Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0)
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Diana Ramírez-Mejía
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
Jared Bowden
Department of
Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
Adrian Ghilardi
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
J. Jason West
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Related authors
No articles found.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
J-F. Mas, A. Pérez Vega, and A. Ghilardi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 457–462, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, 2023
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019, https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
Short summary
We developed a new method for combining surface ozone observations from thousands of monitoring sites worldwide with the output from multiple atmospheric chemistry models. The result is a global surface ozone distribution with greater accuracy than any single model can achieve. We focused on an ozone metric relevant to human mortality caused by long-term ozone exposure. Our method can be applied to studies that quantify the impacts of ozone on human health and mortality.
Christopher G. Nolte, Tanya L. Spero, Jared H. Bowden, Megan S. Mallard, and Patrick D. Dolwick
Atmos. Chem. Phys., 18, 15471–15489, https://doi.org/10.5194/acp-18-15471-2018, https://doi.org/10.5194/acp-18-15471-2018, 2018
Short summary
Short summary
Changes in air pollution in the United States are simulated under three near-future climate scenarios. Widespread increases in average ozone levels are projected, with the largest increases during summer under the highest warming scenario. Increases are driven by higher temperatures and emissions from vegetation and are magnified at the upper end of the ozone distribution. The increases in ozone have potentially important implications for efforts to protect human health.
Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, and David C. Wong
Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018, https://doi.org/10.5194/acp-18-15003-2018, 2018
Short summary
Short summary
Here we use a fine-resolution (36 km) self-consistent 21-year air quality simulation from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates to estimate annual mortality burdens from PM2.5 and O3 in the US, and also the contributions to the trends. We found that the PM2.5-related mortality burden has steadily decreased by 53 %, while the O3-related mortality burden has increased by 13 %, with larger inter-annual variabilities.
Ciao-Kai Liang, J. Jason West, Raquel A. Silva, Huisheng Bian, Mian Chin, Yanko Davila, Frank J. Dentener, Louisa Emmons, Johannes Flemming, Gerd Folberth, Daven Henze, Ulas Im, Jan Eiof Jonson, Terry J. Keating, Tom Kucsera, Allen Lenzen, Meiyun Lin, Marianne Tronstad Lund, Xiaohua Pan, Rokjin J. Park, R. Bradley Pierce, Takashi Sekiya, Kengo Sudo, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018, https://doi.org/10.5194/acp-18-10497-2018, 2018
Short summary
Short summary
Emissions from one continent affect air quality and health elsewhere. Here we quantify the effects of intercontinental PM2.5 and ozone transport on human health using a new multi-model ensemble, evaluating the health effects of emissions from six world regions and three emission source sectors. Emissions from one region have significant health impacts outside of that source region; similarly, foreign emissions contribute significantly to air-pollution-related deaths in several world regions.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Raquel A. Silva, J. Jason West, Jean-François Lamarque, Drew T. Shindell, William J. Collins, Stig Dalsoren, Greg Faluvegi, Gerd Folberth, Larry W. Horowitz, Tatsuya Nagashima, Vaishali Naik, Steven T. Rumbold, Kengo Sudo, Toshihiko Takemura, Daniel Bergmann, Philip Cameron-Smith, Irene Cionni, Ruth M. Doherty, Veronika Eyring, Beatrice Josse, Ian A. MacKenzie, David Plummer, Mattia Righi, David S. Stevenson, Sarah Strode, Sophie Szopa, and Guang Zengast
Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, https://doi.org/10.5194/acp-16-9847-2016, 2016
Short summary
Short summary
Using ozone and PM2.5 concentrations from the ACCMIP ensemble of chemistry-climate models for the four Representative Concentration Pathway scenarios (RCPs), together with projections of future population and baseline mortality rates, we quantify the human premature mortality impacts of future ambient air pollution in 2030, 2050 and 2100, relative to 2000 concentrations. We also estimate the global mortality burden of ozone and PM2.5 in 2000 and each future period.
Yuqiang Zhang, Jared H. Bowden, Zachariah Adelman, Vaishali Naik, Larry W. Horowitz, Steven J. Smith, and J. Jason West
Atmos. Chem. Phys., 16, 9533–9548, https://doi.org/10.5194/acp-16-9533-2016, https://doi.org/10.5194/acp-16-9533-2016, 2016
Short summary
Short summary
Reducing greenhouse gas (GHG) emissions can also improve air quality. We estimate the co-benefits of global GHG mitigation for US air quality in 2050 at fine resolution by downscaling from a previous global study. Foreign GHG mitigation under RCP4.5 contributes more to the US O3 reduction (76 % of the total) than domestic mitigation and contributes 26 % of the PM2.5 reduction. Therefore, the US gains significantly greater air quality co-benefits by coordinating GHG controls internationally.
Y. Gao, A. Ghilardi, J. F. Mas, J. Paneque-Galvez, and M. Skutsch
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 9–13, https://doi.org/10.5194/isprs-archives-XLI-B2-9-2016, https://doi.org/10.5194/isprs-archives-XLI-B2-9-2016, 2016
M. C. Woody, J. J. West, S. H. Jathar, A. L. Robinson, and S. Arunachalam
Atmos. Chem. Phys., 15, 6929–6942, https://doi.org/10.5194/acp-15-6929-2015, https://doi.org/10.5194/acp-15-6929-2015, 2015
Short summary
Short summary
Utilizing an aircraft-specific parameterization based on smog chamber data in a regional AQM, contributions of non-traditional secondary organic aerosols (NTSOA) from aircraft emissions of semi-volatile and intermediate volatility organic compounds were assessed. NTSOA, a previously unaccounted component of PM2.5 in most AQMs, contributed up to 7.4% of aviation-attributable PM2.5 at the airport and rose to 17.9% downwind, suggesting its significance in aviation-attributed PM2.5 at all scales.
M. M. Fry, M. D. Schwarzkopf, Z. Adelman, and J. J. West
Atmos. Chem. Phys., 14, 523–535, https://doi.org/10.5194/acp-14-523-2014, https://doi.org/10.5194/acp-14-523-2014, 2014
J. Rissman, S. Arunachalam, M. Woody, J. J. West, T. BenDor, and F. S. Binkowski
Atmos. Chem. Phys., 13, 9285–9302, https://doi.org/10.5194/acp-13-9285-2013, https://doi.org/10.5194/acp-13-9285-2013, 2013
M. M. Fry, M. D. Schwarzkopf, Z. Adelman, V. Naik, W. J. Collins, and J. J. West
Atmos. Chem. Phys., 13, 5381–5399, https://doi.org/10.5194/acp-13-5381-2013, https://doi.org/10.5194/acp-13-5381-2013, 2013
W. J. Collins, M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West
Atmos. Chem. Phys., 13, 2471–2485, https://doi.org/10.5194/acp-13-2471-2013, https://doi.org/10.5194/acp-13-2471-2013, 2013
Related subject area
Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
A new set of indicators for model evaluation complementing to FAIRMODE’s MQO
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
The third Met Office Unified Model-JULES Regional Atmosphere and Land Configuration, RAL3
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
UA-ICON with NWP physics package (version: ua-icon-2.1): mean state and variability of the middle atmosphere
Assessment of object-based indices to identify convective organization
Diagnosis of winter precipitation types using Spectral Bin Model (SBM): Comparison of five methods using ICE-POP 2018 field experiment data
The Global Forest Fire Emissions Prediction System version 1.0
Impact of Multiple Radar Wind Profilers Data Assimilation on Convective Scale Short-Term Rainfall Forecasts: OSSE Studies over the Beijing-Tianjin-Hebei region
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3512, https://doi.org/10.5194/egusphere-2024-3512, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line and Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, it is valuable for airglow research and astronomical observatories.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3690, https://doi.org/10.5194/egusphere-2024-3690, 2025
Short summary
Short summary
We assess the relevance and utility indicators developed within FAIRMODE by evaluating 9 CAMS models in calculated air pollutant values. For NO2, the results highlight difficulties at traffic stations. For PM2.5 and PM10 the bias and Winter-Summer gradients reveal issues. O3 evaluation shows that e.g. seasonal gradients are useful. Overall, the indicators provide valuable insights into model limitations, yet there is a need to reconsider the strictness of some indicators for certain pollutants.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Wonbae Bang, Jacob Carlin, Kwonil Kim, Alexander Ryzhkov, Guosheng Liu, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-179, https://doi.org/10.5194/gmd-2024-179, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Microphysics model-based diagnosis such as the spectral bin model (SBM) recently has been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM have relatively higher accuracy about snow and wetsnow events whereas lower accuracy about rain event. When microphysics scheme in the SBM was optimized for the corresponding region, accuracy about rain events was improved.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-194, https://doi.org/10.5194/gmd-2024-194, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
A series of observing system simulation experiments are conducted to assess the impact of multiple radar wind profiler (RWP) networks on convective scale numerical weather prediction. Results from three southwest-type heavy rainfall cases in the Beijing-Tianjin-Hebei region suggest the added forecast skill of ridge and foothill networks associated with the Taihang Mountains over the existing RWP network. This research provides valuable guidance for designing optimal RWP networks in the region.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Cited articles
Abiodun, B. J., Pal, J. S., Afiesimama, E. A., Gutowski, W. J., and
Adedoyin, A.: Simulation of West African monsoon using REgCM3 Part II:
impacts of deforestation and desertification, Theor. Appl. Climatol., 93,
245–261, https://doi.org/10.1007/s00704-007-0333-1, 2008.
Adeniyi, M. O. and Dilau, K. A.: Assessing the link between Atlantic Nino 1
and drought over Africa using CORDEX regional climate models, Theor. Appl.
Climatol., 131, 937–949, https://doi.org/10.1007/s00704-016-2018-0, 2018.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Alaka, G. J. and Maloney, E. D.: Internal intraseasonal variability of the
West African Monsoon in WRF, J. Climate, 30, 5815–5832,
https://doi.org/10.1175/JCLI-D-16-0750.1, 2017.
Argent, R., Sun, X., Semazzi, F., Xie, L., and Liu, B.: The development of a
customization framework for the WRF model of the Lake Victoria Basin,
Eastern Africa on Seasonal Timescales, Adv. Meteorol., 2015, 653473, https://doi.org/10.1155/2015/653473, 2015.
Arnault, J., Knoche, R., Wei, J., and Kuntsmann, H.: Evaporation tagging and
atmospheric water budget analysis with WRF: A regional precipitation
recycling study for West Africa, Water Resour. Res., 52, 1544–1567,
https://doi.org/10.1002/2015WR017704, 2016.
Boisier, J. P., de Noblet-Ducoudre, N., Pitman, A. J., Cruz, F. T., Delire,
C., van den Hurk, B. J. J. M., van der Molen, M. K., Muller, C., and
Voldoire, A.: Attributing the impacts of land-cover changes in temperate
regions on surface temperature and heat fluxes to specific causes: Results
from the first LUCID set of simulations, J. Geophys. Res.-Atmos., 117, D12116, https://doi.org/10.1029/2011JD017106, 2012.
Boisier, J. P., de Noblet-Ducoudré, N., and Ciais, P.: Inferring past land use-induced changes in surface albedo from satellite observations: a useful tool to evaluate model simulations, Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, 2013.
Boone, A. A., Xue, Y., De Salesm, F., Comer, R. E., Hagos, S., Mahanama, S.,
Schiro, K., Song, G., Wang, G., Li, S., and Mechoso, C. R.: The regional
impact of land-use land-cover change (LULCC) over West Africa from and
ensemble of global climate models under the auspices of the WAMME2 project,
Clim. Dynam., 47, 3547–3573, https://doi.org/10.1007/s00382-016-3252-y, 2016.
Boulard, D., Pohl, B., Cretat, J., Vigaud, N., and Pham-Xuan, T.:
Downscaling large-scale climate variability using a regional climate model:
the case of ENSO over Southern Africa, Clim. Dynam., 40, 1141–1168,
https://doi.org/10.1007/s00382-012-1400-6, 2013.
Bowman, M. S., Soares-Filho, B. S., Merry, F. D., Nepstad, D. C., Rodrigues,
H. O., and Almeida, O. T.: Persistence of cattle ranching in the Brazilian
Amazon: A spatial analysis of the rationale for beef production,
Land Use Policy, 29, 558–568, https://doi.org/10.1016/j.landusepol.2011.09.009, 2012.
Boysen, L. R., Brovkin, V., Arora, V. K., Cadule, P., de Noblet-Ducoudré, N., Kato, E., Pongratz, J., and Gayler, V.: Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle, Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, 2014.
Breil, M., Rechid, D., Davin, E. L., de Noblet-Ducoudré, N., Katragkou,
E., Cardoso, R. M., Hoffmann, P., Jach, L. L., Soares, P. M. M., Sofiadis,
G., Strada, S., Strandberg, G., Tölle, M. H., and Warrach-Sagi, K.: The
Opposing Effects of Reforestation and Afforestation on the Diurnal
Temperature Cycle at the Surface and in the Lowest Atmospheric Model Level
in the European Summer, J. Climate, 33, 9159–9179,
https://doi.org/10.1175/JCLI-D-19-0624.1, 2020.
Bright, R. M.: Metrics for biogeophysical climate forcings from land use and
land cover Changes and their inclusion in life cycle assessment: A critical
review, Environ. Sci. Technol., 49, 3291–3303, https://doi.org/10.1021/es505465t, 2015.
Bright, R. M., Eisner, S., Lund, M. T., Majasalmi, T., Myhre, G., and
Astrup, R.: Inferring surface albedo prediction error linked to forest
structure at high latitudes, J. Geophys. Res.-Atmos., 123, 4910–4925,
https://doi.org/10.1029/2018JD028293, 2018.
Burakowski, E. A., Bonan, S. V., Wake, G. B., Dibb, C. P., and Hollinger, J.
E.: Evaluating the climate effects of reforestation in New England using a
Weather Research and Forecasting (WRF) model multiphysics ensemble, J. Climate, 29, 5141–5156, https://doi.org/10.1175/JCLI-D-15-0286.1, 2016.
Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho,
B. S., Asner, G. P., Trigg, S. N., Gaveau, D. A., Lawrence, D., and
Rodrigues, H. O.: Committed carbon emissions, deforestation, and community
land conversion from oil palm plantation expansion in West Kalimantan,
Indonesia, P. Natl. Acad. Sci. USA, 109, 7559–7564, https://doi.org/10.1073/pnas.1200452109, 2012.
Charney, J. G.: Dynamics of deserts and drought in the Sahel,
Q. J. Roy. Meteor. Soc., 101, 193–202, https://doi.org/10.1002/qj.49710142802, 1975.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model
with the Penn state/NCAR MM5 modeling system, Part I: model description and
implementation, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Cheng, L. L., Liu, M., and Zhan, J. Q.: Land use scenario simulation of
mountainous districts based on Dinamica EGO model, J. Mt. Sci.-Engl., 17,
289–303, https://doi.org/10.1007/s11629-019-5491-y, 2020.
Clough, S. A., Shephard, M. W., Mlawer, J. E., Delamere, J. S., Iacono, M.
J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Collier, P., Conway, G., and Venables, T.: Climate change and Africa,
Oxford Rev. Econ. Pol., 24, 337–353, https://doi.org/10.1093/oxrep/grn019, 2008.
Cook, C., Reason, C. J. C., and Hewitson, B. C.: Wet and dry spells within
particularly wet and dry summers in the South African summer rainfall
region, Climate Res., 26, 17–31, https://doi.org/10.3354/cr026017, 2004.
Cretat, J., Pohl, B., Richard, Y., and Drobinski, P.: Uncertainties in
simulating regional climate of Southern Africa: sensitivity to physical
parameterizations using WRF, Clim. Dynam., 38, 613–634,
https://doi.org/10.1007/s00382-011-1055-8, 2012.
Cretat, J., Pohl, B., Dieppois, B., Berthou, S., and Pergaud, J.: The Angola
Low: relationship with southern Africa rainfall and ENSO, Clim. Dynam., 52,
1783–1803, https://doi.org/10.1007/s00382-018-4222-3, 2019.
Crossley, J. F., Polcher, J., Cox, P. M., Gedney, N., and Planton, S.:
Uncertainties linked to land-surface processes in climate change
simulations, Clim. Dynam., 16, 949–961, https://doi.org/10.1007/s003820000092, 2000.
De Almeida, C. M., Monteiro, A. M. V., Soares, G. C. B. S., Cerqueira, G.
C., Pennachin, C. L., and Batty, M.: GIS and remote sensing as tools for the
simulation of urban land-use change, Int. J. Remote Sens., 26, 759–774,
https://doi.org/10.1080/01431160512331316865, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Diasso, U. and Abiodun, B. J.: Drought modes in West Africa and how well
CORDEX RCMs simulate them, Theor. Appl. Climatol., 128, 223–240,
https://doi.org/10.1007/s00704-015-1705-6, 2017.
Diaz, J. P., Gonzalez, A., Exposito, F. J., Perez, J. C., Fernandez, J.,
Garcia-Diez, M., and Taima, D.: WRF multi-physics simulation of clouds in
the African region, Q. J. Roy. Meteor. Soc., 141, 2737–2749,
https://doi.org/10.1002/qj.2560, 2015.
Dlugokencky, E. and Tans, P.: Carbon Cycle Greenhouse Gases, NOAA/GML, available at: https://gml.noaa.gov/ccgg/trends/, last access: 5 September 2018.
Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change
on Earth's surface energy balance, Nat. Commun., 9, 679,
https://doi.org/10.1038/s41467-017-02810-8, 2018.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., and
Panitz, H.-J.: Teleconnection responses in multi-GCM driven CORDEX RCMs over
Eastern Africa, Clim. Dynam., 46, 2821–2846,
https://doi.org/10.1007/s00382-015-2734-7, 2016.
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-Interim Project, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6CR5RD9 (last access: 5 October 2018), 2009.
Fita, L., Polcher, J., Giannaros, T. M., Lorenz, T., Milovac, J., Sofiadis, G., Katragkou, E., and Bastin, S.: CORDEX-WRF v1.3: development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community, Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, 2019.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC,
USA, https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
Friedl, M., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X. M.: MODIS Collection 5 global land cover:
Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A.,
Dhiediou, A., Kamga, A., Klutse, N. A. B., Hewitson, B., Nikulin, G., and
Lamptey, B.: Climatology, annual cycle and interannual variability of
precipitation and temperature in CORDEX simulations over West Africa, Int.
J. Climatol., 34, 2241–2257, https://doi.org/10.1002/joc.3834, 2014.
Ge, J., Qi, J., Lofgren, B. M., Moore, N., Torbick, N., and Olson, J. M.:
Impacts of land use/cover classification accuracy on regional climate
simulations, J. Geophys. Res.-Atmos., 112, D05107,
https://doi.org/10.1029/2006JD007404, 2007.
Ge, J., Qi, J., and Lofgren, B.: Use of vegetation properties from EOS
observations for land-climate modeling in East Africa, J. Geophys. Res.-Atmos., 113, D15101, https://doi.org/10.1029/2007JD009628, 2008.
Ghilardi, A., Bailis, R., Mas, J. F., Skutsch, M., Elvir, J. A., Quevedo,
A., Masera, O., Dwivedi, P., Drigo, R., and Vega, E.: Spatiotemporal
modeling of fuelwood environmental impacts: Towards improved accounting for
non-renewable biomass, Environ. Modell. Softw., 82, 241–254,
https://doi.org/10.1016/j.envsoft.2016.04.023, 2016.
Gilliam, G., Pleim, J., and Xiu, A.: Implementation of the Pleim-Xiu Land
Surface Model and Asymmetric Convective Model in the WRF Model, in: 8th Annual WRF User's Workshop, Boulder, Colorado, USA, 11–15 June 2007.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF v 1.0 Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/DZ7XS3, 2020a.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF Updated Radiation Codes, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/W2LWJV, 2020b.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Default WRF-CLM LAI Output Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/JGIQOE, 2020c.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Africa-Bioclimate Regions, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/WHNILT, 2020d.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: MODIS DinamicaEGO Land Use Data, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/BEA55Z, 2020e.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Overview Information, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/MQ8KNS, 2020f.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and
validation of lake surface temperature simulations with the coupled WRF-lake
model, Climate Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Hagen, A.: Fuzzy set approach to assessing similarity of categorical maps,
Int. J. Geogr. Inf. Sci., 17, 235–249,
https://doi.org/10.1080/13658810210157822, 2003.
Hagos, S., Leung, L. R., Xue, Y., Boone, A., de Sales, F., Neupane, N.,
Huang, M., and Yoon, J.-H.: Assessment of uncertainties in the response of
the African monsoon precipitation to land use change simulated by a regional
model, Clim. Dynam., 43, 2765–2775, https://doi.org/10.1007/s00382-014-2092-x,
2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Harris, I. C. and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), Centre for Environmental Data Analysis, 4 December 2017 [data set], https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (last access: 13 November 2020), 2017.
Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty
in plant functional type distributions and its impact on and surface models,
Remote Sens. Environ., 203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long–lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Igri, P. M., Tanessong, R. S., Vondou, D. A., Panda, J., Garba, A., Mkankam,
F. K., and Kamga, A.: Assessing the performance of the WRF model in
predicting high-impact weather conditions over Central and Western Africa:
an ensemble-based approach, Nat. Hazards, 93, 1565–1587,
https://doi.org/10.1007/s11069-018-3368-y, 2018.
Jin, J. and Wen, L.: Evaluation of snowmelt simulations in the Weather
Research and Forecasting Model, J. Geophys. Res.-Atmos., 117, D10110,
https://doi.org/10.1029/2011JD016980, 2012.
Kang, H.-S., Xue, Y., and Collatz, G. J.: Impact assessment of satellite-derived
lead area index datasets using a general circulation model, J. Climate, 20,
993–1015, https://doi.org/10.1175/JCLI4054.1, 2007.
Karri, S., Gharai, B., Sai Krishna, S. V. S., and Rao, P. V. N.: Impact of
AWiFS derived land cover on simulation of heavy rainfall, in: Proc. SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, SPIE Asia-Pacific Remote Sensing, New Delhi, India, 3 May 2016, 98821M,
https://doi.org/10.1117/12.2223627, 2016.
Kerandi, N. M., Laux, P., Arnault, J., and Kunstmann, H.: Performance of the
WRF model to simulate the seasonal and interannual variability of
hydrometeorological variables in East Africa: a case study for the Tana
River basin in Kenya, Theor. Appl. Climatol., 130, 401–418,
https://doi.org/10.1007/s00704-016-1890-y, 2017.
Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F.,
Zimdars, P. A., Crichton, D. J., Jones, C., Nikulin, G., Hewitson, B., Jack,
C., Lennard, C., and Farve, A.: Evaluation of the CORDEX-Africa multi-RCM
hindcast: systematic model errors, Clim. Dynam., 42, 1189–1202,
https://doi.org/10.1007/s00382-013-1751-7, 2014.
Klein, C., Heinzeller, D., Bliefernicht, J., and Kunstmann, H.: Variability
of West African monsoon patterns generated by a WRF multi-physics ensemble,
Clim. Dynam., 45, 2733–2755, https://doi.org/10.1007/s00382-015-2505-5, 2015.
Klein, C., Bliefernicht, J., Heinzeller, D., Gessner, U., Klein, I., and
Kunstmann, H.: Feedback of observed interannual vegetation change: a
regional climate model analysis for the West African monsoon, Clim. Dynam.,
48, 2837–2858, https://doi.org/10.1007/s00382-016-3237-x, 2017.
Lamptey, B. L., Barron, E. J., and Pollard, D.: Simulation of the relative
impact of land cover and carbon dioxide to climate change from 1700 to 2100,
J. Geophys. Res.-Atmos., 110, D20103, https://doi.org/10.1029/2005JD005916, 2005.
Lauer, A. and Hamilton, K.: Simulating clouds with global climate models: a
comparison of CMIP5 results with CMIP3 and satellite data, J. Climate, 26,
3833–3845, https://doi.org/10.1175/JCLI-D-12-00451.1, 2013.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112,
G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lawrence, P. J. and Chase, T. N.: Climate impacts of making
evapotranspiration in the Community Land Model (CLM3) consistent with the
Simple Biosphere Model (SiB), J. Hydrometeorol., 10, 374–394,
https://doi.org/10.1175/2008JHM987.1, 2009.
Lejeune, Q., Seneviratne, S. I., and Davin, E. L.: Historical land-cover
change impacts on climate: Comparative assessment of LUCID and CMIP5
multimodel experiments, J. Climate, 30, 1439–1459,
https://doi.org/10.1175/JCLI-D-16-0213.1, 2017.
Li, R., Wang, S.-Y., and Gillies, R. R.: Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon, Clim. Dynam., 44, 1583–1594, https://doi.org/10.1007/s00382-014-2294-2, 2015.
Longobardi, P., Montenegro, A., Beltrami, H., and Eby, M.: Deforestation
induced climate change: Effects of spatial scale, PLoS ONE, 11, e0153357,
https://doi.org/10.1371/journal.pone.0153357, 2016.
Lu, L. and Shuttleworth, W. J.: Incorporating NDVI-Derived LAI into the
climate versions of RAMS and its impact on regional climate, J.
Hydrometeorol., 3, 347–362, https://doi.org/10.1175/1525-7541(2002)003<0347:INDLIT>2.0.CO;2, 2002.
Lu, Y. and Kueppers, L. M.: Surface energy partitioning over four dominant
vegetation types across the United States in a coupled regional climate
model (Weather Research and Forecasting Model 3-Community Land Model 3.5),
J. Geophys. Res.-Atmos., 117, D06111, https://doi.org/10.1029/2011JD016991, 2012.
Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,
McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltran-Przekurat, A.,
Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P.
D., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and
their biogeophysical effects on climate, Int. J. Climatol., 34, 929–953,
https://doi.org/10.1002/joc.3736, 2014.
Mallard, M. S. and Spero, T. L.: Effects of mosaic land use on dynamically
downscaled WRF simulations of the contiguous United States, J. Geophys. Res.-Atmos., 124, 9117–9140, https://doi.org/10.1029/2018JD029755, 2019.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa),
Environ. Sci. Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Meng, X. H., Evans, J. P., and McCabe, M. F.: The influence of
inter-annually varying albedo on regional climate and drought, Clim. Dynam.,
42, 787–803, https://doi.org/10.1007/s00382-013-1790-0, 2014.
Merry, F., Soares-Filho, B. S., Nepstad, D., Aamacher, G., and Rodrigues, H.:
Balancing Conservation and Economic Sustainability: The Future of the Amazon
Timber Industry, Environ. Manage., 44, 395–407,
https://doi.org/10.1007/s00267-009-9337-1, 2009.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A.,
and Zomer, R.: A high-resolution bioclimate map of the world: a unifying
framework for global biodiversity research and monitoring,
Global Ecol. Biogeogr., 22, 630–638, https://doi.org/10.1111/geb.12022, 2013.
Moore, N., Torbick, N., Lofgren, B., Wang, J., Pijanowski, B., Andresen, J.,
Kim, D.-Y., and Olson, J.: Adapting MODIS-derived LAI and fractional cover
into the RAMS in East Africa, Int. J. Climatol., 30, 1954–1969,
https://doi.org/10.1002/joc.2011, 2010.
Mounkaila, M. S., Abiodun, B. J., and Omotosho, J. B.: Assessing the
capability of CORDEX models in simulating onset of rainfall in West Africa,
Theor. Appl. Climatol., 119, 255–272, https://doi.org/10.1007/s00704-014-1104-4, 2015.
Mulenga, H. M.: Southern African climatic anomalies, summer rainfall and the
Angola low, Dissertation, University of Cape Town, South Africa, 1998.
Munday, C. and Washington, R.: Circulation controls on southern African
precipitation in coupled models: The role of the Angola Low, J. Geophys. Res.-Atmos., 122, 861–877, https://doi.org/10.1002/2016JD025736, 2017.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model with
condensation physics: its design and verification, Bound.-Lay. Meteorol.,
112, 1–31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) Surface Monthly means data in netCDF [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0 (last access: 16 October 2018), 2017a.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) TOA Monthly means data in netCDF Edition4.0 [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-TOA_L3B004.0 (last access: 16 October 2018), 2017b.
Nepstad, D., Soares-Filho, B. S., Merry, F., Lima, A., Moutinho, P., Carter,
J., Bowman, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., Mcgrath, D.,
Stickler, C., Lubowski, P. P., Rivero, S., Alencar, A., Almeida, O., and
Stella, O.: The End of Deforestation in the Brazilian Amazon, Science, 326,
1350–1351, https://doi.org/10.1126/science.1182108, 2009.
Nikulin, G., Jones, C., Giogi, F., Asrar, G., Buchner, M., Cerezo-Mota, R.,
Christensen, O. B., Deque, M., Fernandez, J., Hansler, A., van Meijgaard,
E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation climatology
in an ensemble of CORDEX-Africa regional climate simulations, J. Climate, 25,
6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Niu, G.-Y. and Yang, Z.-L.: Effects of vegetation canopy processes on snow
surface energy and mass balances, J. Geophys. Res.-Atmos., 109, D23111,
https://doi.org/10.1029/2004JD004884, 2004.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part I: African wave circulation, Mon. Weather Rev., 142, 1588–1608,
https://doi.org/10.1175/MWR-D-13-00194.1, 2014.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part II: Precipitation, Mon. Weather Rev., 145, 215–233,
https://doi.org/10.1175/MWR-D-15-0294.1, 2017.
Nyamweya, C., Desjardins, C., Sigurdsson, S., Tomasson, T., Taabu-Munyaho,
A., Sitoki, L., and Stefansson, G.: Simulations of Lake Victoria circulation
patterns using the Regional Ocean Modeling System (ROMS), PLoS ONE, 11,
e0151272, https://doi.org/10.1371/journal.pone.0151272, 2016.
Odoulami, R. C., Abiodun, B. J., and Ajayi, A. E.: Modelling the potential
impacts of afforestation on extreme precipitation over West Africa, Clim. Dynam., 52, 2185–2198, https://doi.org/10.1007/s00382-018-4248-6, 2019.
Oliveira, U., Soares, B., Leitao, R. F. M., and Rodrigues, H. O.:
BioDinamica: a toolkit for analyses of biodiversity and biogeography on the
Dinamica-EGO modelling platform, Peerj, 7, e7213, https://doi.org/10.7717/Peerj.7213, 2019.
Olsen, K. W., Bonan, G. B., Levis, S., and Vertenstein, M.: Effects of land
use change on North American climate: Impact of surface datasets and model
biogeophysics, Clim. Dynam., 23, 117–132,
https://doi.org/10.1007/s00382-004-0426-9, 2004.
Otieno, V. O. and Anyah, R. O.: Effects of land use changes on climate in
the Greater Horn of Africa, Climate Res., 52, 77–95,
https://doi.org/10.3354/cr01050, 2012.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Houssain,
F., Goldewijk, K. K., Nair, U., Betts, R., and Fall, S.: Land use/land cover
changes and climate: modeling analysis and observational evidence,
WIRES Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Platnick, S.: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD08_M3.061 (last access: 2 October 2020), 2017.
Pleim, J. E. and Xiu, A.: Development of a land surface model, Part II: Data
assimiliation, J. Appl. Meteorol. Clim., 42, 1811–1822,
https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2, 2003.
Pohl, B., Cretat, J., and Camberlin, P.: Testing WRF capability in
simulating the atmospheric water cycle over Equatorial East Africa, Clim. Dynam., 37, 1357–1379, https://doi.org/10.1007/s00382-011-1024-2, 2011.
Quesada, B., Arneth, A., and de Noblet-Ducoudré, N.: Atmospheric, radiative,
and hydrologic effects of land use and land cover changes: A global and
multimodel picture, J. Geophys. Res.-Atmos., 122, 5113–5131,
https://doi.org/10.1002/2016JD025448, 2017.
Ratna, S. B., Ratnam, J. V., Behera, S. K., Rautenbach, C. J. de W., Ndarana, T., Takahashi, K., and Yamagata, T.: Performance assessment of three
convective parameterization schemes in WRF for downscaling summer rainfall
over South Africa, Clim. Dynam., 42, 2931–2953,
https://doi.org/10.1007/s00382-013-1918-2, 2014.
Ratnam, J. V., Doi, T., Landman, W. A., and Behera, S. K.: Seasonal
Forecasting of Onset of Summer Rains over South Africa, J. Appl. Meteorol. Clim., 57, 2697–2711, https://doi.org/10.1175/JAMC-D-18-0067.1, 2018.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T.,
Strugnell, N. C., Zhang, X. Y., Jin, Y. F., Muller, J. P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Schepanski, K., Knippertz, P., Fiedler, S. Timouk, F., and Demarty, J.: The
sensitivity of nocturnal low-level jets and near-surface winds over the
Sahel to model resolution, initial conditions and boundary-layer set-up, Q. J. Roy. Meteor. Soc., 141, 1442–1456, https://doi.org/10.1002/qj.2453, 2015.
Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration,
Int. J. Remote Sens., 6, 1335–1372, https://doi.org/10.1080/01431168508948283,
1985.
Silvestrini, R. A., Soares-Filho, B. S., Nepstad, D., Coe, M., Rodrigues, H.
O., and Assunção, R.: Simulating fire regimes in the Amazon in
response to climate change and deforestation, Ecol. Appl., 21, 1573–1590,
https://doi.org/10.1890/10-0827.1, 2011.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys.,
227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kenyon, J. S.:
Modification to the Rapid Update Cycle Land Surface Model (RUC LSM)
available in the Weather Research and Forecasting (WRF) Model, Mon. Weather Rev., 144, 1851–1865, https://doi.org/10.1175/MWR-D-15-0198.1, 2016.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B. Am. Meteorol. Soc., 92, 704–708, https://doi.org/10.1175/2011BAMS3015.1, 2011.
Smith, M. C., Singarayer, J. S., Valdes, P. J., Kaplan, J. O., and Branch, N. P.: The biogeophysical climatic impacts of anthropogenic land use change during the Holocene, Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, 2016.
Soares-Filho, B. S., Pennachin, C. L., and Cerqueira, G.: DINAMICA – a
stochastic cellular automata model designed to simulate the landscape
dynamics in an Amazonian colonization frontier, Ecol. Model., 154, 217–235,
https://doi.org/10.1016/S0304-3800(02)00059-5, 2002.
Soares-Filho, B. S., Nepstad, D., Curran, L., Voll, E., Cerqueira, G.,
Garcia, R. A., Ramos, C. A., Mcdonald, A., Lefebvre, P., and Schlesinger, P.:
Modeling conservation in the Amazon basin, Nature, 440, 520–523,
https://doi.org/10.1038/nature04389, 2006.
Soares-Filho, B. S., Moutinho, P., Nepstad, D., Anderson, A., Rodrigues, H.,
Garcia, R., Dietzsch, L., Merry, F., Bowman, M., Hissa, L., Silvestrini, R.,
and Maretti, C.: Role of Brazilian Amazon protected areas in climate change
mitigation, P. Natl. Acad. Sci. USA, 107, 10821–10826,
https://doi.org/10.1073/pnas.0913048107, 2010.
Spera, S. A., Winter, J. M., and Chipman, J. W.: Evaluation of agricultural
land cover representations on regional climate model simulations in the
Brazilian Cerrado, J. Geophys. Res.-Atmos., 123, 5163–5176,
https://doi.org/10.1029/2017JD027989, 2018.
Subin, Z. M., Riley, W. J., Jin, J., Christianson, D. S., Torn, M. S., and
Kueppers, L. M.: Ecosystem feedbacks to climate change in California:
Development, Testing, and Analysis Using a Coupled Regional Atmosphere and
Land Surface Model (WRF3-CLM3.5), Earth Interact., 15, 1–38, https://doi.org/10.1175/2010EI331.1, 2011.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for
climate simulations: Model structure, evaluation, and sensitivity analyses
in CESM1, J. Adv. Model. Earth Sy., 4, M02001,
https://doi.org/10.1029/2011MS000072, 2012.
Sun, S. and Xue, Y.: Implementing a new snow scheme in Simplified Simple
Biosphere Model (SSiB), Adv. Atmos. Sci., 18, 335–354,
https://doi.org/10.1007/BF02919314, 2001.
Thackeray, C. W., Flectcher, C. G., and Derksen, C.: Diagnosing the impacts
of Northern Hemisphere surface albedo on simulated climate, J. Climate, 32,
1777–1795, https://doi.org/10.1175/JCLI-D-18-0083.1, 2019.
Thapa, R. B. and Murayama, Y.: Urban growth modeling of Kathmandu
metropolitan region, Nepal, Comput. Environ. Urban, 35, 25–34,
https://doi.org/10.1016/j.compenvurbsys.2010.07.005, 2011.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71,
3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Thomson, E. R., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A.,
Abraham, A. J., Herold, M., Adu-Bredu, S., and Doughty, C. E.: Mapping the
leaf economic spectrum across West African tropical forests using
UAV-acquired hyperspectral imagery, Remote Sens.-Basel, 10, 1532,
https://doi.org/10.3390/rs10101532, 2018.
Tian, Y., Dickinson, R. E., Zhou, L., Zeng, Z., Dai, Y., Myneni, R. B.,
Knyazikhin, Y., Zhang, Z., Friedl, M., Yu, H., Wu, W., and Shaikh, M.:
Comparison of seasonal and spatial variations of leaf area index and
fraction of absorbed photosynthetically active radiation from Moderate
Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, J.
Geophys. Res.-Atmos., 109, D01103, https://doi.org/10.1029/2003JD003777, 2004a.
Tian, Y., Dickinson, R. E., Zhou, L., and Shaikh, M.: Impact of new land
boundary conditions from Moderate Resolution Imaging Spectroradiometer
(MODIS) data on the climatology of land surface variables, J. Geophys. Res.-Atmos., 109, D20115, https://doi.org/10.1029/2003JD004499, 2004b.
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE: Accelerating Scientific Discovery, Comput. Sci. Eng., 16, 62–74, https://doi.org/10.1109/MCSE.2014.80, 2014.
Tropical Rainfall Measuring Mission (TRMM): TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/3H/7 (last access: 27 November 2018), 2011.
UNSD: Standard Country or Area Codes for Statistics Use, 1999 (Revision 4),
United Nations, New York, USA, available at: https://unstats.un.org/unsd/methodology/m49/ (last access: 24 May 2021), 1999.
Wang, G., Yu, M., and Xue, Y.: Modeling the potential contribution of land
cover changes to the late twentieth century Sahel drought using a regional
climate model: impact of lateral boundary conditions, Clim. Dynam., 47,
3457–3477, https://doi.org/10.1007/s00382-015-2812-x, 2016.
Wang, G., Ahmed, K. F., You, L., Yu, M., Pal, J., and Li, Z.: Projecting
regional climate and cropland changes using a linked
biogeophysical-socioeconomic modeling framework: 1. Model description and an
equilibrium application over West Africa, J. Adv. Model. Earth Sy., 9,
354–376, https://doi.org/10.1002/2016MS000712, 2017.
Wang, Z., Zeng, X., Barlage, M., Dickenson, R. E., Gao, F., and Schaaf, C.
B.: Using MODIS BRDF and albedo data to evaluate global model land surface
albedo, J. Hydrometeorol., 5, 3–14,
https://doi.org/10.1175/1525-7541(2004)005<0003:UMBAAD>2.0.CO;2, 2004.
Winckler, J., Reick, C. H., Luyssaert, S., Cescatti, A., Stoy, P. C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., and Pongratz, J.: Different response of surface temperature and air temperature to deforestation in climate models, Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, 2019.
Vigaud, N., Roucou, P., Fontaine, B., Sijikumar, S., and Tyteca, S.:
WRF/APPEGE-CLIMAT simulated climate trends over West Africa, Clim. Dynam., 36, 925–944, https://doi.org/10.1007/s00382-009-0707-4, 2011.
Xia, Y., Mocko, D., Huang, M., Li, B., Rodell, M., Mitchell, K. E., Cai, X.,
and Ek, M. B.: Comparison and assessment of three advanced land surface
models in simulating terrestrial water storage components over the United
States, J. Hydrometeorol., 18, 625–649, https://doi.org/10.1175/JHM-D-16-0112.1, 2017.
Xue, T. and Shukla, J.: The influence of land surface properties on Sahel
Climate, Part 1: Desertification, J. Climate, 6, 2232–2245,
https://doi.org/10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2, 1993.
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A Simplified
Biosphere Model for Global Climate Studies, J. Climate, 4, 345–164,
https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2, 1991.
Xue, Y., De Sales, F., Lau, W. K.-M., Boone, A., Kim, K.-M., Mechoso, C. R.,
Wang, G., Kucharski, F., Schiro, K., Hosaka, M., Li, S., Druyan, L. M.,
Sanda, I. S., Thiaw, W., and Zeng, N.: West African monsoon decadal
variability and surface related forcing: second West African Monsoon
Modeling and Evaluation Project Experiment (WAMME II), Clim. Dynam., 47,
3517–3545, https://doi.org/10.1007/s00382-016-3224-2, 2016.
Yang, R. and Friedl, M. A.: Modeling the effects of three-dimensional
vegetation structure on surface radiation and energy balance in boreal
forests, J. Geophys. Res.-Atmos., 108, 8615, https://doi.org/10.1029/2002JD003109,
2003.
Yi, W., Gao, Z. Q., Li, Z. H., and Chen, M. S.: Land-use and land-cover sceneries in China: an application of Dinamica EGO model, in: Proc. SPIE 8513, SPIE Optical Engineering + Applications, Remote Sensing and Modeling of Ecosystems for Sustainability IX, San Diego, California, USA, 12–16 August 2012, 85130I, https://doi.org/10.1117/12.927782, 2012.
Zhang, C., Wang, Y., and Hamilton, K.: Improved representation of boundary
layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke
cumulus parameterization scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, M., Lee, X., Yu, G., Han, S., Wang, H., Yan, J., Zhang, Y., Li, Y.,
Ohta, T., Hirano, T., Kim, J., Yoshifuji, N., and Wang, W.: Response of
surface air temperature to small-scale land clearing across latitudes,
Environ. Res. Lett., 9, 034003, https://doi.org/10.1088/1748-9326/9/3/034002, 2014.
Zhao, M. and Pitman, A. J.: The regional scale impact of land cover change
simulated with a climate model, Int. J. Climatol., 22, 271–290,
https://doi.org/10.1002/joc.727, 2002.
Zheng, Y., Kumar, A., and Niyogi, D.: Impacts of land-atmosphere coupling on
regional rainfall and convection, Clim. Dynam., 44, 2383–2409,
https://doi.org/10.1007/s00382-014-2442-8, 2015.
Short summary
Land use and land cover change is a major contributor to climate change in Africa. Here we document deficiencies in how a weather model represents the land surface of Africa and how we modify a common land surface model to overcome these deficiencies. Our tests reveal that the default weather model does not accurately predict and transition the properties of different African biomes and growing cycles. This paper demonstrates that our modified model addresses these limitations.
Land use and land cover change is a major contributor to climate change in Africa. Here we...