Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0)
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Diana Ramírez-Mejía
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
Jared Bowden
Department of
Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
Adrian Ghilardi
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
J. Jason West
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Related authors
No articles found.
Megan S. Mallard, Tanya Spero, Jared Bowden, Jeff Willison, Christopher G. Nolte, and Anna M. Jalowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-2352, https://doi.org/10.5194/egusphere-2025-2352, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
“Spin-up” is time needed for a model’s result to become effectively free of influence from initial conditions, and it is usually excluded from analysis. Here, spin-up is examined by comparing one decadal simulation to another initialized 20 years prior, in order to determine when their solutions converge. Differences lessen over the first fall and winter, but re-emerge over the following spring and summer, suggesting that at least 1 annual cycle is needed to spin up regional climate simulations.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
J-F. Mas, A. Pérez Vega, and A. Ghilardi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 457–462, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, 2023
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Cited articles
Abiodun, B. J., Pal, J. S., Afiesimama, E. A., Gutowski, W. J., and
Adedoyin, A.: Simulation of West African monsoon using REgCM3 Part II:
impacts of deforestation and desertification, Theor. Appl. Climatol., 93,
245–261, https://doi.org/10.1007/s00704-007-0333-1, 2008.
Adeniyi, M. O. and Dilau, K. A.: Assessing the link between Atlantic Nino 1
and drought over Africa using CORDEX regional climate models, Theor. Appl.
Climatol., 131, 937–949, https://doi.org/10.1007/s00704-016-2018-0, 2018.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Alaka, G. J. and Maloney, E. D.: Internal intraseasonal variability of the
West African Monsoon in WRF, J. Climate, 30, 5815–5832,
https://doi.org/10.1175/JCLI-D-16-0750.1, 2017.
Argent, R., Sun, X., Semazzi, F., Xie, L., and Liu, B.: The development of a
customization framework for the WRF model of the Lake Victoria Basin,
Eastern Africa on Seasonal Timescales, Adv. Meteorol., 2015, 653473, https://doi.org/10.1155/2015/653473, 2015.
Arnault, J., Knoche, R., Wei, J., and Kuntsmann, H.: Evaporation tagging and
atmospheric water budget analysis with WRF: A regional precipitation
recycling study for West Africa, Water Resour. Res., 52, 1544–1567,
https://doi.org/10.1002/2015WR017704, 2016.
Boisier, J. P., de Noblet-Ducoudre, N., Pitman, A. J., Cruz, F. T., Delire,
C., van den Hurk, B. J. J. M., van der Molen, M. K., Muller, C., and
Voldoire, A.: Attributing the impacts of land-cover changes in temperate
regions on surface temperature and heat fluxes to specific causes: Results
from the first LUCID set of simulations, J. Geophys. Res.-Atmos., 117, D12116, https://doi.org/10.1029/2011JD017106, 2012.
Boisier, J. P., de Noblet-Ducoudré, N., and Ciais, P.: Inferring past land use-induced changes in surface albedo from satellite observations: a useful tool to evaluate model simulations, Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, 2013.
Boone, A. A., Xue, Y., De Salesm, F., Comer, R. E., Hagos, S., Mahanama, S.,
Schiro, K., Song, G., Wang, G., Li, S., and Mechoso, C. R.: The regional
impact of land-use land-cover change (LULCC) over West Africa from and
ensemble of global climate models under the auspices of the WAMME2 project,
Clim. Dynam., 47, 3547–3573, https://doi.org/10.1007/s00382-016-3252-y, 2016.
Boulard, D., Pohl, B., Cretat, J., Vigaud, N., and Pham-Xuan, T.:
Downscaling large-scale climate variability using a regional climate model:
the case of ENSO over Southern Africa, Clim. Dynam., 40, 1141–1168,
https://doi.org/10.1007/s00382-012-1400-6, 2013.
Bowman, M. S., Soares-Filho, B. S., Merry, F. D., Nepstad, D. C., Rodrigues,
H. O., and Almeida, O. T.: Persistence of cattle ranching in the Brazilian
Amazon: A spatial analysis of the rationale for beef production,
Land Use Policy, 29, 558–568, https://doi.org/10.1016/j.landusepol.2011.09.009, 2012.
Boysen, L. R., Brovkin, V., Arora, V. K., Cadule, P., de Noblet-Ducoudré, N., Kato, E., Pongratz, J., and Gayler, V.: Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle, Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, 2014.
Breil, M., Rechid, D., Davin, E. L., de Noblet-Ducoudré, N., Katragkou,
E., Cardoso, R. M., Hoffmann, P., Jach, L. L., Soares, P. M. M., Sofiadis,
G., Strada, S., Strandberg, G., Tölle, M. H., and Warrach-Sagi, K.: The
Opposing Effects of Reforestation and Afforestation on the Diurnal
Temperature Cycle at the Surface and in the Lowest Atmospheric Model Level
in the European Summer, J. Climate, 33, 9159–9179,
https://doi.org/10.1175/JCLI-D-19-0624.1, 2020.
Bright, R. M.: Metrics for biogeophysical climate forcings from land use and
land cover Changes and their inclusion in life cycle assessment: A critical
review, Environ. Sci. Technol., 49, 3291–3303, https://doi.org/10.1021/es505465t, 2015.
Bright, R. M., Eisner, S., Lund, M. T., Majasalmi, T., Myhre, G., and
Astrup, R.: Inferring surface albedo prediction error linked to forest
structure at high latitudes, J. Geophys. Res.-Atmos., 123, 4910–4925,
https://doi.org/10.1029/2018JD028293, 2018.
Burakowski, E. A., Bonan, S. V., Wake, G. B., Dibb, C. P., and Hollinger, J.
E.: Evaluating the climate effects of reforestation in New England using a
Weather Research and Forecasting (WRF) model multiphysics ensemble, J. Climate, 29, 5141–5156, https://doi.org/10.1175/JCLI-D-15-0286.1, 2016.
Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho,
B. S., Asner, G. P., Trigg, S. N., Gaveau, D. A., Lawrence, D., and
Rodrigues, H. O.: Committed carbon emissions, deforestation, and community
land conversion from oil palm plantation expansion in West Kalimantan,
Indonesia, P. Natl. Acad. Sci. USA, 109, 7559–7564, https://doi.org/10.1073/pnas.1200452109, 2012.
Charney, J. G.: Dynamics of deserts and drought in the Sahel,
Q. J. Roy. Meteor. Soc., 101, 193–202, https://doi.org/10.1002/qj.49710142802, 1975.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model
with the Penn state/NCAR MM5 modeling system, Part I: model description and
implementation, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Cheng, L. L., Liu, M., and Zhan, J. Q.: Land use scenario simulation of
mountainous districts based on Dinamica EGO model, J. Mt. Sci.-Engl., 17,
289–303, https://doi.org/10.1007/s11629-019-5491-y, 2020.
Clough, S. A., Shephard, M. W., Mlawer, J. E., Delamere, J. S., Iacono, M.
J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Collier, P., Conway, G., and Venables, T.: Climate change and Africa,
Oxford Rev. Econ. Pol., 24, 337–353, https://doi.org/10.1093/oxrep/grn019, 2008.
Cook, C., Reason, C. J. C., and Hewitson, B. C.: Wet and dry spells within
particularly wet and dry summers in the South African summer rainfall
region, Climate Res., 26, 17–31, https://doi.org/10.3354/cr026017, 2004.
Cretat, J., Pohl, B., Richard, Y., and Drobinski, P.: Uncertainties in
simulating regional climate of Southern Africa: sensitivity to physical
parameterizations using WRF, Clim. Dynam., 38, 613–634,
https://doi.org/10.1007/s00382-011-1055-8, 2012.
Cretat, J., Pohl, B., Dieppois, B., Berthou, S., and Pergaud, J.: The Angola
Low: relationship with southern Africa rainfall and ENSO, Clim. Dynam., 52,
1783–1803, https://doi.org/10.1007/s00382-018-4222-3, 2019.
Crossley, J. F., Polcher, J., Cox, P. M., Gedney, N., and Planton, S.:
Uncertainties linked to land-surface processes in climate change
simulations, Clim. Dynam., 16, 949–961, https://doi.org/10.1007/s003820000092, 2000.
De Almeida, C. M., Monteiro, A. M. V., Soares, G. C. B. S., Cerqueira, G.
C., Pennachin, C. L., and Batty, M.: GIS and remote sensing as tools for the
simulation of urban land-use change, Int. J. Remote Sens., 26, 759–774,
https://doi.org/10.1080/01431160512331316865, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Diasso, U. and Abiodun, B. J.: Drought modes in West Africa and how well
CORDEX RCMs simulate them, Theor. Appl. Climatol., 128, 223–240,
https://doi.org/10.1007/s00704-015-1705-6, 2017.
Diaz, J. P., Gonzalez, A., Exposito, F. J., Perez, J. C., Fernandez, J.,
Garcia-Diez, M., and Taima, D.: WRF multi-physics simulation of clouds in
the African region, Q. J. Roy. Meteor. Soc., 141, 2737–2749,
https://doi.org/10.1002/qj.2560, 2015.
Dlugokencky, E. and Tans, P.: Carbon Cycle Greenhouse Gases, NOAA/GML, available at: https://gml.noaa.gov/ccgg/trends/, last access: 5 September 2018.
Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change
on Earth's surface energy balance, Nat. Commun., 9, 679,
https://doi.org/10.1038/s41467-017-02810-8, 2018.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., and
Panitz, H.-J.: Teleconnection responses in multi-GCM driven CORDEX RCMs over
Eastern Africa, Clim. Dynam., 46, 2821–2846,
https://doi.org/10.1007/s00382-015-2734-7, 2016.
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-Interim Project, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6CR5RD9 (last access: 5 October 2018), 2009.
Fita, L., Polcher, J., Giannaros, T. M., Lorenz, T., Milovac, J., Sofiadis, G., Katragkou, E., and Bastin, S.: CORDEX-WRF v1.3: development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community, Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, 2019.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC,
USA, https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
Friedl, M., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X. M.: MODIS Collection 5 global land cover:
Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A.,
Dhiediou, A., Kamga, A., Klutse, N. A. B., Hewitson, B., Nikulin, G., and
Lamptey, B.: Climatology, annual cycle and interannual variability of
precipitation and temperature in CORDEX simulations over West Africa, Int.
J. Climatol., 34, 2241–2257, https://doi.org/10.1002/joc.3834, 2014.
Ge, J., Qi, J., Lofgren, B. M., Moore, N., Torbick, N., and Olson, J. M.:
Impacts of land use/cover classification accuracy on regional climate
simulations, J. Geophys. Res.-Atmos., 112, D05107,
https://doi.org/10.1029/2006JD007404, 2007.
Ge, J., Qi, J., and Lofgren, B.: Use of vegetation properties from EOS
observations for land-climate modeling in East Africa, J. Geophys. Res.-Atmos., 113, D15101, https://doi.org/10.1029/2007JD009628, 2008.
Ghilardi, A., Bailis, R., Mas, J. F., Skutsch, M., Elvir, J. A., Quevedo,
A., Masera, O., Dwivedi, P., Drigo, R., and Vega, E.: Spatiotemporal
modeling of fuelwood environmental impacts: Towards improved accounting for
non-renewable biomass, Environ. Modell. Softw., 82, 241–254,
https://doi.org/10.1016/j.envsoft.2016.04.023, 2016.
Gilliam, G., Pleim, J., and Xiu, A.: Implementation of the Pleim-Xiu Land
Surface Model and Asymmetric Convective Model in the WRF Model, in: 8th Annual WRF User's Workshop, Boulder, Colorado, USA, 11–15 June 2007.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF v 1.0 Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/DZ7XS3, 2020a.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF Updated Radiation Codes, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/W2LWJV, 2020b.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Default WRF-CLM LAI Output Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/JGIQOE, 2020c.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Africa-Bioclimate Regions, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/WHNILT, 2020d.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: MODIS DinamicaEGO Land Use Data, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/BEA55Z, 2020e.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Overview Information, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/MQ8KNS, 2020f.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and
validation of lake surface temperature simulations with the coupled WRF-lake
model, Climate Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Hagen, A.: Fuzzy set approach to assessing similarity of categorical maps,
Int. J. Geogr. Inf. Sci., 17, 235–249,
https://doi.org/10.1080/13658810210157822, 2003.
Hagos, S., Leung, L. R., Xue, Y., Boone, A., de Sales, F., Neupane, N.,
Huang, M., and Yoon, J.-H.: Assessment of uncertainties in the response of
the African monsoon precipitation to land use change simulated by a regional
model, Clim. Dynam., 43, 2765–2775, https://doi.org/10.1007/s00382-014-2092-x,
2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Harris, I. C. and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), Centre for Environmental Data Analysis, 4 December 2017 [data set], https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (last access: 13 November 2020), 2017.
Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty
in plant functional type distributions and its impact on and surface models,
Remote Sens. Environ., 203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long–lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Igri, P. M., Tanessong, R. S., Vondou, D. A., Panda, J., Garba, A., Mkankam,
F. K., and Kamga, A.: Assessing the performance of the WRF model in
predicting high-impact weather conditions over Central and Western Africa:
an ensemble-based approach, Nat. Hazards, 93, 1565–1587,
https://doi.org/10.1007/s11069-018-3368-y, 2018.
Jin, J. and Wen, L.: Evaluation of snowmelt simulations in the Weather
Research and Forecasting Model, J. Geophys. Res.-Atmos., 117, D10110,
https://doi.org/10.1029/2011JD016980, 2012.
Kang, H.-S., Xue, Y., and Collatz, G. J.: Impact assessment of satellite-derived
lead area index datasets using a general circulation model, J. Climate, 20,
993–1015, https://doi.org/10.1175/JCLI4054.1, 2007.
Karri, S., Gharai, B., Sai Krishna, S. V. S., and Rao, P. V. N.: Impact of
AWiFS derived land cover on simulation of heavy rainfall, in: Proc. SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, SPIE Asia-Pacific Remote Sensing, New Delhi, India, 3 May 2016, 98821M,
https://doi.org/10.1117/12.2223627, 2016.
Kerandi, N. M., Laux, P., Arnault, J., and Kunstmann, H.: Performance of the
WRF model to simulate the seasonal and interannual variability of
hydrometeorological variables in East Africa: a case study for the Tana
River basin in Kenya, Theor. Appl. Climatol., 130, 401–418,
https://doi.org/10.1007/s00704-016-1890-y, 2017.
Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F.,
Zimdars, P. A., Crichton, D. J., Jones, C., Nikulin, G., Hewitson, B., Jack,
C., Lennard, C., and Farve, A.: Evaluation of the CORDEX-Africa multi-RCM
hindcast: systematic model errors, Clim. Dynam., 42, 1189–1202,
https://doi.org/10.1007/s00382-013-1751-7, 2014.
Klein, C., Heinzeller, D., Bliefernicht, J., and Kunstmann, H.: Variability
of West African monsoon patterns generated by a WRF multi-physics ensemble,
Clim. Dynam., 45, 2733–2755, https://doi.org/10.1007/s00382-015-2505-5, 2015.
Klein, C., Bliefernicht, J., Heinzeller, D., Gessner, U., Klein, I., and
Kunstmann, H.: Feedback of observed interannual vegetation change: a
regional climate model analysis for the West African monsoon, Clim. Dynam.,
48, 2837–2858, https://doi.org/10.1007/s00382-016-3237-x, 2017.
Lamptey, B. L., Barron, E. J., and Pollard, D.: Simulation of the relative
impact of land cover and carbon dioxide to climate change from 1700 to 2100,
J. Geophys. Res.-Atmos., 110, D20103, https://doi.org/10.1029/2005JD005916, 2005.
Lauer, A. and Hamilton, K.: Simulating clouds with global climate models: a
comparison of CMIP5 results with CMIP3 and satellite data, J. Climate, 26,
3833–3845, https://doi.org/10.1175/JCLI-D-12-00451.1, 2013.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112,
G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lawrence, P. J. and Chase, T. N.: Climate impacts of making
evapotranspiration in the Community Land Model (CLM3) consistent with the
Simple Biosphere Model (SiB), J. Hydrometeorol., 10, 374–394,
https://doi.org/10.1175/2008JHM987.1, 2009.
Lejeune, Q., Seneviratne, S. I., and Davin, E. L.: Historical land-cover
change impacts on climate: Comparative assessment of LUCID and CMIP5
multimodel experiments, J. Climate, 30, 1439–1459,
https://doi.org/10.1175/JCLI-D-16-0213.1, 2017.
Li, R., Wang, S.-Y., and Gillies, R. R.: Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon, Clim. Dynam., 44, 1583–1594, https://doi.org/10.1007/s00382-014-2294-2, 2015.
Longobardi, P., Montenegro, A., Beltrami, H., and Eby, M.: Deforestation
induced climate change: Effects of spatial scale, PLoS ONE, 11, e0153357,
https://doi.org/10.1371/journal.pone.0153357, 2016.
Lu, L. and Shuttleworth, W. J.: Incorporating NDVI-Derived LAI into the
climate versions of RAMS and its impact on regional climate, J.
Hydrometeorol., 3, 347–362, https://doi.org/10.1175/1525-7541(2002)003<0347:INDLIT>2.0.CO;2, 2002.
Lu, Y. and Kueppers, L. M.: Surface energy partitioning over four dominant
vegetation types across the United States in a coupled regional climate
model (Weather Research and Forecasting Model 3-Community Land Model 3.5),
J. Geophys. Res.-Atmos., 117, D06111, https://doi.org/10.1029/2011JD016991, 2012.
Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,
McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltran-Przekurat, A.,
Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P.
D., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and
their biogeophysical effects on climate, Int. J. Climatol., 34, 929–953,
https://doi.org/10.1002/joc.3736, 2014.
Mallard, M. S. and Spero, T. L.: Effects of mosaic land use on dynamically
downscaled WRF simulations of the contiguous United States, J. Geophys. Res.-Atmos., 124, 9117–9140, https://doi.org/10.1029/2018JD029755, 2019.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa),
Environ. Sci. Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Meng, X. H., Evans, J. P., and McCabe, M. F.: The influence of
inter-annually varying albedo on regional climate and drought, Clim. Dynam.,
42, 787–803, https://doi.org/10.1007/s00382-013-1790-0, 2014.
Merry, F., Soares-Filho, B. S., Nepstad, D., Aamacher, G., and Rodrigues, H.:
Balancing Conservation and Economic Sustainability: The Future of the Amazon
Timber Industry, Environ. Manage., 44, 395–407,
https://doi.org/10.1007/s00267-009-9337-1, 2009.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A.,
and Zomer, R.: A high-resolution bioclimate map of the world: a unifying
framework for global biodiversity research and monitoring,
Global Ecol. Biogeogr., 22, 630–638, https://doi.org/10.1111/geb.12022, 2013.
Moore, N., Torbick, N., Lofgren, B., Wang, J., Pijanowski, B., Andresen, J.,
Kim, D.-Y., and Olson, J.: Adapting MODIS-derived LAI and fractional cover
into the RAMS in East Africa, Int. J. Climatol., 30, 1954–1969,
https://doi.org/10.1002/joc.2011, 2010.
Mounkaila, M. S., Abiodun, B. J., and Omotosho, J. B.: Assessing the
capability of CORDEX models in simulating onset of rainfall in West Africa,
Theor. Appl. Climatol., 119, 255–272, https://doi.org/10.1007/s00704-014-1104-4, 2015.
Mulenga, H. M.: Southern African climatic anomalies, summer rainfall and the
Angola low, Dissertation, University of Cape Town, South Africa, 1998.
Munday, C. and Washington, R.: Circulation controls on southern African
precipitation in coupled models: The role of the Angola Low, J. Geophys. Res.-Atmos., 122, 861–877, https://doi.org/10.1002/2016JD025736, 2017.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model with
condensation physics: its design and verification, Bound.-Lay. Meteorol.,
112, 1–31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) Surface Monthly means data in netCDF [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0 (last access: 16 October 2018), 2017a.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) TOA Monthly means data in netCDF Edition4.0 [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-TOA_L3B004.0 (last access: 16 October 2018), 2017b.
Nepstad, D., Soares-Filho, B. S., Merry, F., Lima, A., Moutinho, P., Carter,
J., Bowman, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., Mcgrath, D.,
Stickler, C., Lubowski, P. P., Rivero, S., Alencar, A., Almeida, O., and
Stella, O.: The End of Deforestation in the Brazilian Amazon, Science, 326,
1350–1351, https://doi.org/10.1126/science.1182108, 2009.
Nikulin, G., Jones, C., Giogi, F., Asrar, G., Buchner, M., Cerezo-Mota, R.,
Christensen, O. B., Deque, M., Fernandez, J., Hansler, A., van Meijgaard,
E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation climatology
in an ensemble of CORDEX-Africa regional climate simulations, J. Climate, 25,
6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Niu, G.-Y. and Yang, Z.-L.: Effects of vegetation canopy processes on snow
surface energy and mass balances, J. Geophys. Res.-Atmos., 109, D23111,
https://doi.org/10.1029/2004JD004884, 2004.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part I: African wave circulation, Mon. Weather Rev., 142, 1588–1608,
https://doi.org/10.1175/MWR-D-13-00194.1, 2014.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part II: Precipitation, Mon. Weather Rev., 145, 215–233,
https://doi.org/10.1175/MWR-D-15-0294.1, 2017.
Nyamweya, C., Desjardins, C., Sigurdsson, S., Tomasson, T., Taabu-Munyaho,
A., Sitoki, L., and Stefansson, G.: Simulations of Lake Victoria circulation
patterns using the Regional Ocean Modeling System (ROMS), PLoS ONE, 11,
e0151272, https://doi.org/10.1371/journal.pone.0151272, 2016.
Odoulami, R. C., Abiodun, B. J., and Ajayi, A. E.: Modelling the potential
impacts of afforestation on extreme precipitation over West Africa, Clim. Dynam., 52, 2185–2198, https://doi.org/10.1007/s00382-018-4248-6, 2019.
Oliveira, U., Soares, B., Leitao, R. F. M., and Rodrigues, H. O.:
BioDinamica: a toolkit for analyses of biodiversity and biogeography on the
Dinamica-EGO modelling platform, Peerj, 7, e7213, https://doi.org/10.7717/Peerj.7213, 2019.
Olsen, K. W., Bonan, G. B., Levis, S., and Vertenstein, M.: Effects of land
use change on North American climate: Impact of surface datasets and model
biogeophysics, Clim. Dynam., 23, 117–132,
https://doi.org/10.1007/s00382-004-0426-9, 2004.
Otieno, V. O. and Anyah, R. O.: Effects of land use changes on climate in
the Greater Horn of Africa, Climate Res., 52, 77–95,
https://doi.org/10.3354/cr01050, 2012.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Houssain,
F., Goldewijk, K. K., Nair, U., Betts, R., and Fall, S.: Land use/land cover
changes and climate: modeling analysis and observational evidence,
WIRES Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Platnick, S.: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD08_M3.061 (last access: 2 October 2020), 2017.
Pleim, J. E. and Xiu, A.: Development of a land surface model, Part II: Data
assimiliation, J. Appl. Meteorol. Clim., 42, 1811–1822,
https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2, 2003.
Pohl, B., Cretat, J., and Camberlin, P.: Testing WRF capability in
simulating the atmospheric water cycle over Equatorial East Africa, Clim. Dynam., 37, 1357–1379, https://doi.org/10.1007/s00382-011-1024-2, 2011.
Quesada, B., Arneth, A., and de Noblet-Ducoudré, N.: Atmospheric, radiative,
and hydrologic effects of land use and land cover changes: A global and
multimodel picture, J. Geophys. Res.-Atmos., 122, 5113–5131,
https://doi.org/10.1002/2016JD025448, 2017.
Ratna, S. B., Ratnam, J. V., Behera, S. K., Rautenbach, C. J. de W., Ndarana, T., Takahashi, K., and Yamagata, T.: Performance assessment of three
convective parameterization schemes in WRF for downscaling summer rainfall
over South Africa, Clim. Dynam., 42, 2931–2953,
https://doi.org/10.1007/s00382-013-1918-2, 2014.
Ratnam, J. V., Doi, T., Landman, W. A., and Behera, S. K.: Seasonal
Forecasting of Onset of Summer Rains over South Africa, J. Appl. Meteorol. Clim., 57, 2697–2711, https://doi.org/10.1175/JAMC-D-18-0067.1, 2018.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T.,
Strugnell, N. C., Zhang, X. Y., Jin, Y. F., Muller, J. P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Schepanski, K., Knippertz, P., Fiedler, S. Timouk, F., and Demarty, J.: The
sensitivity of nocturnal low-level jets and near-surface winds over the
Sahel to model resolution, initial conditions and boundary-layer set-up, Q. J. Roy. Meteor. Soc., 141, 1442–1456, https://doi.org/10.1002/qj.2453, 2015.
Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration,
Int. J. Remote Sens., 6, 1335–1372, https://doi.org/10.1080/01431168508948283,
1985.
Silvestrini, R. A., Soares-Filho, B. S., Nepstad, D., Coe, M., Rodrigues, H.
O., and Assunção, R.: Simulating fire regimes in the Amazon in
response to climate change and deforestation, Ecol. Appl., 21, 1573–1590,
https://doi.org/10.1890/10-0827.1, 2011.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys.,
227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kenyon, J. S.:
Modification to the Rapid Update Cycle Land Surface Model (RUC LSM)
available in the Weather Research and Forecasting (WRF) Model, Mon. Weather Rev., 144, 1851–1865, https://doi.org/10.1175/MWR-D-15-0198.1, 2016.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B. Am. Meteorol. Soc., 92, 704–708, https://doi.org/10.1175/2011BAMS3015.1, 2011.
Smith, M. C., Singarayer, J. S., Valdes, P. J., Kaplan, J. O., and Branch, N. P.: The biogeophysical climatic impacts of anthropogenic land use change during the Holocene, Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, 2016.
Soares-Filho, B. S., Pennachin, C. L., and Cerqueira, G.: DINAMICA – a
stochastic cellular automata model designed to simulate the landscape
dynamics in an Amazonian colonization frontier, Ecol. Model., 154, 217–235,
https://doi.org/10.1016/S0304-3800(02)00059-5, 2002.
Soares-Filho, B. S., Nepstad, D., Curran, L., Voll, E., Cerqueira, G.,
Garcia, R. A., Ramos, C. A., Mcdonald, A., Lefebvre, P., and Schlesinger, P.:
Modeling conservation in the Amazon basin, Nature, 440, 520–523,
https://doi.org/10.1038/nature04389, 2006.
Soares-Filho, B. S., Moutinho, P., Nepstad, D., Anderson, A., Rodrigues, H.,
Garcia, R., Dietzsch, L., Merry, F., Bowman, M., Hissa, L., Silvestrini, R.,
and Maretti, C.: Role of Brazilian Amazon protected areas in climate change
mitigation, P. Natl. Acad. Sci. USA, 107, 10821–10826,
https://doi.org/10.1073/pnas.0913048107, 2010.
Spera, S. A., Winter, J. M., and Chipman, J. W.: Evaluation of agricultural
land cover representations on regional climate model simulations in the
Brazilian Cerrado, J. Geophys. Res.-Atmos., 123, 5163–5176,
https://doi.org/10.1029/2017JD027989, 2018.
Subin, Z. M., Riley, W. J., Jin, J., Christianson, D. S., Torn, M. S., and
Kueppers, L. M.: Ecosystem feedbacks to climate change in California:
Development, Testing, and Analysis Using a Coupled Regional Atmosphere and
Land Surface Model (WRF3-CLM3.5), Earth Interact., 15, 1–38, https://doi.org/10.1175/2010EI331.1, 2011.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for
climate simulations: Model structure, evaluation, and sensitivity analyses
in CESM1, J. Adv. Model. Earth Sy., 4, M02001,
https://doi.org/10.1029/2011MS000072, 2012.
Sun, S. and Xue, Y.: Implementing a new snow scheme in Simplified Simple
Biosphere Model (SSiB), Adv. Atmos. Sci., 18, 335–354,
https://doi.org/10.1007/BF02919314, 2001.
Thackeray, C. W., Flectcher, C. G., and Derksen, C.: Diagnosing the impacts
of Northern Hemisphere surface albedo on simulated climate, J. Climate, 32,
1777–1795, https://doi.org/10.1175/JCLI-D-18-0083.1, 2019.
Thapa, R. B. and Murayama, Y.: Urban growth modeling of Kathmandu
metropolitan region, Nepal, Comput. Environ. Urban, 35, 25–34,
https://doi.org/10.1016/j.compenvurbsys.2010.07.005, 2011.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71,
3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Thomson, E. R., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A.,
Abraham, A. J., Herold, M., Adu-Bredu, S., and Doughty, C. E.: Mapping the
leaf economic spectrum across West African tropical forests using
UAV-acquired hyperspectral imagery, Remote Sens.-Basel, 10, 1532,
https://doi.org/10.3390/rs10101532, 2018.
Tian, Y., Dickinson, R. E., Zhou, L., Zeng, Z., Dai, Y., Myneni, R. B.,
Knyazikhin, Y., Zhang, Z., Friedl, M., Yu, H., Wu, W., and Shaikh, M.:
Comparison of seasonal and spatial variations of leaf area index and
fraction of absorbed photosynthetically active radiation from Moderate
Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, J.
Geophys. Res.-Atmos., 109, D01103, https://doi.org/10.1029/2003JD003777, 2004a.
Tian, Y., Dickinson, R. E., Zhou, L., and Shaikh, M.: Impact of new land
boundary conditions from Moderate Resolution Imaging Spectroradiometer
(MODIS) data on the climatology of land surface variables, J. Geophys. Res.-Atmos., 109, D20115, https://doi.org/10.1029/2003JD004499, 2004b.
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE: Accelerating Scientific Discovery, Comput. Sci. Eng., 16, 62–74, https://doi.org/10.1109/MCSE.2014.80, 2014.
Tropical Rainfall Measuring Mission (TRMM): TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/3H/7 (last access: 27 November 2018), 2011.
UNSD: Standard Country or Area Codes for Statistics Use, 1999 (Revision 4),
United Nations, New York, USA, available at: https://unstats.un.org/unsd/methodology/m49/ (last access: 24 May 2021), 1999.
Wang, G., Yu, M., and Xue, Y.: Modeling the potential contribution of land
cover changes to the late twentieth century Sahel drought using a regional
climate model: impact of lateral boundary conditions, Clim. Dynam., 47,
3457–3477, https://doi.org/10.1007/s00382-015-2812-x, 2016.
Wang, G., Ahmed, K. F., You, L., Yu, M., Pal, J., and Li, Z.: Projecting
regional climate and cropland changes using a linked
biogeophysical-socioeconomic modeling framework: 1. Model description and an
equilibrium application over West Africa, J. Adv. Model. Earth Sy., 9,
354–376, https://doi.org/10.1002/2016MS000712, 2017.
Wang, Z., Zeng, X., Barlage, M., Dickenson, R. E., Gao, F., and Schaaf, C.
B.: Using MODIS BRDF and albedo data to evaluate global model land surface
albedo, J. Hydrometeorol., 5, 3–14,
https://doi.org/10.1175/1525-7541(2004)005<0003:UMBAAD>2.0.CO;2, 2004.
Winckler, J., Reick, C. H., Luyssaert, S., Cescatti, A., Stoy, P. C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., and Pongratz, J.: Different response of surface temperature and air temperature to deforestation in climate models, Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, 2019.
Vigaud, N., Roucou, P., Fontaine, B., Sijikumar, S., and Tyteca, S.:
WRF/APPEGE-CLIMAT simulated climate trends over West Africa, Clim. Dynam., 36, 925–944, https://doi.org/10.1007/s00382-009-0707-4, 2011.
Xia, Y., Mocko, D., Huang, M., Li, B., Rodell, M., Mitchell, K. E., Cai, X.,
and Ek, M. B.: Comparison and assessment of three advanced land surface
models in simulating terrestrial water storage components over the United
States, J. Hydrometeorol., 18, 625–649, https://doi.org/10.1175/JHM-D-16-0112.1, 2017.
Xue, T. and Shukla, J.: The influence of land surface properties on Sahel
Climate, Part 1: Desertification, J. Climate, 6, 2232–2245,
https://doi.org/10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2, 1993.
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A Simplified
Biosphere Model for Global Climate Studies, J. Climate, 4, 345–164,
https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2, 1991.
Xue, Y., De Sales, F., Lau, W. K.-M., Boone, A., Kim, K.-M., Mechoso, C. R.,
Wang, G., Kucharski, F., Schiro, K., Hosaka, M., Li, S., Druyan, L. M.,
Sanda, I. S., Thiaw, W., and Zeng, N.: West African monsoon decadal
variability and surface related forcing: second West African Monsoon
Modeling and Evaluation Project Experiment (WAMME II), Clim. Dynam., 47,
3517–3545, https://doi.org/10.1007/s00382-016-3224-2, 2016.
Yang, R. and Friedl, M. A.: Modeling the effects of three-dimensional
vegetation structure on surface radiation and energy balance in boreal
forests, J. Geophys. Res.-Atmos., 108, 8615, https://doi.org/10.1029/2002JD003109,
2003.
Yi, W., Gao, Z. Q., Li, Z. H., and Chen, M. S.: Land-use and land-cover sceneries in China: an application of Dinamica EGO model, in: Proc. SPIE 8513, SPIE Optical Engineering + Applications, Remote Sensing and Modeling of Ecosystems for Sustainability IX, San Diego, California, USA, 12–16 August 2012, 85130I, https://doi.org/10.1117/12.927782, 2012.
Zhang, C., Wang, Y., and Hamilton, K.: Improved representation of boundary
layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke
cumulus parameterization scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, M., Lee, X., Yu, G., Han, S., Wang, H., Yan, J., Zhang, Y., Li, Y.,
Ohta, T., Hirano, T., Kim, J., Yoshifuji, N., and Wang, W.: Response of
surface air temperature to small-scale land clearing across latitudes,
Environ. Res. Lett., 9, 034003, https://doi.org/10.1088/1748-9326/9/3/034002, 2014.
Zhao, M. and Pitman, A. J.: The regional scale impact of land cover change
simulated with a climate model, Int. J. Climatol., 22, 271–290,
https://doi.org/10.1002/joc.727, 2002.
Zheng, Y., Kumar, A., and Niyogi, D.: Impacts of land-atmosphere coupling on
regional rainfall and convection, Clim. Dynam., 44, 2383–2409,
https://doi.org/10.1007/s00382-014-2442-8, 2015.
Short summary
Land use and land cover change is a major contributor to climate change in Africa. Here we document deficiencies in how a weather model represents the land surface of Africa and how we modify a common land surface model to overcome these deficiencies. Our tests reveal that the default weather model does not accurately predict and transition the properties of different African biomes and growing cycles. This paper demonstrates that our modified model addresses these limitations.
Land use and land cover change is a major contributor to climate change in Africa. Here we...