Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2781-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2781-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale application
Pengfei Wang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
Center for Monsoon System Research (CMSR), Institute of Atmospheric
Physics, Chinese Academy of Sciences, Beijing 100190, China
Jinrong Jiang
CORRESPONDING AUTHOR
Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Pengfei Lin
CORRESPONDING AUTHOR
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
Mengrong Ding
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
Junlin Wei
Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China
Feng Zhang
Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China
Lian Zhao
Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
Zipeng Yu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
Weipeng Zheng
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yongqiang Yu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
Xuebin Chi
Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
Data sets
The updated dataset of figures for "The GPU version of LICOM3 under HIP framework and its large-scale application" H. Liu https://doi.org/10.5281/zenodo.4542544
Model code and software
The GPU version of LICOM3 under HIP framework and its large-scale application (updated) (Version 1.0) H. Liu, P. Wang, J. Jiang, and P. Lin https://doi.org/10.5281/zenodo.4302813
Short summary
Global ocean general circulation models are a fundamental tool for oceanography research, ocean forecast, and climate change research. The increasing resolution will greatly improve simulations of the models, but it also demands much more computing resources. In this study, we have ported an ocean general circulation model to a heterogeneous computing system and have developed a 3–5 km model version. A 14-year integration has been conducted and the preliminary results have been evaluated.
Global ocean general circulation models are a fundamental tool for oceanography research, ocean...