Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0)
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Diana Ramírez-Mejía
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
Jared Bowden
Department of
Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
Adrian Ghilardi
Centre for Research in Environmental Geography, Universidad Nacional
Autónoma de México, Morelia, 58190, Mexico
J. Jason West
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Related authors
No articles found.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
J-F. Mas, A. Pérez Vega, and A. Ghilardi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 457–462, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-457-2023, 2023
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019, https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
Short summary
We developed a new method for combining surface ozone observations from thousands of monitoring sites worldwide with the output from multiple atmospheric chemistry models. The result is a global surface ozone distribution with greater accuracy than any single model can achieve. We focused on an ozone metric relevant to human mortality caused by long-term ozone exposure. Our method can be applied to studies that quantify the impacts of ozone on human health and mortality.
Christopher G. Nolte, Tanya L. Spero, Jared H. Bowden, Megan S. Mallard, and Patrick D. Dolwick
Atmos. Chem. Phys., 18, 15471–15489, https://doi.org/10.5194/acp-18-15471-2018, https://doi.org/10.5194/acp-18-15471-2018, 2018
Short summary
Short summary
Changes in air pollution in the United States are simulated under three near-future climate scenarios. Widespread increases in average ozone levels are projected, with the largest increases during summer under the highest warming scenario. Increases are driven by higher temperatures and emissions from vegetation and are magnified at the upper end of the ozone distribution. The increases in ozone have potentially important implications for efforts to protect human health.
Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, and David C. Wong
Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018, https://doi.org/10.5194/acp-18-15003-2018, 2018
Short summary
Short summary
Here we use a fine-resolution (36 km) self-consistent 21-year air quality simulation from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates to estimate annual mortality burdens from PM2.5 and O3 in the US, and also the contributions to the trends. We found that the PM2.5-related mortality burden has steadily decreased by 53 %, while the O3-related mortality burden has increased by 13 %, with larger inter-annual variabilities.
Ciao-Kai Liang, J. Jason West, Raquel A. Silva, Huisheng Bian, Mian Chin, Yanko Davila, Frank J. Dentener, Louisa Emmons, Johannes Flemming, Gerd Folberth, Daven Henze, Ulas Im, Jan Eiof Jonson, Terry J. Keating, Tom Kucsera, Allen Lenzen, Meiyun Lin, Marianne Tronstad Lund, Xiaohua Pan, Rokjin J. Park, R. Bradley Pierce, Takashi Sekiya, Kengo Sudo, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018, https://doi.org/10.5194/acp-18-10497-2018, 2018
Short summary
Short summary
Emissions from one continent affect air quality and health elsewhere. Here we quantify the effects of intercontinental PM2.5 and ozone transport on human health using a new multi-model ensemble, evaluating the health effects of emissions from six world regions and three emission source sectors. Emissions from one region have significant health impacts outside of that source region; similarly, foreign emissions contribute significantly to air-pollution-related deaths in several world regions.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Raquel A. Silva, J. Jason West, Jean-François Lamarque, Drew T. Shindell, William J. Collins, Stig Dalsoren, Greg Faluvegi, Gerd Folberth, Larry W. Horowitz, Tatsuya Nagashima, Vaishali Naik, Steven T. Rumbold, Kengo Sudo, Toshihiko Takemura, Daniel Bergmann, Philip Cameron-Smith, Irene Cionni, Ruth M. Doherty, Veronika Eyring, Beatrice Josse, Ian A. MacKenzie, David Plummer, Mattia Righi, David S. Stevenson, Sarah Strode, Sophie Szopa, and Guang Zengast
Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, https://doi.org/10.5194/acp-16-9847-2016, 2016
Short summary
Short summary
Using ozone and PM2.5 concentrations from the ACCMIP ensemble of chemistry-climate models for the four Representative Concentration Pathway scenarios (RCPs), together with projections of future population and baseline mortality rates, we quantify the human premature mortality impacts of future ambient air pollution in 2030, 2050 and 2100, relative to 2000 concentrations. We also estimate the global mortality burden of ozone and PM2.5 in 2000 and each future period.
Yuqiang Zhang, Jared H. Bowden, Zachariah Adelman, Vaishali Naik, Larry W. Horowitz, Steven J. Smith, and J. Jason West
Atmos. Chem. Phys., 16, 9533–9548, https://doi.org/10.5194/acp-16-9533-2016, https://doi.org/10.5194/acp-16-9533-2016, 2016
Short summary
Short summary
Reducing greenhouse gas (GHG) emissions can also improve air quality. We estimate the co-benefits of global GHG mitigation for US air quality in 2050 at fine resolution by downscaling from a previous global study. Foreign GHG mitigation under RCP4.5 contributes more to the US O3 reduction (76 % of the total) than domestic mitigation and contributes 26 % of the PM2.5 reduction. Therefore, the US gains significantly greater air quality co-benefits by coordinating GHG controls internationally.
Y. Gao, A. Ghilardi, J. F. Mas, J. Paneque-Galvez, and M. Skutsch
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 9–13, https://doi.org/10.5194/isprs-archives-XLI-B2-9-2016, https://doi.org/10.5194/isprs-archives-XLI-B2-9-2016, 2016
M. C. Woody, J. J. West, S. H. Jathar, A. L. Robinson, and S. Arunachalam
Atmos. Chem. Phys., 15, 6929–6942, https://doi.org/10.5194/acp-15-6929-2015, https://doi.org/10.5194/acp-15-6929-2015, 2015
Short summary
Short summary
Utilizing an aircraft-specific parameterization based on smog chamber data in a regional AQM, contributions of non-traditional secondary organic aerosols (NTSOA) from aircraft emissions of semi-volatile and intermediate volatility organic compounds were assessed. NTSOA, a previously unaccounted component of PM2.5 in most AQMs, contributed up to 7.4% of aviation-attributable PM2.5 at the airport and rose to 17.9% downwind, suggesting its significance in aviation-attributed PM2.5 at all scales.
M. M. Fry, M. D. Schwarzkopf, Z. Adelman, and J. J. West
Atmos. Chem. Phys., 14, 523–535, https://doi.org/10.5194/acp-14-523-2014, https://doi.org/10.5194/acp-14-523-2014, 2014
J. Rissman, S. Arunachalam, M. Woody, J. J. West, T. BenDor, and F. S. Binkowski
Atmos. Chem. Phys., 13, 9285–9302, https://doi.org/10.5194/acp-13-9285-2013, https://doi.org/10.5194/acp-13-9285-2013, 2013
M. M. Fry, M. D. Schwarzkopf, Z. Adelman, V. Naik, W. J. Collins, and J. J. West
Atmos. Chem. Phys., 13, 5381–5399, https://doi.org/10.5194/acp-13-5381-2013, https://doi.org/10.5194/acp-13-5381-2013, 2013
W. J. Collins, M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West
Atmos. Chem. Phys., 13, 2471–2485, https://doi.org/10.5194/acp-13-2471-2013, https://doi.org/10.5194/acp-13-2471-2013, 2013
Related subject area
Atmospheric sciences
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Cited articles
Abiodun, B. J., Pal, J. S., Afiesimama, E. A., Gutowski, W. J., and
Adedoyin, A.: Simulation of West African monsoon using REgCM3 Part II:
impacts of deforestation and desertification, Theor. Appl. Climatol., 93,
245–261, https://doi.org/10.1007/s00704-007-0333-1, 2008.
Adeniyi, M. O. and Dilau, K. A.: Assessing the link between Atlantic Nino 1
and drought over Africa using CORDEX regional climate models, Theor. Appl.
Climatol., 131, 937–949, https://doi.org/10.1007/s00704-016-2018-0, 2018.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Alaka, G. J. and Maloney, E. D.: Internal intraseasonal variability of the
West African Monsoon in WRF, J. Climate, 30, 5815–5832,
https://doi.org/10.1175/JCLI-D-16-0750.1, 2017.
Argent, R., Sun, X., Semazzi, F., Xie, L., and Liu, B.: The development of a
customization framework for the WRF model of the Lake Victoria Basin,
Eastern Africa on Seasonal Timescales, Adv. Meteorol., 2015, 653473, https://doi.org/10.1155/2015/653473, 2015.
Arnault, J., Knoche, R., Wei, J., and Kuntsmann, H.: Evaporation tagging and
atmospheric water budget analysis with WRF: A regional precipitation
recycling study for West Africa, Water Resour. Res., 52, 1544–1567,
https://doi.org/10.1002/2015WR017704, 2016.
Boisier, J. P., de Noblet-Ducoudre, N., Pitman, A. J., Cruz, F. T., Delire,
C., van den Hurk, B. J. J. M., van der Molen, M. K., Muller, C., and
Voldoire, A.: Attributing the impacts of land-cover changes in temperate
regions on surface temperature and heat fluxes to specific causes: Results
from the first LUCID set of simulations, J. Geophys. Res.-Atmos., 117, D12116, https://doi.org/10.1029/2011JD017106, 2012.
Boisier, J. P., de Noblet-Ducoudré, N., and Ciais, P.: Inferring past land use-induced changes in surface albedo from satellite observations: a useful tool to evaluate model simulations, Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, 2013.
Boone, A. A., Xue, Y., De Salesm, F., Comer, R. E., Hagos, S., Mahanama, S.,
Schiro, K., Song, G., Wang, G., Li, S., and Mechoso, C. R.: The regional
impact of land-use land-cover change (LULCC) over West Africa from and
ensemble of global climate models under the auspices of the WAMME2 project,
Clim. Dynam., 47, 3547–3573, https://doi.org/10.1007/s00382-016-3252-y, 2016.
Boulard, D., Pohl, B., Cretat, J., Vigaud, N., and Pham-Xuan, T.:
Downscaling large-scale climate variability using a regional climate model:
the case of ENSO over Southern Africa, Clim. Dynam., 40, 1141–1168,
https://doi.org/10.1007/s00382-012-1400-6, 2013.
Bowman, M. S., Soares-Filho, B. S., Merry, F. D., Nepstad, D. C., Rodrigues,
H. O., and Almeida, O. T.: Persistence of cattle ranching in the Brazilian
Amazon: A spatial analysis of the rationale for beef production,
Land Use Policy, 29, 558–568, https://doi.org/10.1016/j.landusepol.2011.09.009, 2012.
Boysen, L. R., Brovkin, V., Arora, V. K., Cadule, P., de Noblet-Ducoudré, N., Kato, E., Pongratz, J., and Gayler, V.: Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle, Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, 2014.
Breil, M., Rechid, D., Davin, E. L., de Noblet-Ducoudré, N., Katragkou,
E., Cardoso, R. M., Hoffmann, P., Jach, L. L., Soares, P. M. M., Sofiadis,
G., Strada, S., Strandberg, G., Tölle, M. H., and Warrach-Sagi, K.: The
Opposing Effects of Reforestation and Afforestation on the Diurnal
Temperature Cycle at the Surface and in the Lowest Atmospheric Model Level
in the European Summer, J. Climate, 33, 9159–9179,
https://doi.org/10.1175/JCLI-D-19-0624.1, 2020.
Bright, R. M.: Metrics for biogeophysical climate forcings from land use and
land cover Changes and their inclusion in life cycle assessment: A critical
review, Environ. Sci. Technol., 49, 3291–3303, https://doi.org/10.1021/es505465t, 2015.
Bright, R. M., Eisner, S., Lund, M. T., Majasalmi, T., Myhre, G., and
Astrup, R.: Inferring surface albedo prediction error linked to forest
structure at high latitudes, J. Geophys. Res.-Atmos., 123, 4910–4925,
https://doi.org/10.1029/2018JD028293, 2018.
Burakowski, E. A., Bonan, S. V., Wake, G. B., Dibb, C. P., and Hollinger, J.
E.: Evaluating the climate effects of reforestation in New England using a
Weather Research and Forecasting (WRF) model multiphysics ensemble, J. Climate, 29, 5141–5156, https://doi.org/10.1175/JCLI-D-15-0286.1, 2016.
Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho,
B. S., Asner, G. P., Trigg, S. N., Gaveau, D. A., Lawrence, D., and
Rodrigues, H. O.: Committed carbon emissions, deforestation, and community
land conversion from oil palm plantation expansion in West Kalimantan,
Indonesia, P. Natl. Acad. Sci. USA, 109, 7559–7564, https://doi.org/10.1073/pnas.1200452109, 2012.
Charney, J. G.: Dynamics of deserts and drought in the Sahel,
Q. J. Roy. Meteor. Soc., 101, 193–202, https://doi.org/10.1002/qj.49710142802, 1975.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model
with the Penn state/NCAR MM5 modeling system, Part I: model description and
implementation, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Cheng, L. L., Liu, M., and Zhan, J. Q.: Land use scenario simulation of
mountainous districts based on Dinamica EGO model, J. Mt. Sci.-Engl., 17,
289–303, https://doi.org/10.1007/s11629-019-5491-y, 2020.
Clough, S. A., Shephard, M. W., Mlawer, J. E., Delamere, J. S., Iacono, M.
J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Collier, P., Conway, G., and Venables, T.: Climate change and Africa,
Oxford Rev. Econ. Pol., 24, 337–353, https://doi.org/10.1093/oxrep/grn019, 2008.
Cook, C., Reason, C. J. C., and Hewitson, B. C.: Wet and dry spells within
particularly wet and dry summers in the South African summer rainfall
region, Climate Res., 26, 17–31, https://doi.org/10.3354/cr026017, 2004.
Cretat, J., Pohl, B., Richard, Y., and Drobinski, P.: Uncertainties in
simulating regional climate of Southern Africa: sensitivity to physical
parameterizations using WRF, Clim. Dynam., 38, 613–634,
https://doi.org/10.1007/s00382-011-1055-8, 2012.
Cretat, J., Pohl, B., Dieppois, B., Berthou, S., and Pergaud, J.: The Angola
Low: relationship with southern Africa rainfall and ENSO, Clim. Dynam., 52,
1783–1803, https://doi.org/10.1007/s00382-018-4222-3, 2019.
Crossley, J. F., Polcher, J., Cox, P. M., Gedney, N., and Planton, S.:
Uncertainties linked to land-surface processes in climate change
simulations, Clim. Dynam., 16, 949–961, https://doi.org/10.1007/s003820000092, 2000.
De Almeida, C. M., Monteiro, A. M. V., Soares, G. C. B. S., Cerqueira, G.
C., Pennachin, C. L., and Batty, M.: GIS and remote sensing as tools for the
simulation of urban land-use change, Int. J. Remote Sens., 26, 759–774,
https://doi.org/10.1080/01431160512331316865, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Diasso, U. and Abiodun, B. J.: Drought modes in West Africa and how well
CORDEX RCMs simulate them, Theor. Appl. Climatol., 128, 223–240,
https://doi.org/10.1007/s00704-015-1705-6, 2017.
Diaz, J. P., Gonzalez, A., Exposito, F. J., Perez, J. C., Fernandez, J.,
Garcia-Diez, M., and Taima, D.: WRF multi-physics simulation of clouds in
the African region, Q. J. Roy. Meteor. Soc., 141, 2737–2749,
https://doi.org/10.1002/qj.2560, 2015.
Dlugokencky, E. and Tans, P.: Carbon Cycle Greenhouse Gases, NOAA/GML, available at: https://gml.noaa.gov/ccgg/trends/, last access: 5 September 2018.
Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change
on Earth's surface energy balance, Nat. Commun., 9, 679,
https://doi.org/10.1038/s41467-017-02810-8, 2018.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., and
Panitz, H.-J.: Teleconnection responses in multi-GCM driven CORDEX RCMs over
Eastern Africa, Clim. Dynam., 46, 2821–2846,
https://doi.org/10.1007/s00382-015-2734-7, 2016.
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-Interim Project, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6CR5RD9 (last access: 5 October 2018), 2009.
Fita, L., Polcher, J., Giannaros, T. M., Lorenz, T., Milovac, J., Sofiadis, G., Katragkou, E., and Bastin, S.: CORDEX-WRF v1.3: development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community, Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, 2019.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC,
USA, https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
Friedl, M., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X. M.: MODIS Collection 5 global land cover:
Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A.,
Dhiediou, A., Kamga, A., Klutse, N. A. B., Hewitson, B., Nikulin, G., and
Lamptey, B.: Climatology, annual cycle and interannual variability of
precipitation and temperature in CORDEX simulations over West Africa, Int.
J. Climatol., 34, 2241–2257, https://doi.org/10.1002/joc.3834, 2014.
Ge, J., Qi, J., Lofgren, B. M., Moore, N., Torbick, N., and Olson, J. M.:
Impacts of land use/cover classification accuracy on regional climate
simulations, J. Geophys. Res.-Atmos., 112, D05107,
https://doi.org/10.1029/2006JD007404, 2007.
Ge, J., Qi, J., and Lofgren, B.: Use of vegetation properties from EOS
observations for land-climate modeling in East Africa, J. Geophys. Res.-Atmos., 113, D15101, https://doi.org/10.1029/2007JD009628, 2008.
Ghilardi, A., Bailis, R., Mas, J. F., Skutsch, M., Elvir, J. A., Quevedo,
A., Masera, O., Dwivedi, P., Drigo, R., and Vega, E.: Spatiotemporal
modeling of fuelwood environmental impacts: Towards improved accounting for
non-renewable biomass, Environ. Modell. Softw., 82, 241–254,
https://doi.org/10.1016/j.envsoft.2016.04.023, 2016.
Gilliam, G., Pleim, J., and Xiu, A.: Implementation of the Pleim-Xiu Land
Surface Model and Asymmetric Convective Model in the WRF Model, in: 8th Annual WRF User's Workshop, Boulder, Colorado, USA, 11–15 June 2007.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF v 1.0 Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/DZ7XS3, 2020a.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: CLM-AF Updated Radiation Codes, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/W2LWJV, 2020b.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Default WRF-CLM LAI Output Code, UNC Dataverse, V1 [code], https://doi.org/10.15139/S3/JGIQOE, 2020c.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Africa-Bioclimate Regions, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/WHNILT, 2020d.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: MODIS DinamicaEGO Land Use Data, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/BEA55Z, 2020e.
Glotfelty, T., Ramirez, D., Bowden, J., Ghilardi, A., and West, J. J.: Overview Information, UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/MQ8KNS, 2020f.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and
validation of lake surface temperature simulations with the coupled WRF-lake
model, Climate Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Hagen, A.: Fuzzy set approach to assessing similarity of categorical maps,
Int. J. Geogr. Inf. Sci., 17, 235–249,
https://doi.org/10.1080/13658810210157822, 2003.
Hagos, S., Leung, L. R., Xue, Y., Boone, A., de Sales, F., Neupane, N.,
Huang, M., and Yoon, J.-H.: Assessment of uncertainties in the response of
the African monsoon precipitation to land use change simulated by a regional
model, Clim. Dynam., 43, 2765–2775, https://doi.org/10.1007/s00382-014-2092-x,
2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Harris, I. C. and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), Centre for Environmental Data Analysis, 4 December 2017 [data set], https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (last access: 13 November 2020), 2017.
Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty
in plant functional type distributions and its impact on and surface models,
Remote Sens. Environ., 203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long–lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Igri, P. M., Tanessong, R. S., Vondou, D. A., Panda, J., Garba, A., Mkankam,
F. K., and Kamga, A.: Assessing the performance of the WRF model in
predicting high-impact weather conditions over Central and Western Africa:
an ensemble-based approach, Nat. Hazards, 93, 1565–1587,
https://doi.org/10.1007/s11069-018-3368-y, 2018.
Jin, J. and Wen, L.: Evaluation of snowmelt simulations in the Weather
Research and Forecasting Model, J. Geophys. Res.-Atmos., 117, D10110,
https://doi.org/10.1029/2011JD016980, 2012.
Kang, H.-S., Xue, Y., and Collatz, G. J.: Impact assessment of satellite-derived
lead area index datasets using a general circulation model, J. Climate, 20,
993–1015, https://doi.org/10.1175/JCLI4054.1, 2007.
Karri, S., Gharai, B., Sai Krishna, S. V. S., and Rao, P. V. N.: Impact of
AWiFS derived land cover on simulation of heavy rainfall, in: Proc. SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, SPIE Asia-Pacific Remote Sensing, New Delhi, India, 3 May 2016, 98821M,
https://doi.org/10.1117/12.2223627, 2016.
Kerandi, N. M., Laux, P., Arnault, J., and Kunstmann, H.: Performance of the
WRF model to simulate the seasonal and interannual variability of
hydrometeorological variables in East Africa: a case study for the Tana
River basin in Kenya, Theor. Appl. Climatol., 130, 401–418,
https://doi.org/10.1007/s00704-016-1890-y, 2017.
Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F.,
Zimdars, P. A., Crichton, D. J., Jones, C., Nikulin, G., Hewitson, B., Jack,
C., Lennard, C., and Farve, A.: Evaluation of the CORDEX-Africa multi-RCM
hindcast: systematic model errors, Clim. Dynam., 42, 1189–1202,
https://doi.org/10.1007/s00382-013-1751-7, 2014.
Klein, C., Heinzeller, D., Bliefernicht, J., and Kunstmann, H.: Variability
of West African monsoon patterns generated by a WRF multi-physics ensemble,
Clim. Dynam., 45, 2733–2755, https://doi.org/10.1007/s00382-015-2505-5, 2015.
Klein, C., Bliefernicht, J., Heinzeller, D., Gessner, U., Klein, I., and
Kunstmann, H.: Feedback of observed interannual vegetation change: a
regional climate model analysis for the West African monsoon, Clim. Dynam.,
48, 2837–2858, https://doi.org/10.1007/s00382-016-3237-x, 2017.
Lamptey, B. L., Barron, E. J., and Pollard, D.: Simulation of the relative
impact of land cover and carbon dioxide to climate change from 1700 to 2100,
J. Geophys. Res.-Atmos., 110, D20103, https://doi.org/10.1029/2005JD005916, 2005.
Lauer, A. and Hamilton, K.: Simulating clouds with global climate models: a
comparison of CMIP5 results with CMIP3 and satellite data, J. Climate, 26,
3833–3845, https://doi.org/10.1175/JCLI-D-12-00451.1, 2013.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112,
G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lawrence, P. J. and Chase, T. N.: Climate impacts of making
evapotranspiration in the Community Land Model (CLM3) consistent with the
Simple Biosphere Model (SiB), J. Hydrometeorol., 10, 374–394,
https://doi.org/10.1175/2008JHM987.1, 2009.
Lejeune, Q., Seneviratne, S. I., and Davin, E. L.: Historical land-cover
change impacts on climate: Comparative assessment of LUCID and CMIP5
multimodel experiments, J. Climate, 30, 1439–1459,
https://doi.org/10.1175/JCLI-D-16-0213.1, 2017.
Li, R., Wang, S.-Y., and Gillies, R. R.: Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon, Clim. Dynam., 44, 1583–1594, https://doi.org/10.1007/s00382-014-2294-2, 2015.
Longobardi, P., Montenegro, A., Beltrami, H., and Eby, M.: Deforestation
induced climate change: Effects of spatial scale, PLoS ONE, 11, e0153357,
https://doi.org/10.1371/journal.pone.0153357, 2016.
Lu, L. and Shuttleworth, W. J.: Incorporating NDVI-Derived LAI into the
climate versions of RAMS and its impact on regional climate, J.
Hydrometeorol., 3, 347–362, https://doi.org/10.1175/1525-7541(2002)003<0347:INDLIT>2.0.CO;2, 2002.
Lu, Y. and Kueppers, L. M.: Surface energy partitioning over four dominant
vegetation types across the United States in a coupled regional climate
model (Weather Research and Forecasting Model 3-Community Land Model 3.5),
J. Geophys. Res.-Atmos., 117, D06111, https://doi.org/10.1029/2011JD016991, 2012.
Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,
McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltran-Przekurat, A.,
Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P.
D., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and
their biogeophysical effects on climate, Int. J. Climatol., 34, 929–953,
https://doi.org/10.1002/joc.3736, 2014.
Mallard, M. S. and Spero, T. L.: Effects of mosaic land use on dynamically
downscaled WRF simulations of the contiguous United States, J. Geophys. Res.-Atmos., 124, 9117–9140, https://doi.org/10.1029/2018JD029755, 2019.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa),
Environ. Sci. Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Meng, X. H., Evans, J. P., and McCabe, M. F.: The influence of
inter-annually varying albedo on regional climate and drought, Clim. Dynam.,
42, 787–803, https://doi.org/10.1007/s00382-013-1790-0, 2014.
Merry, F., Soares-Filho, B. S., Nepstad, D., Aamacher, G., and Rodrigues, H.:
Balancing Conservation and Economic Sustainability: The Future of the Amazon
Timber Industry, Environ. Manage., 44, 395–407,
https://doi.org/10.1007/s00267-009-9337-1, 2009.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A.,
and Zomer, R.: A high-resolution bioclimate map of the world: a unifying
framework for global biodiversity research and monitoring,
Global Ecol. Biogeogr., 22, 630–638, https://doi.org/10.1111/geb.12022, 2013.
Moore, N., Torbick, N., Lofgren, B., Wang, J., Pijanowski, B., Andresen, J.,
Kim, D.-Y., and Olson, J.: Adapting MODIS-derived LAI and fractional cover
into the RAMS in East Africa, Int. J. Climatol., 30, 1954–1969,
https://doi.org/10.1002/joc.2011, 2010.
Mounkaila, M. S., Abiodun, B. J., and Omotosho, J. B.: Assessing the
capability of CORDEX models in simulating onset of rainfall in West Africa,
Theor. Appl. Climatol., 119, 255–272, https://doi.org/10.1007/s00704-014-1104-4, 2015.
Mulenga, H. M.: Southern African climatic anomalies, summer rainfall and the
Angola low, Dissertation, University of Cape Town, South Africa, 1998.
Munday, C. and Washington, R.: Circulation controls on southern African
precipitation in coupled models: The role of the Angola Low, J. Geophys. Res.-Atmos., 122, 861–877, https://doi.org/10.1002/2016JD025736, 2017.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model with
condensation physics: its design and verification, Bound.-Lay. Meteorol.,
112, 1–31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) Surface Monthly means data in netCDF [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0 (last access: 16 October 2018), 2017a.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) TOA Monthly means data in netCDF Edition4.0 [Data set], NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-TOA_L3B004.0 (last access: 16 October 2018), 2017b.
Nepstad, D., Soares-Filho, B. S., Merry, F., Lima, A., Moutinho, P., Carter,
J., Bowman, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., Mcgrath, D.,
Stickler, C., Lubowski, P. P., Rivero, S., Alencar, A., Almeida, O., and
Stella, O.: The End of Deforestation in the Brazilian Amazon, Science, 326,
1350–1351, https://doi.org/10.1126/science.1182108, 2009.
Nikulin, G., Jones, C., Giogi, F., Asrar, G., Buchner, M., Cerezo-Mota, R.,
Christensen, O. B., Deque, M., Fernandez, J., Hansler, A., van Meijgaard,
E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation climatology
in an ensemble of CORDEX-Africa regional climate simulations, J. Climate, 25,
6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Niu, G.-Y. and Yang, Z.-L.: Effects of vegetation canopy processes on snow
surface energy and mass balances, J. Geophys. Res.-Atmos., 109, D23111,
https://doi.org/10.1029/2004JD004884, 2004.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part I: African wave circulation, Mon. Weather Rev., 142, 1588–1608,
https://doi.org/10.1175/MWR-D-13-00194.1, 2014.
Noble, E., Druyan, L. M., and Fulakeza, M.: The sensitivity of WRF daily
summertime simulations over West Africa to alternative parameterizations,
Part II: Precipitation, Mon. Weather Rev., 145, 215–233,
https://doi.org/10.1175/MWR-D-15-0294.1, 2017.
Nyamweya, C., Desjardins, C., Sigurdsson, S., Tomasson, T., Taabu-Munyaho,
A., Sitoki, L., and Stefansson, G.: Simulations of Lake Victoria circulation
patterns using the Regional Ocean Modeling System (ROMS), PLoS ONE, 11,
e0151272, https://doi.org/10.1371/journal.pone.0151272, 2016.
Odoulami, R. C., Abiodun, B. J., and Ajayi, A. E.: Modelling the potential
impacts of afforestation on extreme precipitation over West Africa, Clim. Dynam., 52, 2185–2198, https://doi.org/10.1007/s00382-018-4248-6, 2019.
Oliveira, U., Soares, B., Leitao, R. F. M., and Rodrigues, H. O.:
BioDinamica: a toolkit for analyses of biodiversity and biogeography on the
Dinamica-EGO modelling platform, Peerj, 7, e7213, https://doi.org/10.7717/Peerj.7213, 2019.
Olsen, K. W., Bonan, G. B., Levis, S., and Vertenstein, M.: Effects of land
use change on North American climate: Impact of surface datasets and model
biogeophysics, Clim. Dynam., 23, 117–132,
https://doi.org/10.1007/s00382-004-0426-9, 2004.
Otieno, V. O. and Anyah, R. O.: Effects of land use changes on climate in
the Greater Horn of Africa, Climate Res., 52, 77–95,
https://doi.org/10.3354/cr01050, 2012.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Houssain,
F., Goldewijk, K. K., Nair, U., Betts, R., and Fall, S.: Land use/land cover
changes and climate: modeling analysis and observational evidence,
WIRES Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Platnick, S.: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD08_M3.061 (last access: 2 October 2020), 2017.
Pleim, J. E. and Xiu, A.: Development of a land surface model, Part II: Data
assimiliation, J. Appl. Meteorol. Clim., 42, 1811–1822,
https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2, 2003.
Pohl, B., Cretat, J., and Camberlin, P.: Testing WRF capability in
simulating the atmospheric water cycle over Equatorial East Africa, Clim. Dynam., 37, 1357–1379, https://doi.org/10.1007/s00382-011-1024-2, 2011.
Quesada, B., Arneth, A., and de Noblet-Ducoudré, N.: Atmospheric, radiative,
and hydrologic effects of land use and land cover changes: A global and
multimodel picture, J. Geophys. Res.-Atmos., 122, 5113–5131,
https://doi.org/10.1002/2016JD025448, 2017.
Ratna, S. B., Ratnam, J. V., Behera, S. K., Rautenbach, C. J. de W., Ndarana, T., Takahashi, K., and Yamagata, T.: Performance assessment of three
convective parameterization schemes in WRF for downscaling summer rainfall
over South Africa, Clim. Dynam., 42, 2931–2953,
https://doi.org/10.1007/s00382-013-1918-2, 2014.
Ratnam, J. V., Doi, T., Landman, W. A., and Behera, S. K.: Seasonal
Forecasting of Onset of Summer Rains over South Africa, J. Appl. Meteorol. Clim., 57, 2697–2711, https://doi.org/10.1175/JAMC-D-18-0067.1, 2018.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T.,
Strugnell, N. C., Zhang, X. Y., Jin, Y. F., Muller, J. P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Schepanski, K., Knippertz, P., Fiedler, S. Timouk, F., and Demarty, J.: The
sensitivity of nocturnal low-level jets and near-surface winds over the
Sahel to model resolution, initial conditions and boundary-layer set-up, Q. J. Roy. Meteor. Soc., 141, 1442–1456, https://doi.org/10.1002/qj.2453, 2015.
Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration,
Int. J. Remote Sens., 6, 1335–1372, https://doi.org/10.1080/01431168508948283,
1985.
Silvestrini, R. A., Soares-Filho, B. S., Nepstad, D., Coe, M., Rodrigues, H.
O., and Assunção, R.: Simulating fire regimes in the Amazon in
response to climate change and deforestation, Ecol. Appl., 21, 1573–1590,
https://doi.org/10.1890/10-0827.1, 2011.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys.,
227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kenyon, J. S.:
Modification to the Rapid Update Cycle Land Surface Model (RUC LSM)
available in the Weather Research and Forecasting (WRF) Model, Mon. Weather Rev., 144, 1851–1865, https://doi.org/10.1175/MWR-D-15-0198.1, 2016.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B. Am. Meteorol. Soc., 92, 704–708, https://doi.org/10.1175/2011BAMS3015.1, 2011.
Smith, M. C., Singarayer, J. S., Valdes, P. J., Kaplan, J. O., and Branch, N. P.: The biogeophysical climatic impacts of anthropogenic land use change during the Holocene, Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, 2016.
Soares-Filho, B. S., Pennachin, C. L., and Cerqueira, G.: DINAMICA – a
stochastic cellular automata model designed to simulate the landscape
dynamics in an Amazonian colonization frontier, Ecol. Model., 154, 217–235,
https://doi.org/10.1016/S0304-3800(02)00059-5, 2002.
Soares-Filho, B. S., Nepstad, D., Curran, L., Voll, E., Cerqueira, G.,
Garcia, R. A., Ramos, C. A., Mcdonald, A., Lefebvre, P., and Schlesinger, P.:
Modeling conservation in the Amazon basin, Nature, 440, 520–523,
https://doi.org/10.1038/nature04389, 2006.
Soares-Filho, B. S., Moutinho, P., Nepstad, D., Anderson, A., Rodrigues, H.,
Garcia, R., Dietzsch, L., Merry, F., Bowman, M., Hissa, L., Silvestrini, R.,
and Maretti, C.: Role of Brazilian Amazon protected areas in climate change
mitigation, P. Natl. Acad. Sci. USA, 107, 10821–10826,
https://doi.org/10.1073/pnas.0913048107, 2010.
Spera, S. A., Winter, J. M., and Chipman, J. W.: Evaluation of agricultural
land cover representations on regional climate model simulations in the
Brazilian Cerrado, J. Geophys. Res.-Atmos., 123, 5163–5176,
https://doi.org/10.1029/2017JD027989, 2018.
Subin, Z. M., Riley, W. J., Jin, J., Christianson, D. S., Torn, M. S., and
Kueppers, L. M.: Ecosystem feedbacks to climate change in California:
Development, Testing, and Analysis Using a Coupled Regional Atmosphere and
Land Surface Model (WRF3-CLM3.5), Earth Interact., 15, 1–38, https://doi.org/10.1175/2010EI331.1, 2011.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for
climate simulations: Model structure, evaluation, and sensitivity analyses
in CESM1, J. Adv. Model. Earth Sy., 4, M02001,
https://doi.org/10.1029/2011MS000072, 2012.
Sun, S. and Xue, Y.: Implementing a new snow scheme in Simplified Simple
Biosphere Model (SSiB), Adv. Atmos. Sci., 18, 335–354,
https://doi.org/10.1007/BF02919314, 2001.
Thackeray, C. W., Flectcher, C. G., and Derksen, C.: Diagnosing the impacts
of Northern Hemisphere surface albedo on simulated climate, J. Climate, 32,
1777–1795, https://doi.org/10.1175/JCLI-D-18-0083.1, 2019.
Thapa, R. B. and Murayama, Y.: Urban growth modeling of Kathmandu
metropolitan region, Nepal, Comput. Environ. Urban, 35, 25–34,
https://doi.org/10.1016/j.compenvurbsys.2010.07.005, 2011.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71,
3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Thomson, E. R., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A.,
Abraham, A. J., Herold, M., Adu-Bredu, S., and Doughty, C. E.: Mapping the
leaf economic spectrum across West African tropical forests using
UAV-acquired hyperspectral imagery, Remote Sens.-Basel, 10, 1532,
https://doi.org/10.3390/rs10101532, 2018.
Tian, Y., Dickinson, R. E., Zhou, L., Zeng, Z., Dai, Y., Myneni, R. B.,
Knyazikhin, Y., Zhang, Z., Friedl, M., Yu, H., Wu, W., and Shaikh, M.:
Comparison of seasonal and spatial variations of leaf area index and
fraction of absorbed photosynthetically active radiation from Moderate
Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, J.
Geophys. Res.-Atmos., 109, D01103, https://doi.org/10.1029/2003JD003777, 2004a.
Tian, Y., Dickinson, R. E., Zhou, L., and Shaikh, M.: Impact of new land
boundary conditions from Moderate Resolution Imaging Spectroradiometer
(MODIS) data on the climatology of land surface variables, J. Geophys. Res.-Atmos., 109, D20115, https://doi.org/10.1029/2003JD004499, 2004b.
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE: Accelerating Scientific Discovery, Comput. Sci. Eng., 16, 62–74, https://doi.org/10.1109/MCSE.2014.80, 2014.
Tropical Rainfall Measuring Mission (TRMM): TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/3H/7 (last access: 27 November 2018), 2011.
UNSD: Standard Country or Area Codes for Statistics Use, 1999 (Revision 4),
United Nations, New York, USA, available at: https://unstats.un.org/unsd/methodology/m49/ (last access: 24 May 2021), 1999.
Wang, G., Yu, M., and Xue, Y.: Modeling the potential contribution of land
cover changes to the late twentieth century Sahel drought using a regional
climate model: impact of lateral boundary conditions, Clim. Dynam., 47,
3457–3477, https://doi.org/10.1007/s00382-015-2812-x, 2016.
Wang, G., Ahmed, K. F., You, L., Yu, M., Pal, J., and Li, Z.: Projecting
regional climate and cropland changes using a linked
biogeophysical-socioeconomic modeling framework: 1. Model description and an
equilibrium application over West Africa, J. Adv. Model. Earth Sy., 9,
354–376, https://doi.org/10.1002/2016MS000712, 2017.
Wang, Z., Zeng, X., Barlage, M., Dickenson, R. E., Gao, F., and Schaaf, C.
B.: Using MODIS BRDF and albedo data to evaluate global model land surface
albedo, J. Hydrometeorol., 5, 3–14,
https://doi.org/10.1175/1525-7541(2004)005<0003:UMBAAD>2.0.CO;2, 2004.
Winckler, J., Reick, C. H., Luyssaert, S., Cescatti, A., Stoy, P. C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., and Pongratz, J.: Different response of surface temperature and air temperature to deforestation in climate models, Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, 2019.
Vigaud, N., Roucou, P., Fontaine, B., Sijikumar, S., and Tyteca, S.:
WRF/APPEGE-CLIMAT simulated climate trends over West Africa, Clim. Dynam., 36, 925–944, https://doi.org/10.1007/s00382-009-0707-4, 2011.
Xia, Y., Mocko, D., Huang, M., Li, B., Rodell, M., Mitchell, K. E., Cai, X.,
and Ek, M. B.: Comparison and assessment of three advanced land surface
models in simulating terrestrial water storage components over the United
States, J. Hydrometeorol., 18, 625–649, https://doi.org/10.1175/JHM-D-16-0112.1, 2017.
Xue, T. and Shukla, J.: The influence of land surface properties on Sahel
Climate, Part 1: Desertification, J. Climate, 6, 2232–2245,
https://doi.org/10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2, 1993.
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A Simplified
Biosphere Model for Global Climate Studies, J. Climate, 4, 345–164,
https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2, 1991.
Xue, Y., De Sales, F., Lau, W. K.-M., Boone, A., Kim, K.-M., Mechoso, C. R.,
Wang, G., Kucharski, F., Schiro, K., Hosaka, M., Li, S., Druyan, L. M.,
Sanda, I. S., Thiaw, W., and Zeng, N.: West African monsoon decadal
variability and surface related forcing: second West African Monsoon
Modeling and Evaluation Project Experiment (WAMME II), Clim. Dynam., 47,
3517–3545, https://doi.org/10.1007/s00382-016-3224-2, 2016.
Yang, R. and Friedl, M. A.: Modeling the effects of three-dimensional
vegetation structure on surface radiation and energy balance in boreal
forests, J. Geophys. Res.-Atmos., 108, 8615, https://doi.org/10.1029/2002JD003109,
2003.
Yi, W., Gao, Z. Q., Li, Z. H., and Chen, M. S.: Land-use and land-cover sceneries in China: an application of Dinamica EGO model, in: Proc. SPIE 8513, SPIE Optical Engineering + Applications, Remote Sensing and Modeling of Ecosystems for Sustainability IX, San Diego, California, USA, 12–16 August 2012, 85130I, https://doi.org/10.1117/12.927782, 2012.
Zhang, C., Wang, Y., and Hamilton, K.: Improved representation of boundary
layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke
cumulus parameterization scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, M., Lee, X., Yu, G., Han, S., Wang, H., Yan, J., Zhang, Y., Li, Y.,
Ohta, T., Hirano, T., Kim, J., Yoshifuji, N., and Wang, W.: Response of
surface air temperature to small-scale land clearing across latitudes,
Environ. Res. Lett., 9, 034003, https://doi.org/10.1088/1748-9326/9/3/034002, 2014.
Zhao, M. and Pitman, A. J.: The regional scale impact of land cover change
simulated with a climate model, Int. J. Climatol., 22, 271–290,
https://doi.org/10.1002/joc.727, 2002.
Zheng, Y., Kumar, A., and Niyogi, D.: Impacts of land-atmosphere coupling on
regional rainfall and convection, Clim. Dynam., 44, 2383–2409,
https://doi.org/10.1007/s00382-014-2442-8, 2015.
Short summary
Land use and land cover change is a major contributor to climate change in Africa. Here we document deficiencies in how a weather model represents the land surface of Africa and how we modify a common land surface model to overcome these deficiencies. Our tests reveal that the default weather model does not accurately predict and transition the properties of different African biomes and growing cycles. This paper demonstrates that our modified model addresses these limitations.
Land use and land cover change is a major contributor to climate change in Africa. Here we...