic carbon evolution in long-term arable experiments with
AMG model, Environ. Modell. Softw., 118, 99–113,
https://doi.org/10.1016/j.envsoft.2019.04.004, 2019.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994,
https://doi.org/10.1038/s41561-019-0484-6, 2019.
Coulston, J. W., Blinn, C. E., Thomas, V. A., and Wynne, R. H.:
Approximating prediction uncertainty for random forest regression models,
Photogramm. Eng. Rem. S., 82, 189–197,
https://doi.org/10.14358/PERS.82.3.189, 2016.
Dangal, S., Sanderman, J., Wills, S., and Ramirez-Lopez, L.: Accurate and
precise prediction of soil properties from a large mid-infrared spectral
library, Soil Syst., 3, 11, https://doi.org/10.3390/soilsystems3010011,
2019.
Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their application,
Cambridge University Press, Cambridge, New York, NY, USA, 582 pp., 1997.
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.:
Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and
limitations, Org. Geochem., 34, 327–343,
https://doi.org/10.1016/S0146-6380(02)00239-5, 2003.
European Commission: Soils of the European Union, Joint Research Centre,
Institute for Environment and Sustainability, Publications Office, LU,
2008.
Falloon, P., Smith, P., Coleman, K., and Marshall, S.: Estimating the size
of the inert organic matter pool from total soil organic carbon content for
use in the Rothamsted carbon model, Soil Biol. Biochem., 30,
1207–1211, https://doi.org/10.1016/S0038-0717(97)00256-3, 1998.
Falloon, P. D. and Smith, P.: Modelling refractory soil organic matter,
Biol. Fert. Soils, 30, 388–398,
https://doi.org/10.1007/s003740050019, 2000.
FAO: World reference base for soil resources 2014: international soil
classification system for naming soils and creating legends for soil maps, FAO, Rome, 2014.
Franko, U. and Merbach, I.: Modelling soil organic matter dynamics on a bare
fallow Chernozem soil in Central Germany, Geoderma, 303, 93–98,
https://doi.org/10.1016/j.geoderma.2017.05.013, 2017.
Genuer, R. and Poggi, J.-M.: Random Forests with R, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-030-56485-8, 2020.
Gogé, F., Joffre, R., Jolivet, C., Ross, I., and Ranjard, L.:
Optimization criteria in sample selection step of local regression for
quantitative analysis of large soil NIRS database, Chemometr.
Intell. Lab., 110, 168–176,
https://doi.org/10.1016/j.chemolab.2011.11.003, 2012.
Gray, J., Karunaratne, S., Bishop, T., Wilson, B., and Veeragathipillai, M.:
Driving factors of soil organic carbon fractions over New South Wales,
Australia, Geoderma, 353, 213–226,
https://doi.org/10.1016/j.geoderma.2019.06.032, 2019.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H., and
Yanni, S. F.: Evaluating biodegradability of soil organic matter by its
thermal stability and chemical composition, Soil Biol. Biochem.,
91, 182–191, https://doi.org/10.1016/j.soilbio.2015.08.032, 2015.
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S.,
Allison, S. D., and Randerson, J. T.: Radiocarbon constraints imply reduced
carbon uptake by soils during the 21st century, Science, 353, 1419–1424,
https://doi.org/10.1126/science.aad4273, 2016.
Hénin, S. and Dupuis, M.: Bilan de la matière organique des sols, Annales Agronomiques, 1,
17–29, 1945.
Hénin, S. and Turc, L.: Essai de fractionnement des matières
organiques du sol, Comptes rendus de l'Académie d'agriculture de Francem 35, 41–43, 1949.
Houot, S., Molina, J. A. E., Chaussod, R., and Clapp, C. E.: Simulation by
NCSOIL of net mineralization in soils from the Deherain and 36 parcelles
fields at Grignon, Soil Sci. Soc. Am. J., 53, 451–455,
https://doi.org/10.2136/sssaj1989.03615995005300020023x, 1989.
Hsieh, Y.-P.: Pool size and mean age of stable soil organic carbon in
croplands, Soil Sci. Soc. Am. J., 56, 460–464,
https://doi.org/10.2136/sssaj1992.03615995005600020049x, 1992.
Huggins, D. R., Buyanovsky, G. A., Wagner, G. H., Brown, J. R., Darmody, R.
G., Peck, T. R., Lesoing, G. W., Vanotti, M. B., and Bundy, L. G.: Soil
organic C in the tallgrass prairie-derived region of the corn belt: effects
of long-term crop management, Soil Till. Res., 47, 219–234,
https://doi.org/10.1016/S0167-1987(98)00108-1, 1998.
IPBES: Summary for policymakers of the assessment report on land degradation
and restoration of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services, edited by: Scholes, R. J.,
Montanarella, L., Brainich, E., Brainich, E., Barger, N., ten Brink, B.,
Cantele, M., Erasmus, B., Fisher, J., Gardner, T., Holland, T. G., Kohler,
F., Kotiaho, S., von Maltitz, G., Nangendo, G., Pandit, R., Parrotta, J.,
Potts, M. D., Prince, S., Sankaran, M., and Willemen, L., Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services, 2018.
IPCC: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., available at: https://www.ipcc.ch/srccl/ (last access: 22 June 2021), 2019.
ISO 10694: Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis), available at: https://www.iso.org/standard/18782.html (last access: 22 June 2021), 1995.
Jaconi, A., Poeplau, C., Ramirez-Lopez, L., Van Wesemael, B., and Don, A.:
Log-ratio transformation is the key to determining soil organic carbon
fractions with near-infrared spectroscopy, Eur. J. Soil. Sci., 70, 127–139,
https://doi.org/10.1111/ejss.12761, 2019.
Janzen, H. H.: The soil carbon dilemma: shall we hoard it or use it?, Soil
Biol. Biochem., 38, 419–424,
https://doi.org/10.1016/j.soilbio.2005.10.008, 2006.
Jenkinson, D. S.: The turnover of organic carbon and nitrogen in soil, Philos.
T. R. Soc. Lond. B, 329, 361–368,
https://doi.org/10.1098/rstb.1990.0177, 1990.
Jenkinson, D. S. and Coleman, K.: Calculating the annual input of organic
matter to soil from measurements of total organic carbon and radiocarbon,
Eur. J. Soil Sci., 45, 167–174,
https://doi.org/10.1111/j.1365-2389.1994.tb00498.x, 1994.
Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of CO2
emissions from soil in response to global warming, Nature, 351, 304–306,
https://doi.org/10.1038/351304a0, 1991.
Johnston, A. E., Poulton, P. R., and Coleman, K.: Soil organic matter: its
importance in sustainable agriculture and carbon dioxide fluxes, in:
Adv. Agronom., 101, 1–57,
https://doi.org/10.1016/S0065-2113(08)00801-8, 2009.
Jolivet, C., Almeida-Falcon, J. L., Berché, P., Boulonne, L., Fontaine,
M., Gouny, L., Lehmann, S., Maître, B., Ratié, C., Schellenberger,
E., and Soler-Dominguez, N.: Manuel du Réseau de mesures de la
qualité des sols, RMQS2: deuxième campagne métropolitaine, 2016
– 2027, Version 3, INRA, US 1106 InfoSol, Orléans, France, 2018.
Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., and
Menichetti, L.: Roots contribute more to refractory soil organic matter than
above-ground crop residues, as revealed by a long-term field experiment,
Agriculture, Ecosyst. Environ., 141, 184–192,
https://doi.org/10.1016/j.agee.2011.02.029, 2011.
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, 2016.
Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F.,
Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunié, S., Anthelme, F.,
Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S.,
Compostella, C., Clague, J., Tielidze, L., Messager, E., Choler, P., and
Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around
the world, Glob. Change Biol., 27, 1662–1677,
https://doi.org/10.1111/gcb.15496,
2021.
Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J.,
Minasny, B., Lal, R., Abbott, L., O'Donnell, A., Angers, D., Baldock, J.,
Barbier, E., Binkley, D., Parton, W., Wall, D. H., Bird, M., Bouma, J.,
Chenu, C., Flora, C. B., Goulding, K., Grunwald, S., Hempel, J., Jastrow,
J., Lehmann, J., Lorenz, K., Morgan, C. L., Rice, C. W., Whitehead, D.,
Young, I., and Zimmermann, M.: Soil security: solving the global soil
crisis, Glob. Policy, 4, 434–441, https://doi.org/10.1111/1758-5899.12096,
2013.
Körschens, M., Weigel, A., and Schulz, E.: Turnover of soil organic
matter (SOM) and long-term balances – tools for evaluating sustainable
productivity of soils, Z. Pflanzenernaehr. Bodenk., 161, 409–424,
https://doi.org/10.1002/jpln.1998.3581610409, 1998.
Lal, R.: Soil carbon sequestration impacts on global climate change and food
security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396,
2004.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil
organic matter into particulate and mineral-associated forms to address
global change in the 21st century, Glob. Change Biol., 26, 261–273,
https://doi.org/10.1111/gcb.14859, 2020.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R News, 2,
18–22, 2002.
Ludwig, B., Schulz, E., Rethemeyer, J., Merbach, I., and Flessa, H.:
Predictive modelling of C dynamics in the long-term fertilization experiment
at Bad Lauchstädt with the Rothamsted Carbon Model, Eur. J. Soil Sci., 58, 1155–1163,
https://doi.org/10.1111/j.1365-2389.2007.00907.x, 2007.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J.,
Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil
carbon dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015GB005239, 2016.
Monnier, G., Turc, C., and Jeanson Luusinang, C.: Une methode de fractionnement densimétrique par centrifugation des matières organiques du sol, Annales Agronomiques,
13, 55–63, 1962.
Nikiforoff, C. C.: Some General Aspects of the Chernozem Formation, Soil
Sci. Soc. Am. J., 1, 333–342,
https://doi.org/10.2136/sssaj1937.03615995000100000060x, 1936.
Patil, A., Huard, D., and Fonnesbeck, C.: PyMC: Bayesian stochastic
modelling in Python, J. Stat. Softw., 35,
https://doi.org/10.18637/jss.v035.i04, 2010.
Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers,
D., Augusto, L., Balesdent, J., Basile-Doelsch, I., Bellassen, V.,
Cardinael, R., Cécillon, L., Ceschia, E., Chenu, C., Constantin, J.,
Darroussin, J., Delacote, P., Delame, N., Gastal, F., Gilbert, D., Graux,
A.-I., Guenet, B., Houot, S., Klumpp, K., Letort, E., Litrico, I., Martin,
M., Menasseri-Aubry, S., Meziere, D., Morvan, T., Mosnier, C.,
Roger-Estrade, J., Saint-André, L., Sierra, J., Therond, O., Viaud, V.,
Grateau, R., Le Perchec, S., Savini, I., and Rechauchère, O.: Stocker du carbone dans les sols français, Quel potentiel au regard de l’objectif 4 pour 1000 et à quel coût? Rapport scientifique de l'étude, INRA (France), 540 pp., available at: https://www.inrae.fr/sites/default/files/pdf/Rapport Etude 4p1000.pdf (last access: 22 June 2021), 2020.
Petersen, B. M., Berntsen, J., Hansen, S., and Jensen, L. S.: CN-SIM – a
model for the turnover of soil organic matter. I. Long-term carbon and
radiocarbon development, Soil Biol. Biochem., 37, 359–374,
https://doi.org/10.1016/j.soilbio.2004.08.006, 2005.
Plante, A. F., Beaupré, S. R., Roberts, M. L., and Baisden, T.:
Distribution of radiocarbon ages in soil organic matter by thermal
fractionation, Radiocarbon, 55, 1077–1083,
https://doi.org/10.1017/S0033822200058215, 2013.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J.,
Senapati, N., and Wiesmeier, M.: Reproducibility of a soil organic carbon
fractionation method to derive RothC carbon pools: Soil carbon fractionation
ring trial, Eur. J. Soil Sci., 64, 735–746,
https://doi.org/10.1111/ejss.12088, 2013.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate
agricultural soils – A comprehensive method comparison, Soil Biol.
Biochem., 125, 10–26, https://doi.org/10.1016/j.soilbio.2018.06.025,
2018.
Poeplau, C., Barré, P., Cécillon, L., Baudin, F., and Sigurdsson, B.
D.: Changes in the Rock-Eval signature of soil organic carbon upon extreme
soil warming and chemical oxidation - A comparison, Geoderma, 337, 181–190,
https://doi.org/10.1016/j.geoderma.2018.09.025, 2019.
Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A., and Guillaume, T.:
Carbon neutral expansion of oil palm plantations in the Neotropics, Sci.
Adv., 5, eaaw4418, https://doi.org/10.1126/sciadv.aaw4418, 2019.
Ramirez-Lopez, L., Behrens, T., Schmidt, K., Rossel, R. A. V., Demattê,
J. A. M., and Scholten, T.: Distance and similarity-search metrics for use
with soil vis–NIR spectra, Geoderma, 199, 43–53,
https://doi.org/10.1016/j.geoderma.2012.08.035, 2013a.
Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Demattê, J. A.
M., and Scholten, T.: The spectrum-based learner: A new local approach for
modeling soil vis–NIR spectra of complex datasets, Geoderma, 195–196,
268–279, https://doi.org/10.1016/j.geoderma.2012.12.014, 2013b.
R Core Team: R: a language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2020.
RStudio Team: RStudio: integrated development for R, RStudio, Inc., Boston,
MA, 2020.
Rühlmann, J.: A new approach to estimating the pool of stable organic
matter in soil using data from long-term field experiments, Plant Soil, 213, 149–160,
https://doi.org/10.1023/A:1004552016182, 1999.
Saenger, A., Cécillon, L., Sebag, D., and Brun, J.-J.: Soil organic
carbon quantity, chemistry and thermal stability in a mountainous landscape:
A Rock–Eval pyrolysis survey, Org. Geochem., 54, 101–114,
https://doi.org/10.1016/j.orggeochem.2012.10.008, 2013.
Saenger, A., Cécillon, L., Poulenard, J., Bureau, F., De Daniéli,
S., Gonzalez, J.-M., and Brun, J.-J.: Surveying the carbon pools of mountain
soils: A comparison of physical fractionation and Rock-Eval pyrolysis,
Geoderma, 241–242, 279–288,
https://doi.org/10.1016/j.geoderma.2014.12.001, 2015.
Sanderman, J. and Grandy, A. S.: Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times, SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, 2020.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years
of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580,
https://doi.org/10.1073/pnas.1706103114, 2017.
Schiedung, M., Don, A., Wordell-Dietrich, P., Alcántara, V., Kuner, P.,
and Guggenberger, G.: Thermal oxidation does not fractionate soil organic
carbon with differing biological stabilities, J. Plant Nutr. Soil Sci., 180,
18–26, https://doi.org/10.1002/jpln.201600172, 2017.
Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R.,
O'Donoghue, C., and O'hUallachain, D.: Functional land management: A
framework for managing soil-based ecosystem services for the sustainable
intensification of agriculture, Environ. Sci. Policy, 38,
45–58, https://doi.org/10.1016/j.envsci.2013.10.002, 2014.
Sebag, D., Verrecchia, E. P., Cécillon, L., Adatte, T., Albrecht, R.,
Aubert, M., Bureau, F., Cailleau, G., Copard, Y., Decaens, T., Disnar,
J.-R., Hetényi, M., Nyilas, T., and Trombino, L.: Dynamics of soil
organic matter based on new Rock-Eval indices, Geoderma, 284, 185–203,
https://doi.org/10.1016/j.geoderma.2016.08.025, 2016.
Shi, Z., Allison, S. D., He, Y., Levine, P. A., Hoyt, A. M., Beem-Miller,
J., Zhu, Q., Wieder, W. R., Trumbore, S., and Randerson, J. T.: The age
distribution of global soil carbon inferred from radiocarbon measurements,
Nat. Geosci., 13, 555–559,
https://doi.org/10.1038/s41561-020-0596-z, 2020.
Skjemstad, J. O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration
of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using
measurable soil organic carbon pools, Soil Res., 42, 79–88,
https://doi.org/10.1071/SR03013, 2004.
Soucémarianadin, L., Cécillon, L., Chenu, C., Baudin, F., Nicolas,
M., Girardin, C., and Barré, P.: Is Rock-Eval 6 thermal analysis a good
indicator of soil organic carbon lability? – A method-comparison study in
forest soils, Soil Biol. Biochem., 117, 108–116,
https://doi.org/10.1016/j.soilbio.2017.10.025, 2018a.
Soucémarianadin, L. N., Cécillon, L., Guenet, B., Chenu, C., Baudin,
F., Nicolas, M., Girardin, C., and Barré, P.: Environmental factors
controlling soil organic carbon stability in French forest soils, Plant
Soil, 426, 267–286, https://doi.org/10.1007/s11104-018-3613-x, 2018b.
Stoorvogel, J. J., Bakkenes, M., Brink, B. J. E., and Temme, A. J. A. M.: To
what extent did we change our soils? A global comparison of natural and
current conditions, Land Degrad. Develop., 28, 1982–1991,
https://doi.org/10.1002/ldr.2721, 2017.
Strobl, C., Malley, J., and Tutz, G.: An introduction to recursive
partitioning: Rationale, application, and characteristics of classification
and regression trees, bagging, and random forests, Psychol. Meth.,
14, 323–348, https://doi.org/10.1037/a0016973, 2009.
Taghizadeh-Toosi, A., Cong, W.-F., Eriksen, J., Mayer, J., Olesen, J. E.,
Keel, S. G., Glendining, M., Kätterer, T., and Christensen, B. T.:
Visiting dark sides of model simulation of carbon stocks in European
temperate agricultural soils: allometric function and model initialization,
Plant Soil, 450, 255–272, https://doi.org/10.1007/s11104-020-04500-9, 2020.
Trumbore, S. E., Vogel, J. S., and Southon, J. R.: AMS 14C measurements of
fractionated soil organic matter: an approach to deciphering the soil carbon
cycle, Radiocarbon, 31, 644–654, https://doi.org/10.1017/S0033822200012248,
1989.
van Oort, F., Paradelo, R., Proix, N., Delarue, G., Baize, D., and Monna,
F.: Centennial fertilization-induced soil processes control trace metal
dynamics. Lessons from a long-term bare fallow experiment, Soil Syst., 2, 23,
https://doi.org/10.3390/soilsystems2020023, 2018.
Viscarra Rossel, R. A. and Hicks, W. S.: Soil organic carbon and its
fractions estimated by visible-near infrared transfer functions: Vis-NIR
estimates of organic carbon and its fractions, Eur. J. Soil Sci., 66, 438–450,
https://doi.org/10.1111/ejss.12237, 2015.
Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., and
Richards, A.: Continental-scale soil carbon composition and vulnerability
modulated by regional environmental controls, Nat. Geosci., 12, 547–552,
https://doi.org/10.1038/s41561-019-0373-z, 2019.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H.,
Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods:
Relevance to functional pools and to stabilization mechanisms, Soil Biol.
Biochem., 39, 2183–2207,
https://doi.org/10.1016/j.soilbio.2007.03.007, 2007.
Vos, C., Jaconi, A., Jacobs, A., and Don, A.: Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors, SOIL, 4, 153–167, https://doi.org/10.5194/soil-4-153-2018, 2018.
Wehrens, R.: Chemometrics with R: Multivariate Data Analysis in the Natural
and Life Sciences, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-662-62027-4, 2020.
Wickham, H.: tringr: Simple, consistent wrappers for common string operations, R package version 1.4.0, available at: https://CRAN.R-project.org/package=stringr (last access: 22 June 2021), 2019.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils – A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667,
https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007a.
Zimmermann, M., Leifeld, J., and Fuhrer, J.: Quantifying soil organic carbon
fractions by infrared-spectroscopy, Soil Biol. Biochem., 39,
224–231, https://doi.org/10.1016/j.soilbio.2006.07.010, 2007b.
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century...