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Abstract. A high-resolution (1/20◦) global ocean gen-
eral circulation model with graphics processing unit (GPU)
code implementations is developed based on the LASG/IAP
Climate System Ocean Model version 3 (LICOM3) un-
der a heterogeneous-compute interface for portability (HIP)
framework. The dynamic core and physics package of LI-
COM3 are both ported to the GPU, and three-dimensional
parallelization (also partitioned in the vertical direction) is
applied. The HIP version of LICOM3 (LICOM3-HIP) is 42
times faster than the same number of CPU cores when 384
AMD GPUs and CPU cores are used. LICOM3-HIP has ex-
cellent scalability; it can still obtain a speedup of more than
4 on 9216 GPUs compared to 384 GPUs. In this phase, we
successfully performed a test of 1/20◦ LICOM3-HIP us-
ing 6550 nodes and 26 200 GPUs, and on a large scale, the
model’s speed was increased to approximately 2.72 simu-
lated years per day (SYPD). By putting almost all the com-
putation processes inside GPUs, the time cost of data transfer
between CPUs and GPUs was reduced, resulting in high per-
formance. Simultaneously, a 14-year spin-up integration fol-
lowing phase 2 of the Ocean Model Intercomparison Project
(OMIP-2) protocol of surface forcing was performed, and
preliminary results were evaluated. We found that the model
results had little difference from the CPU version. Further
comparison with observations and lower-resolution LICOM3

results suggests that the 1/20◦ LICOM3-HIP can reproduce
the observations and produce many smaller-scale activities,
such as submesoscale eddies and frontal-scale structures.

1 Introduction

Numerical models are a powerful tool for weather fore-
casts and climate prediction and projection. Creating high-
resolution atmospheric, oceanic, and climatic models re-
mains a significant scientific and engineering challenge be-
cause of the enormous computing, communication, and in-
put and/or output (IO) involved. Kilometer-scale weather and
climate simulation have recently started to emerge (Schär
et al., 2020). Due to the considerable increase in computa-
tional cost, such models will only work with extreme-scale
high-performance computers and new technologies.

Global ocean general circulation models (OGCMs) are a
fundamental tool for oceanography research, ocean forecast-
ing, and climate change research (Chassignet et al., 2019).
Such model performance is determined mainly by model
resolution and subgrid parameterization and surface forcing.
The horizontal resolution of global OGCMs has increased
to approximately 5–10 km, and these models are also called
eddy-resolving models. Increasing the resolution will sig-
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nificantly improve the simulation of western boundary cur-
rents, mesoscale eddies, fronts and jets, and currents in nar-
row passages (Hewitt et al., 2017). Meanwhile, the ability of
an ocean model to simulate the energy cascade (Wang et al.,
2019), the air–sea interaction (Hewitt et al., 2017), and the
ocean heat uptake (Griffies et al., 2015) will be improved
with increasing resolution. All these factors will effectively
improve ocean model performance in the simulation and pre-
diction of ocean circulation. Additionally, the latest numeri-
cal and observational results show that much smaller eddies
(submesoscale eddies with a spatial scale of approximately
5–10 km) are crucial to vertical heat transport in the upper-
ocean mixed layer and significant to biological processes (Su
et al., 2018). Resolving the smaller-scale processes raises
a new challenge for the horizontal resolution of OGCMs,
which also demands much more computing resources.

Heterogeneous computing has become a development
trend of high-performance computers. In the latest TOP500
supercomputer list released in November 2020 (https://www.
top500.org/lists/top500/2020/11/, last access: 17 May 2021),
central processing unit (CPU) and graphics processing unit
(GPU) heterogeneous machines account for 6 of the top
10. After the NVIDIA Corporation provided supercomputing
techniques on GPUs, an increasing number of ocean mod-
els applied these high-performance acceleration methods to
conduct weather or climate simulations. Xu et al. (2015)
developed POM.gpu (GPU version of the Princeton Ocean
Model), a full GPU solution based on mpiPOM (MPI version
of the Princeton Ocean Model) on a cluster, and achieved a
6.8 times energy reduction. Yashiro et al. (2016) deployed the
NICAM (Nonhydrostatic ICosahedral Atmospheric Model)
on the TSUBAME supercomputer, and the model sustained a
double-precision performance of 60 teraflops on 2560 GPUs.
Yuan et al. (2020) developed a GPU version of a wave
model with 2 V100 cards and obtained a speedup of 10–
12 times when compared to the 36 cores of the CPU. Yang
et al. (2016) implemented a fully implicit β-plane dynamic
model with 488 m grid spacing on the TaihuLight system and
achieved 7.95 petaflops. Fuhrer et al. (2018) reported a 2 km
regional atmospheric general circulation model (AGCM) test
using 4888 GPU cards and obtained a simulation perfor-
mance for 0.043 simulated years per wall clock day (SYPD).
S. Zhang et al. (2020) successfully ported a high-resolution
(25 km atmosphere and 10 km ocean) Community Earth Sys-
tem Model in the TaihuLight supercomputer and obtained 1–
3.4 SYPD.

Additionally, the AMD company also provides GPU so-
lutions. In general, AMD GPUs use heterogeneous compute
compiler (HCC) tools to compile codes, and they cannot use
the Compute Unified Device Architecture (CUDA) develop-
ment environments, which provide support for the NVIDIA
GPU only. Therefore, due to the wide use and numerous
CUDA learning resources, AMD developers must study two
kinds of GPU programming skills. AMD’s heterogeneous-
compute interface for portability (HIP) is an open-source

solution to address this problem. It provides a higher-level
framework to contain these two types of lower-level de-
velopment environments, i.e., CUDA and HCC, simultane-
ously. The HIP code’s grammar is similar to that of the
CUDA code, and with a simple conversion tool, the code
can be compiled and run at CUDA and AMD architects.
HCC/OpenACC (Open ACCelerators) is more convenient for
AMD GPU developers than the HIP, which is popular from
the coding viewpoint. Another reason is that CUDA GPUs
currently have more market share. It is believed that an in-
creasing number of codes will be ported to the HIP in the
future. However, almost no ocean models use the HIP frame-
work to date.

This study aims to develop a high-performance OGCM
based on the LASG/IAP Climate System Ocean Model ver-
sion 3 (LICOM3), which can be run on an AMD GPU archi-
tecture using the HIP framework. Here, we will focus on the
model’s best or fastest computing performance and its prac-
tical usage for research and operation purposes. Section 2
is the introduction of the LICOM3 model. Section 3 con-
tains the main optimization of LICOM3 under HIP. Section 4
covers the performance analysis and model verification. Sec-
tion 5 is a discussion, and the conclusion is presented in
Sect. 6.

2 The LICOM3 model and experiments

2.1 The LICOM3 model

In this study, the targeting model is LICOM3, which was
developed in the late 1980s (Zhang and Liang, 1989). Cur-
rently, LICOM3 is the ocean model for two air–sea cou-
pled models of CMIP6 (the Coupled Model Intercomparison
Project phase 6), the Flexible Global Ocean-Atmosphere-
Land System model version 3 with a finite-volume atmo-
spheric model (FGOALS-f3; He et al., 2020), and the Flex-
ible Global Ocean-Atmosphere-Land System model version
3 with a grid-point atmospheric model (Chinese Academy of
Science, CAS, FGOALS-g3; L. Li et al., 2020). LICOM ver-
sion 2 (LICOM2.0, Liu et al., 2012) is also the ocean model
of the CAS Earth System Model (CAS-ESM, H. Zhang et al.,
2020). A future paper to fully describe the new features and
baseline performances of LICOM3 is in preparation.

In recent years, the LICOM model was substantially im-
proved based on LICOM2.0 (Liu et al., 2012). There are
three main aspects. First, the coupling interface of LICOM
has been upgraded. Now, the NCAR flux coupler version 7
is employed (Lin et al., 2016), in which memory use has
been dramatically reduced (Craig et al., 2012). This makes
the coupler suitable for application to high-resolution mod-
eling.

Second, both orthogonal curvilinear coordinates (Murray,
1996; Madec and Imbard, 1996) and tripolar grids have been
introduced in LICOM. Now, the two poles are at 60.8◦ N,
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65◦ E and 60.8◦ N, 115◦W for the 1◦ model, at 65◦ N, 65◦ E
and 65◦ N, 115◦W for the 0.1◦ model, and at 60.4◦ N, 65◦ E
and 60.4◦ N, 115◦W for the 1/20◦ model of LICOM. Af-
ter that, the zonal filter at high latitudes, particularly in the
Northern Hemisphere, was eliminated, which significantly
improved the scalability and efficiency of the parallel algo-
rithm of the LICOM3 model. In addition, the dynamic core
of the model has also been updated accordingly (Yu et al.,
2018), including the application of a new advection scheme
for the tracer formulation (Xiao, 2006) and the addition of a
vertical viscosity for the momentum formulation (Yu et al.,
2018).

Third, the physical package has been updated, including
introducing an isopycnal and thickness diffusivity scheme
(Ferreira et al., 2005) and vertical mixing due to internal
tides breaking at the bottom (St. Laurent et al., 2002). The
coefficient of both isopycnal and thickness diffusivity is
set to 300m2 s−1 as the depth is either within the mixed
layer or the water depth is shallower than 60 m. The up-
per and lower boundary values of the coefficient are 2000
and 300m2 s−1, respectively. Additionally, the chlorophyll-
dependent solar shortwave radiation penetration scheme of
Ohlmann (2003), the isopycnal mixing scheme (Redi, 1982;
Gent and McWilliams, 1990), and the vertical viscosity and
diffusivity schemes (Canuto et al., 2001, 2002) are employed
in LICOM3.

Both the low-resolution (1◦; Lin et al., 2020) and high-
resolution (1/10◦; Y. Li et al., 2020) stand-alone LICOM3
versions are also involved in the Ocean Model Intercom-
parison Project (OMIP)-1 and OMIP-2; their outputs can be
downloaded from websites. The two versions of LICOM3’s
performances compared with other CMIP6 ocean models are
shown in Tsujino et al. (2020) and Chassignet et al. (2020).
The 1/10◦ version has also been applied to perform short-
term ocean forecasts (Liu et al., 2021).

The essential task of the ocean model is to solve the ap-
proximated Navier–Stokes equations, along with the con-
servation equations of the temperature and salinity. Seven
kernels are within the time integral loop, named “readyt”,
“readyc”, “barotr”, “bclinc”, “tracer”, “icesnow”, and “con-
vadj”, which are also the main subroutines porting from the
CPU to the GPU. The first two kernels computed the terms
in the barotropic and baroclinic equations of the model. The
next three (barotr, bclinc, and tracer) are used to solve the
barotropic, baroclinic, and temperature and/or salinity equa-
tions. The last two subroutines deal with sea ice and deep
convection processes at high latitudes. All these subroutines
have approximately 12 000 lines of source code, accounting
for approximately 25 % of the total code and 95 % of com-
putation.

2.2 Configurations of the models

To investigate the GPU version, we employed three configu-
rations in the present study. They are 1◦, 0.1◦, and 1/20◦. De-

tails of these models are listed in Table 1. The number of hor-
izontal grid points for the three configurations are 360×218,
3600× 2302, and 7200× 3920. The vertical levels for the
low-resolution models are 30, while they are 55 for the other
two high-resolution models. From 1◦ to 1/20◦, the compu-
tational effort increased by approximately 8000 (203) times
(considering 20 times to decrease the time step), and the ver-
tical resolution increased from 30 to 55, in total, by approx-
imately 15 000 times. The original CPU version of 1/20◦

with MPI (Message Passing Interface) parallel on Tianhe-1A
only reached 0.31 SYPD using 9216 CPU cores. This speed
will slow down the 10-year spin-up simulation of LICOM3
to more than 1 month, which is not practical for climate
research. Therefore, such simulations require extreme-scale
high-performance computers by applying the GPU version.

In addition to the different grid points, three main aspects
are different among the three experiments, particularly be-
tween version 1◦ and the other two versions. First, the hor-
izontal viscosity schemes are different: using Laplacian for
1◦ and biharmonic for 1/10◦ and 1/20◦. The viscosity co-
efficient is 1 order of magnitude smaller for the 1/20◦ ver-
sion than for the 1/10◦ version, namely, −1.0× 109 m4 s−1

for 1/10◦ vs.−1.0×108 m4 s−1 for 1/20◦. Second, although
the force-including dataset (the Japanese 55-year reanalysis
dataset for driving ocean–sea-ice models, JRA55-do; Tsu-
jino et al., 2018) and the bulk formula for the three exper-
iments are all a standard of the OMIP-2, the periods and
temporal resolutions of the forcing fields are different: 6 h
data from 1958 to 2018 for the 1◦ version and daily mean
data in 2016 for both the 1/10◦ and 1/20◦ versions. Third,
version 1◦ is coupled with a sea ice model of CICE4 (Com-
munity Ice CodE version 4.0) via the NCAR flux coupler
version 7, while the two higher-resolution models are stand-
alone, without a coupler or sea ice model. Additionally, the
two higher-resolution experiments employ the new HIP ver-
sion of LICOM3 (i.e., LICOM3-HIP); the low-resolution ex-
periment does not employ this, including the CPU version
of LICOM3 and the version submitted to OMIP (Lin et al.,
2020). We also listed all the important information in Table 1,
such as bathymetry data and the bulk formula, although these
items are similar in the three configurations.

The spin-up experiments for the two high-resolution ver-
sions are conducted for 14 years, forced by the daily JRA55-
do dataset in 2016. The atmospheric variables include the
wind vectors at 10 m, air temperature at 10 m, relative hu-
midity at 10 m, total precipitation, downward shortwave ra-
diation flux, downward longwave radiation flux, and river
runoff. According to the kinetic energy evolution, the mod-
els reach a quasi-equilibrium state after more than 10 years
of spin-up. The daily mean data are output for storage and
analysis.
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Table 1. Configurations of the LICOM3 model used in the present study.

Experiment LICOM3-CPU (1◦) LICOM3-HIP (1/10◦) LICOM3-HIP (1/20◦)

Horizontal grid spacing 1◦ (110 km in longitude, ap-
proximately 110 km at the
Equator, and 70 km at mid-
latitude)

1/10◦ (11 km in longitude,
approximately 11 km at the
Equator, and 7 km at mid-
latitude)

1/20◦ (5.5 km in longitude,
approximately 5.5 km at the
Equator, and 3 km at mid-
latitude)

Grid point 360× 218 3600× 2302 7200× 3920

North Pole 60.8◦ N, 65◦ E and
60.8◦ N, 115◦W

65◦ N, 65◦ E and
65◦ N, 115◦W

60.4◦ N, 65◦ E and
60.4◦ N, 115◦W

Bathymetry data ETOPO2 Same Same

Vertical coordinates 30η levels 55η levels 55η levels

Horizontal viscosity Laplacian
A2 = 3000 m2 s−1

Biharmonic (Fox-Kemper
and Menemenlis, 2008)
A4 =−1.0× 109 m4 s−1

Biharmonic (Fox-Kemper
and Menemenlis, 2008)
A4 =−1.0× 108 m4 s−1

Vertical viscosity Background viscosity of
2× 10−6 m2 s−1 with
the upper limit of
2× 10−2 m2 s−1

Background viscosity of
2× 10−6 m2 s−1 with
the upper limit of
2× 10−2 m2 s−1

Background viscosity of
2× 10−6 m2 s−1 with
the upper limit of
2× 10−2 m2 s−1

Time steps 120/1440/1440
for
barotropic/baroclinic/tracer

6/120/120 s
for
barotropic/baroclinic/tracer

3/60/60 s
for
barotropic/baroclinic/tracer

Bulk formula Large and Yeager (2009) Same Same

Forcing data JRA55_do, 1958–2018,
6-hourly

JRA55_do, 2016,
daily

JRA55_do, 2016,
daily

Integration period 61 years/six cycles 14 years 14 years

Mixed layer scheme Canuto et al. (2001, 2002) Same Same

Isopycnal mixing Redi (1982);
Gent and McWilliams
(1990)

Laplacian Laplacian

Bottom drag Cb = 2.6× 10−3 Cb = 2.6× 10−3 Cb = 2.6× 10−3

Surface wind stress Relative wind stress Same Same

Sea surface temperature restoring timescale 20 myr−1; 50 m30d−1 for
sea ice region

Same Same

Advection scheme Leapfrog for momentum;
two-step preserved shape
advection scheme for tracer

Same Same

Time stepping scheme Split-explicit leapfrog
with Asselin filter (0.2
for barotropic; 0.43 for
baroclinic; 0.43 for tracer)

Same Same

Sea ice Sea ice model of CICE4 Not coupled Not coupled

Ref. Lin et al. (2020) This paper This paper
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2.3 Hardware and software environments of the testing
system

The two higher-resolution experiments were performed on
a heterogeneous Linux cluster supercomputer located at the
Computer Network Information Center (CNIC) of the CAS,
China. This supercomputer consists of 7200 nodes (six par-
titions or rings; each partition has 1200 nodes), with a
1.9 GHz X64 CPU of 32 cores on each node. Additionally,
each node is equipped with four gfx906 AMD GPU cards
with 16 GB memory. The GPU has 64 cores, for a to-
tal of 2560 threads on each card. The nodes are intercon-
nected through high-performance InfiniBand (IB) networks
(three-level fat-tree architecture using Mellanox 200 GBs−1

HDR (High Dynamic Range) InfiniBand, whose measured
point-to-point communication performance is approximately
23 GBs−1). OpenMPI (Open Multi-Processing) version 4.02
was employed for compiling, and the AMD GPU driver and
libraries were rocm-2.9 (Radeon Open Computing platform
version 2.9), integrated with HIP version 2.8. The storage file
system of the supercomputer is ParaStor300S with a “paras-
tor” file system, whose measured write and read performance
is approximately 520 and 540 GBs−1, respectively.

3 LICOM3 GPU code structure and optimization

3.1 Introduction to HIP on an AMD hardware
platform

AMD’s HIP is a C++ runtime API (application program-
ming interface) and kernel language. It allows developers to
create portable applications that can be run on AMD accel-
erators and CUDA devices. The HIP provides an API for
an application to leverage GPU acceleration for both AMD
and CUDA devices. It is syntactically similar to CUDA, and
most CUDA API calls can be converted by replacing the
character “cuda” with “hip” (or “Cuda” with “Hip”). The
HIP supports a strong subset of CUDA runtime function-
ality, and its open-source software is currently available on
GitHub (https://rocmdocs.amd.com/en/latest/Programming_
Guides/HIP-GUIDE.html, last access: 17 May 2021).

Some supercomputers install NVIDIA GPU cards, such
as P100 and V100, and some install AMD GPU cards, such
as AMD VERG20. Hence, our HIP version LICOM3 can
adapt and gain very high performance at different super-
computer centers, such as Tianhe-2 and AMD clusters. Our
coding experience on an AMD GPU indicates that the HIP
is a good choice for high-performance model development.
Meanwhile, the model version is easy to keep consistent
in these two commonly used platforms. In the following
sections, the successful simulation of LICOM3-HIP is con-
firmed to be adequate to employ HIP.

Figure 1 demonstrates the HIP implementations necessary
to support different types of GPUs. In addition to the differ-

Figure 1. Schematic diagram of the comparison of coding on AMD
and NVIDIA GPUs at three levels.

ences in naming and libraries, there are other differences be-
tween HIP and CUDA including the following: (1) the AMD
Graphics Core Next (GCN) hardware “warp” size is 64; (2)
device and host pointers allocated by HIP API use flat ad-
dressing (unified virtual addressing is enabled by default);
(3) dynamic parallelism is not currently supported; (4) some
CUDA library functions do not have AMD equivalents; and
(5) shared memory and registers per thread may differ be-
tween the AMD and NVIDIA hardware. Despite these differ-
ences, most of the CUDA codes in applications can be easily
translated to the HIP and vice versa.

Technical supports of CUDA and HIP also have some
differences. For example, CUDA applications have some
CUDA-aware MPI to direct MPI communication between
different GPU memory spaces at different nodes, but HIP
applications have no such functions to date. Data must be
transferred from GPU memory to CPU memory in order to
exchange data with other nodes and then transfer data back
to the GPU memory.

3.2 Core computation process of LICOM3 and C
transitional version

We attempted to apply LICOM on a heterogeneous computer
approximately 5 years ago, cooperating with the NVIDIA
Corporation. LICOM2 was adapted to NVIDIA P80 by Ope-
nACC Technical (Jiang et al., 2019). This was a convenient
implementation of LICOM2-gpu (GPU version of LICOM2)
using four NVIDIA GPUs to achieve a 6.6 speedup com-
pared to four Intel CPUs, but its speedup was not as good
when further increasing the GPU number.

During this research, we started from the CPU version
of LICOM3. The code structure of LICOM3 includes four
steps. The first step is the model setup, which involves MPI
partitioning and ocean data distribution. The second stage is
model initialization, which includes reading the input data
and initializing the variables. The third stage is integration
loops or the core computation of the model. Three explicit
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Figure 2. LICOM3 computation flowchart with a GPU (HIP de-
vice). The red line indicates whole block data transfer between the
host and GPU, while the blue line indicates transferring only lateral
data of a block.

time loops, which are for tracer, baroclinic and barotropic
steps, are undertaken in 1 model day. The outputs and final
processes are included in the fourth step.

Figure 2 shows the flowchart of LICOM3. The major pro-
cesses within the model time integration include baroclinic,
barotropic, and thermohaline equations, which are solved by
the leapfrog or Euler forward scheme. There are seven indi-
vidual subroutines: readyt, readyc, barotr, bclinc, tracer, ices-
now, and convadj. When the model finishes 1 d computation,
the diagnostics and output subroutine will write out the pre-
dicted variables to files. The output files contain all the nec-
essary variables to restart the model and for analysis.

To obtain high performance, it is more efficient to use the
native GPU development language. In the CUDA develop-
ment forum, both CUDA-C and CUDA-Fortran are provided;
however, Fortran’s support is not as efficient as that for C++.
We plan to push all the core process codes into GPUs; hence,
the seven significant subroutines’ Fortran codes must be con-
verted to HIP/C++. Due to the complexity and many lines
in these subroutines (approximately 12 000 lines of Fortran
code) and to ensure that the converted C/C++ codes are cor-
rect, we rewrote them to C before finally converting them to
HIP codes.

A bit-reproducible climate model produces the same nu-
merical results for a given precision, regardless of the choice
of domain decomposition, the type of simulation (contin-
uous or restart), compilers, and the architectures executing

Figure 3. The wall clock time of a model day for the 10 km version
and a model month for the 100 km version. The blue and orange
bars are for the Fortran and Fortran and C mixed versions. These
tests were conducted on an Intel Xeon CPU platform (E5-2697A v4,
2.60 GHz). We used 28 and 280 cores for the low and high resolu-
tions, respectively.

the model (i.e., the same hardware and software conduct the
same result). The C transitional version (not fully C code,
but the seven core subroutines) is bit-reproducible with the
F90 version of LICOM3 (the binary output data are the same
under Linux with the “diff” command). We also tested the
execution time. The Fortran and C hybrid version’s speed is
slightly faster (less than 10 %) than the original Fortran code.
Figure 3 shows a speed benchmark by LICOM3 for 100 and
10 km running on an Intel platform. The results are the wall
clock time of running 1 model month for a low-resolution
test and 1 model day for a high-resolution test. The details of
the platform are found in the caption of Fig. 3. The results in-
dicate that we successfully ported these kernels from Fortran
to C.

This C transitional version becomes the starting point of
HIP/C++ codes and reduces the complexity of developing
the HIP version of LICOM3.

3.3 Optimization and tuning methods in LICOM3-HIP

The unit of computation in LICOM3-HIP is a horizontal grid
point. For example, 1/20◦ corresponds to 7200×3920 grids.
For the convenience of MPI parallelism, the grid points are
grouped as blocks; that is, if Procx ×Procy MPI processes
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Table 2. Block partition for the 1/20◦ setup.

GPUs Bx ×By imt × jmt

384 600× 124 604× 128
768 600× 62 604× 66
1536 300× 62 304× 66
3072 150× 62 154× 66
6144 100× 62 104× 66
9216 75× 62 79× 66
19 600 36× 40 40× 44
26 200 36× 30 40× 34

are used in the x and y directions, then each block has
Bx ×By grids, where Procx ×Bx = 7200 and Procy ×By =
3920. Each GPU process performs two-dimensional (2-D) or
three-dimensional (3-D) computations in theseBx×By grids,
which is similar to the MPI process. Two-dimensional means
that the grids are partitioned only in the horizontal directions,
and 3-D includes also the depth or vertical direction. In prac-
tice, four lateral columns are added to Bx and By (two on
each side, imt = Bx+4, jmt = By+4) for the halo. Table 2
lists the frequently used block definitions of LICOM3.

The original LICOM3 was written in F90. To adapt it to a
GPU, we applied Fortran–C hybrid programming. As shown
in Fig. 2, the codes are kept using the F90 language be-
fore entering device stepon and after stepon out. The core
computation processes within the stepons are rewritten using
HIP/C. Data structures in the CPU space remain the same
as the original Fortran structures. The data commonly used
by F90 and C are then defined by extra C, including files,
and defined by “extern”-type pointers in C syntax to refer to
them. In the GPU space, newly allocated GPU global mem-
ories hold the arrival correspondence with those in the CPU
space, and the HipMemcpy is called to copy them in and out.

Seven major subroutines (including their sub-recurrent
calls) are converted from Fortran to HIP. The seven subrou-
tine call sequences are maintained, but each subroutine is
deeply recoded in the HIP to obtain the best performance.
The CPU space data are 2-D or 3-D arrays; in the GPU space,
they are changed to 1-D arrays to improve the data transfer
speed between different GPU subroutines.

LICOM3-HIP is a two-level parallelism, and each MPI
process corresponds to an ocean block. The computation
within one MPI process is then pushed into the GPU. The
latency of the data copy between the GPU and CPU is one
of the bottlenecks for daily computation loops. All read-only
GPU variables are allocated and copied at the initial stage to
reduce the data copy time. Some data copy is still needed in
the stepping loop, e.g., an MPI call in barotr.cpp.

The computation block in MPI (corresponding to 1 GPU)
is a 3-D grid; in the HIP revision, 3-D parallelism is imple-
mented. This change adds more parallels inside one block
than the MPI solo parallelism (only 2-D). Some optimiza-

Table 3. The number calls of halos in LICOM3 subroutines for each
step.

Subroutine Calls Call percentage

barotr 180 96.7 %
bclinc 2 1.1 %
tracer 4 2.2 %

tions are needed to adapt to this change, such as increasing
the global arrays to avoid data dependency. A demo for us-
ing a temporary array to parallelize the computation inside a
block is shown in Fig. 4. Figure 4a represents a loop of the
original code in the k direction. Since the variable v(i,j,k)
has a dependence on v(i,j,k+1), it will cause an error when
the GPU threads are parallel in the k direction. We then sep-
arate the variable into two HIP kernel computations. In the
upper part of Fig. 4b, a temporary array vt is used to hold the
result of f 1(), and this can be GPU threads that are parallel
in the k direction. Then, at the bottom of Fig. 4b, we use vt
to perform the computations of f 2() and f 3(); this can still
be GPU threads that are parallel in the k direction. Finally,
this loop of codes is parallelized.

Parallelization in a GPU is similar to a shared-memory
program; memory write conflicts occur in the subroutine
tracer advection computation. We change the if–else tree in
this subroutine; hence, the data conflicts between neighbor-
ing grids are avoided, making the 3-D parallelism successful.
Moreover, in this subroutine, we use more operations to al-
ternate the data movement to reduce the cache usage. Since
the operation can be GPU thread parallelized and will not
increase the total computation time, reducing the memory
cache improves this subroutine’s final performance.

A notable problem when the resolution is increased to
1/20◦ is that the total size of Fortran common blocks will
be larger than 2 GB. This change will not cause abnormal-
ities for C in the GPU space. However, if the GPU pro-
cess references the data, the system call in HipMemcpy will
cause compilation errors (perhaps due to the compiler limi-
tation of the GPU compilation tool). We can change the orig-
inal Fortran arrays’ data structure from the “static” to the
“allocatable” type in this situation. Since a GPU is limited
to 16 GB GPU memory, the ocean block size in one block
should not be too large. In practice, the 1/20◦ version starts
from 384 GPUs (and is regarded as the baseline for speedup
here); if the partition is smaller than that value, sometimes
insufficient GPU memory errors will occur.

We found that the tracer is the most time-consuming sub-
routine for the CPU version (Fig. 5). With the increase in
CPU cores from 384 to 9216, the ratio of cost time for the
tracer also increases from 38 % to 49 %. The subroutines
readyt and readyc are computing-intensive. The subroutine
tracer is both a computing-intensive and communication-
intensive, and barotr is a communication-intensive subrou-
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Figure 4. The code using temporary arrays to avoid data dependency.

Figure 5. The seven core subroutines’ time cost percentages for (a) 384 and (b) 9216 CPU cores. (c) The subroutines’ time cost at different
scales of LICOM3 (1/20◦). These tests were conducted on an Intel Xeon CPU platform (E5-2697A v4, 2.60 GHz).

tine. The communication of barotr is 45 times more than
that of tracer (Table 3). Computing-intensive subroutines
can achieve good GPU speed, but communication-intensive
subroutines will achieve poor performance. The superlinear
speedups for tracer and readyc might be mainly caused by
memory use, in which the memory use of each thread for
768 GPU cards is only half for 384 GPU cards.

We performed a set of experiments to measure the time
cost of both halo update and memory copy in the HIP ver-
sion (Fig. 6). These two processes in the time integration are
conducted in three subroutines: barotr, bclinc, and tracer. The

figure shows that barotr is the most time-consuming subrou-
tine, and the memory copy dominates, which takes approxi-
mately 40 % of the total time cost.

Data operations inside CPU (or GPU) memory are at least
1 order of magnitude faster than the data transfer between
GPU and CPU through 16X PCI-e. Halo exchange at the
MPI level is similar to POP (Jiang et al., 2019). We did not
change these codes in the HIP version. The four blue rows
and columns in Fig. 7 demonstrate the data that need to be
exchanged with the neighbors. As shown in Fig. 7, in GPU
space, we pack the necessary lateral data for halo operation
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Figure 6. The ratio of the time cost of halo update and memory
copy to the total time cost for the three subroutines, barotr (green),
bclinc (blue), and tracer (orange), in the HIP version LICOM for
three scales (unit: %). The numbers in the blankets are the time cost
of the two processes (unit: s).

from imt × jmt to 4(imt + jmt). This change reduces the
HipMemcpy data size to (4/imt + 4/jmt) of the original
one. The larger that imt and jmt are, the less data are trans-
ferred. At 384 GPUs, this change saves approximately 10 %
of the total computation time. The change is valuable for the
HIP since the platform has no CUDA-aware MPI installed;
otherwise, the halo operation can be done in the GPU space
directly as done by POM.gpu (Xu et al., 2015). The test in-
dicates that the method can decrease approximately 30 % of
the total wall clock time of barotr when 384 GPUs are used.
However, we have not optimized other kernels so far because
their performance is not as good as 384 GPUs when the GPU
scale exceeds 10 000. We keep it here as an option to im-
prove the performance of barotr at operational scales (i.e.,
GPU scales under 1536).

3.4 Model I/O (input/output) optimization

Approximately 3 GB forcing data are read from the disk ev-
ery model year, while approximately 60 GB daily mean pre-
dicted variables are stored to disk every model day. The time

cost for reading daily forcing data from the disk increased
to 200 s in 1 model day after the model resolution increased
from 1 to 1/20◦. This time is comparable to the wall clock
time for one model step when 1536 GPUs are applied; hence,
we must optimize the model for total speedup. The cause
of low performance is daily data reading and scattering to
all nodes every model day; we then rewrite the data reading
strategy and perform parallel scattering for 10 different forc-
ing variables. Originally, 10 variables are read from 10 files,
interpolated to a 1/20◦ grid, and then scattered to each pro-
cessor or thread. All the processes are sequentially done at
the master processor. In the revised code, we use 10 different
processes to read, interpolate, and scatter in parallel. Finally,
the time cost of input is reduced to approximately 20 s, which
is 1/10 of the original time cost (shown below).

As indicated, the time cost for one integration step (ex-
cluding the daily mean and I/O) is approximately 200 s using
1536 GPUs. One model day’s output needs approximately
250 s; this is also beyond the GPU computation time for one
step. We modify the subroutine to a parallel version, which
decreases the data write time to 70 s on the test platform (this
also depends on system I/O performance).

4 Model performance

4.1 Model performance in computing

Performing kilometer-scale and global climatic simulations
is challenging (Palmer, 2014; Schär et al., 2020). As specified
by Fuhrer et al. (2018), the SYPD is a useful metric to eval-
uate model performance for a parallel model (Balaji et al.,
2017). Because a climate model often needs to run for at least
30–50 years for each simulation, at a speed of 0.2–0.3 SYPD,
the time will be too long to finish the experiment. The com-
mon view is that at least 1–2 SYPD is an adequate entrance
for a realistic climate study. It also depends on the timescale
in a climate study. For example, for the 10–20-year simula-
tion, 1–2 SYPD seems acceptable, and for the 50–100-year
simulation, 5–10 SYPD is better. The NCEP weather predic-
tion system throughput standard is 8 min to finish 1 model
day, equivalent to 0.5 SYPD.

Figure 8 illustrates the I/O performance of LICOM3-
HIP, comparing the performances of computation processes.
When the model applies 384 GPUs, the I/O costs 1/10 of
the total simulation time (Fig. 8a). When the scale increases
to 9216 GPUs, the I/O time increases but is still smaller than
the GPU’s step time (Fig. 8b). The improved LICOM3 I/O in
total costs approximately 50–90 s (depending on scales), es-
pecially when the input remains stable (Fig. 8c) while scaling
increases. This optimization of I/O ensures that LICOM3-
HIP 1/20◦ runs well at all practice scales for a realistic cli-
mate study. The I/O time was cut off from the total simula-
tion time in the follow-up test results to analyze the purely
parallel performance.

https://doi.org/10.5194/gmd-14-2781-2021 Geosci. Model Dev., 14, 2781–2799, 2021



2790 P. Wang et al.: The GPU version of LICOM3 under the HIP framework and its large-scale application

Figure 7. The lateral packing (only transferring four rows and four columns of data between the GPU and CPU) method to accelerate the
halo. (a) In the GPU space, where central (gray) grids are unchanged; (b) transferred to the CPU space, where black grids mean no data;
(c) after halo with neighbors; and (d) transfer back to the GPU space.

Figure 9 shows the roofline model using the Stream GPU
and the LICOM program’s measured behavioral data on a
single computation node bound to one GPU card depict-
ing the relationship between arithmetic intensity and perfor-
mance floating point operations. The 100 km resolution case
is employed for the test. The blue and gray oblique lines
are the fitting lines related to the Stream GPU program’s be-
havioral data using 5.12× 108 and 1× 106 threads, respec-
tively, both with a block size of 256, which attain the best
configuration. For details, the former is approximately the
maximum thread number restricted by GPU card memory,
achieving a bandwidth limit of 696.52 GBs−1. In compari-
son, the latter is close to the average number of threads in
GPU parallel calculations used by LICOM, reaching a band-
width of 344.87 GB s−1 on average. Here, we use the oblique
gray line as a benchmark to verify the rationality of LI-
COM’s performance, accomplishing an average bandwidth
of 313.95 GBs−1.

Due to the large calculation scale of the entire LICOM
program, the divided calculation grid bound to a single GPU
card is limited by video memory; most kernel functions is-
sue no more than 1.2× 106 threads. As a result, the floating-

point operation performance is a little far from the oblique
roofline shown in Fig. 9. In particular, the subroutine bclinc
apparently strays away from the entire trend for including
frequent 3-D array Halo MPI communications, and much
data transmission occurs between the CPU and GPU.

Figure 10 shows the SYPD at various parallel scales. The
baseline (384) of GPUs could achieve a 42 times faster
speedup than that of the same number of CPU cores. Some-
times, we also count the overall speedup for 384 GPUs in 96
nodes vs. the total 3072 CPU cores in 96 nodes. We can ob-
tain an overall performance speedup of 384 or approximately
6–7 times. The figure also indicates that for all scales, the
SYPD continues to increase. On the scale of 9216 GPUs, the
SYPD first goes beyond 2, which is 7 times the same CPU
result. A quasi-whole-machine (26 200 GPUs, 26200×65=
1703000 cores in total, one process corresponds to one CPU
core plus 64 GPU cores) result indicates that it can still obtain
an increasing SYPD to 2.72.

Since each node has 32 CPU cores and four GPUs, each
GPU is managed by one CPU thread in the present cases.
We can also quantify GPUs’ speedup vs. all CPU cores on
the same number of nodes. For example, 384 (768) GPUs
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Figure 8. (a) The 384 GPUs and (b) 9216 GPUs, with the I/O ratio in total simulation time for the 1/20◦ setup, and (c) the changes in I/O
times vs. different GPUs.

Figure 9. Roofline model for the AMD GPU and the performance
of LICOM’s main subroutines.

correspond to 96 (192) nodes, which have 3072 (6144) CPU
cores. Therefore, the overall speedup is approximately 6.375
(0.51/0.08) for 384 GPUs and 4.15 (0.83/0.2) for 768 GPUs
(Fig. 10). The speedups are comparable with our previous
work porting LICOM2 to GPU using OpenACC (Jiang et al.,
2019), which is approximately 1.8–4.6 times the speedup us-
ing one GPU card vs. two eight-core Intel GPUs in small-

scale experiments for specific kernels. Our results are also
slightly better than in Xu et al. (2015), who ported another
ocean model to GPUs using Cuda C. However, due to the
limitation of the number of Intel CPUs (maximum of 9216
cores), we did not obtain the overall speedup for 1536 and
more GPUs.

Figure 11 depicts the actual times and speedups of dif-
ferent GPU computations. The green line in Fig. 11a is a
function of the stepon time cost; it decreases while the GPU
number increases. The blue curve of Fig. 11a shows the in-
crease in speedup with the rise in the GPU scale. Despite the
speedup increase, the efficiency of the model decreases. At
9216 GPUs, the model efficiency starts under 20 %, and for
more GPUs (19 600 and 26 200), the efficiency is flattened
to approximately 10 %. The efficiency decrease is mainly
caused by the latency of the data copy in and out to the GPU
memory. For economic consideration, the 384–1536 scale is
a better choice for realistic modeling studies.

Figure 12 depicts the time cost of seven core subroutines
of LICOM3-HIP. We find that the top four most time-costly
subroutines are barotr, tracer, bclinc, and readyc, and the
other subroutines cost only approximately 1 % of the whole
computation time. When 384 GPUs are applied, the barotr
costs approximately 50 % of the total time (Fig. 12a), which
solves the barotropic equations. When GPUs are increased
to 9216, each subroutine’s time cost decreases, but the per-
centage of subroutine barotr is increased to 62 % (Fig. 12b).
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Figure 10. Simulation performances of the AMD GPU vs. Intel CPU core for LICOM3 (1/20◦). Unit: SYPD.

Figure 11. (a) Computation time (green) and speedup (blue) and (b) parallel efficiency (orange) at different scales for stepons of LICOM3-
HIP (1/20◦).

As mentioned above, this phenomenon can be interpreted by
having more haloing in barotr than in the other subroutines;
hence, the memory data copy and communication latency
make it slower.

4.2 Model performance in climate research

The daily mean sea surface height (SSH) fields of the CPU
and HIP simulations are compared to test the usefulness of
the HIP version of LICOM for the numerical precision of
scientific usage. Here, the results from 1/20◦ experiments
on a particular day (1 March of the fourth model year) are
used (Fig. 13a and b). The general SSH spatial patterns of
the two are visually very similar. Significant differences are
only found in very limited areas, such as in the eddy-rich re-

gions near strong currents or high-latitude regions (Fig. 13c);
in most places, the difference in values fall into the range
of −0.1 and 0.1 cm. Because the hardware is different and
the HIP codes’ mathematical operation sequence is not al-
ways the same as that for the Fortran version, the HIP and
CPU versions are not identical byte-by-byte. Therefore, it is
hard to verify the correctness of the results from the HIP ver-
sion. Usually, the ensemble method is employed to evaluate
the consistency of two model runs (Baker et al., 2015). Con-
sidering the unacceptable computing and storage resources,
in addition to the differences between the two versions, we
simply compute root mean square errors (RMSEs) between
the two versions, which are only 0.18 cm, much smaller than
the spatial variation of the system, which is 92 cm (approxi-
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Figure 12. The seven core subroutines’ time cost percentages for (a) 384 GPUs and (b) 9216 GPUs. (c) The subroutines’ time cost at different
scales of LICOM3-HIP (1/20◦).

mately 0.2 %). This indicates that the results of LICO3-HIP
are generally acceptable for research.

The GPU version’s sea surface temperature (SST) is
compared with the observed SST to evaluate the global
1/20◦ simulation’s preliminary results from LICOM3-HIP
(Fig. 14). Because the LICOM3-HIP experiments are forced
by the daily mean atmospheric variables in 2016, we also
compare the outputs with the observation data in 2016. Here,
the 1/4◦ Optimum Interpolation Sea Surface Temperature
(OISST) is employed for comparison, and the simulated SST
is interpolated to the same resolution as the OISST. We find
that the global mean values of SST are close together but
with a slight warming bias of 18.49 ◦C for observations vs.
18.96 ◦C for the model. The spatial pattern of SST in 2016 is
well reproduced by LICOM3-HIP. The spatial standard de-
viation (SD) of SST is 11.55 ◦C for OISST and 10.98 ◦C for
LICOM3-HIP. The RMSE of LICOM3-HIP against the ob-
servation is only 0.84 ◦C.

With an increasing horizontal resolution of the observa-
tions, we now know that mesoscale eddies are ubiquitous in
the ocean at the 100–300 km spatial scale. Rigorous eddies
usually occur along significant ocean currents, such as the
Kuroshio and its extension, the Gulf Stream, and the Antarc-
tic Circumpolar Current (Fig. 15a). Eddies also capture more
than 80 % of the ocean’s kinetic energy, which was estimated
using satellite data (e.g., Chelton et al., 2011). Therefore,

these mesoscale eddies must be solved in the ocean model.
A numerical model’s horizontal resolution must be higher
than 1/10◦ to resolve the global ocean eddies but cannot re-
solve the eddies in high-latitude and shallow waters (Hall-
berg, 2013). Therefore, a higher resolution is required to de-
termine the eddies globally. The EKE for the 1◦ version is
low, even in the areas with strong currents, while the 1/10◦

version can reproduce most of the eddy-rich regions in the
observation. The EKE increases when the resolution is fur-
ther enhanced to 1/20◦, indicating that many more eddy ac-
tivities are resolved.

5 Discussion

5.1 Application of the ocean climate model beyond
10 000 GPUs

Table 4 summarizes the detailed features of some published
GPU version models. We find that various programming
methods have been implemented for different models. A
near-kilometer atmospheric model using 4888 GPUs was re-
ported as a large-scale example of weather/climate studies.
With supercomputing development, the horizontal resolu-
tion of ocean circulation models will keep increasing, and
more sophisticated physical processes will also be devel-
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Figure 13. Daily mean simulated sea surface height for (a) CPU
and (b) HIP versions of LICOM3 at 1/20◦ on 1 March of the fourth
model year. (c) The difference between the two versions (HIP minus
CPU). Units: cm.

oped. LICOM3-HIP has a larger scale, not only in terms of
grid size but also in final GPU numbers.

We successfully performed a quasi-whole-machine
(26 200 GPUs) test, and the results indicate that the model
obtained an increasing SYPD (2.72). The application of
an ocean climate model beyond 10 000 GPUs is not easy
because running the multi-nodes plus multi-GPUs requires
that the network connection, PCI-e and memory speed,
and input/output storage systems all work to their best
performances. Gupta et al. (2017) investigated 23 types
of system failures to improve the reliability of the HPC
(high-performance computing) system. Unlike in Gupta’s
study, only the three most common types of failures we
encountered are discussed here. The three most common
errors when running LICOM3-HIP are MPI hardware errors,
CPU memory access errors, and GPU hardware errors. Let
us suppose that the probability of an individual hardware (or
software) error occurring is 10−5 (which means one failure

Figure 14. (a) Observed annual mean sea surface temperature in
2016 from the Optimum Interpolation Sea Surface Temperature
(OISST); (b) simulated annual mean SST for LICOM3-HIP at
1/20◦ during model years 0005–0014. Units: ◦C.

in 100 000 h). As the MPI (GPU) scale increases, the total
error rate increases, and once a hardware error occurs, the
model simulation will fail.

When 384 GPUs are applied, the success rate within 1 h
can be expressed as (1− 384× 10−5)3 = 98.85%, and the
failure rate is then 1− (1− 384× 10−5)3 = 1.15%. Apply-
ing this formula, we can obtain the failure rate correspond-
ing to 1000, 10 000, and 26 200 GPUs. The results are listed
in Table 5. As shown in Table 5, on the medium scale
(i.e., 1000 GPUs are used), three failures will occur through
100 runs; when the scale increases to 10 000 GPUs, one-
quarter of them will fail. The 10−5 error probability also indi-
cates that 10 000 GPU tasks cannot run 10 continuous hours
on average. If the success time restriction decreases, the
model success rate will increase. For example, within 6 min,
the 26 200 GPU task success rate is (1− 26200× 10−6)3 =

9234%, and its failure rate is 1− (1− 26200× 10−6)3 =

7.66%.

5.2 Energy to solution

We also measured the energy to solution here. A simulation-
normalized energy (E) is employed here as a metric. The
formula is as follows:

E = TDP×N × 24/SYPD,

where TDP is the thermal design power, N is the computer
nodes used, and SYPD/24 equals the simulated years per
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Figure 15. (a) Observed annual mean eddy kinetic energy (EKE) in 2016 from AVISO (Archiving, Validation and Interpretation of Satellite
Oceanographic). Simulated annual mean SST in 2016 for LICOM3-HIP at (b) 1◦, (c) 1/10◦, and (d) 1/20◦. Units: cm2 s−2.

Table 4. Some GPU versions of weather/climate models.

Model Language Max. grids Max GPUs Year and references

POM.gpu CUDA-C 1922× 1442× 51 4 (K20X) 2015 (Xu et al., 2015)
LICOM2 OpenACC 360× 218× 30 4 (K80) 2019 (Jiang et al., 2019)
FUNWAVE CUDA-Fortran 3200× 2400 2 (V100) 2020 (Yuan et al., 2020)
NICAM OpenACC 56× 56 km×160 2560 (K20X) 2016 (Yashiro et al., 2016)
COSMO OpenACC 346× 340× 60 4888 (P100) 2018 (Fuhrer et al., 2018)
LICOM3 HIP 7200× 3920× 55 26 200 (gfx906) 2020 (This paper)

Table 5. Success and failure rates of different scales for 1 wall clock
hour simulation.

GPUs Success Failure

384 98.85 % 1.15 %
1000 97.02 % 2.98 %
10 000 72.90 % 27.10 %
26 200 40.19 % 59.81 %

hour. Therefore, the smaller the E value is, the better, which
means that we can obtain more simulated years within a lim-
ited power supply. To calculate E’s value, we estimated the
TDP of 1380 W for a node on the present platform (one AMD
CPU and four GPUs) and 290 W for a reference node (two
Intel 16-core CPUs). We only include the TDP of CPUs and
GPUs here.

Based on the above power measurements, the simu-
lations’ energy cost is calculated in megawatt-hours per

simulation year (MWhSY−1). The energy costs for the
1/20◦ LICOM3 simulations running on CPUs and GPUs
are comparable when the numbers of MPI processors are
within 1000. The energy costs of LICOM3 at 1/20◦ run-
ning on 384 (768) GPUs and CPUs are approximately 6.234
(7.661) MWhSY−1 and 6.845 (6.280) MWhSY−1, respec-
tively. However, the simulation speed of LICOM3 on a GPU
is much faster than that on a CPU: approximately 42 times
faster for 384 processors and 31 times faster for 768 proces-
sors. When the number of MPI processors is beyond 1000,
the value of E for the GPU becomes much larger than that
for the CPU. This result indicates that the GPU is not fully
loaded at this scale.

6 Conclusions

The GPU version of LICOM3 under the HIP framework was
developed in the present study. Seven kernels within the time
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integration of the mode are all ported to the GPU, and 3-D
parallelization (also partitioned in the vertical direction) is
applied. The new model was implemented and gained an ex-
cellent acceleration rate on a Linux cluster with AMD GPU
cards. This is also the first time an ocean general circulation
model has been fully applied on a heterogeneous supercom-
puter using the HIP framework. In total, it took 19 months,
five PhD students and five part-time staff to finish the porting
and testing work.

Based on our test using the 1/20◦ configuration, LICOM3-
HIP is 42 times faster than the CPU when 384 AMD GPUs
and CPU cores are used. LICOM3-HIP has good scalability,
and can obtain a speedup of more than 4 on 9216 GPUs com-
pared to 384 GPUs. The SYPD, which is in equilibrium with
the speedup, continues to increase as the number of GPUs in-
creases. We successfully performed a quasi-whole-machine
test, which was 6550 nodes and 26 200 GPUs, using 1/20◦

LICOM3-HIP on the supercomputer, and at the grand scale,
the model can obtain an increasing SYPD of 2.72. The mod-
ification or optimization of the model also improves the 10
and 100 km performances, although we did not analyze their
performances in this article.

The efficiency of the model decreases with the increas-
ing number of GPUs. At 9216 GPUs, the model efficiency
starts under 20 % against 384 GPUs, and when the number
of GPUs reaches or exceeds 20 000, the efficiency is only ap-
proximately 10 %. Based on our kernel function test, the de-
creasing efficiency was mainly caused by the latency of data
copy in and out to the GPU memory in solving the barotropic
equations, particularly for the number of GPUs larger than
10 000.

Using the 1/20◦ configuration of LICOM3-HIP, we con-
ducted a 14-year spin-up integration. Because the hardware
is different and the GPU codes’ mathematical operation se-
quence is not always the same as that of the Fortran version,
the GPU and CPU versions cannot be identical byte by byte.
The comparison between the GPU and CPU versions of LI-
COM3 shows that the differences are minimal in most places,
indicating that the results from LICOM3-HIP can be used
for practical research. Further comparison with the observa-
tion and the lower-resolution results suggests that the 1/20◦

configuration of LICOM3-HIP can reproduce the observed
large-scale features and produce much smaller-scale activi-
ties than that of lower-resolution results.

The eddy-resolving ocean circulation model, which is a
virtual platform for oceanography research, ocean forecast-
ing, and climate prediction and projection, can simulate the
variations in circulations, temperature, salinity, and sea level
with a spatial scale larger than 15 km and a temporal scale
from the diurnal cycle to decadal variability. As mentioned
above, 1–2 SYPD is a good start for a realistic climate re-
search model. The more practical GPU scale range for a re-
alistic simulation is approximately 384–1536 GPUs. At these
scales, the model still has 0.5–1.22 SYPD. Even if we de-
crease the loops in the barotr procedure to one-third of

the original in the spin-up simulation, the performance will
achieve 1–2.5 SYPD for 384–1536 GPUs. This performance
will satisfy 10–50-year-scale climate studies. In addition, this
version can be used for short-term ocean prediction in the fu-
ture.

Additionally, the block size of 36× 30× 55 (1/20◦ setup,
26 200 GPUs) is not an enormous computational task for
one GPU. Since one GPU has 64 cores and a total of
2560 threads, if a subroutine computation is 2-D, each
thread’s operation is too small. Even for the 3-D loops, it is
still not large enough to load the entire GPU. This indicates
that it will gain more speedup when the LICOM resolution
is increased to the kilometer level. The LICOM3-HIP codes
are now written for 1/20◦, but they are kilometer-ready GPU
codes.

The optimization strategies here are mostly at the program
level and do not treat the dynamic or physics parts separately.
We only ported all seven core subroutines to the GPU to-
gether, i.e., including both the dynamic and physics parts,
within the time integration loops. Unlike atmospheric mod-
els, there are a few time-consuming physical processes in
ocean models, such as radiative transportation, clouds, pre-
cipitation, and convection processes. Therefore, the two parts
are usually not separated in the ocean model, particularly in
the early stage of model development. This is also the case
for LICOM. Further optimization to explicitly separate the
dynamic core and the physical package is necessary in the
future.

There is still potential to further increase the speedup of
LICOM3-HIP. The bottleneck is in the high-frequency data
copy in and out to the GPU memory in the barotropic part
of LICOM3. Unless HIP-aware MPI is supported, the data
transfer latency between the CPU and GPU cannot be over-
come. Thus far, we can only reduce the time consumed by
decreasing the frequency or magnitude of the data copy and
even modifying the method to solve the barotropic equations.
Additionally, using single precision within the time integra-
tion of LICOM3 might be another solution. The mixing-
precision method has already been tested using an atmo-
spheric model, and the average gain in computational effi-
ciency is approximately 40 % (Váňa et al., 2017). We would
like to try these methods in the future.

Code availability. The model code (LICOM3-HIP V1.0) along
with the dataset and a 100 km case can be downloaded from
the website https://zenodo.org/record/4302813# (last access: 3 De-
cember 2020). X8 mGWcsvNb8 has the following digital object
identifier (doi): https://doi.org/10.5281/zenodo.4302813 (Liu et al.,
2020).

Data availability. The data for figures in this paper can be
downloaded from https://zenodo.org/record/4542544# (last ac-
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cess: 16 February 2021). YCs24c8vPII has the following doi:
https://doi.org/10.5281/zenodo.4542544 (Liu, 2021).
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Váňa, F., Düben, P., Lang, S., Palmer, T., Leutbecher, M.,
Salmond, D., and Carver, G.: Single Precision in Weather Fore-
casting Models: An Evaluation with the IFS, Mon. Weather Rev.,
145, 495–502, https://doi.org/10.1175/mwr-d-16-0228.1, 2017.

Wang, S., Jing, Z., Zhang, Q., Chang, P., Chen, Z., Liu, H. and
Wu L.: Ocean Eddy Energetics in the Spectral Space as Re-
vealed by High-Resolution General Circulation Models, J. Phys.
Oceanogr., 49, 2815–2827, https://doi.org/10.1175/JPO-D-19-
0034.1, 2019.

Xiao, C.: Adoption of a two-step shape-preserving advection
scheme in an OGCM and its coupled experiment, Master thesis,
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 78 pp., 2006.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and
Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model,
Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-
8-2815-2015, 2015.

Yang, C., Xue, W., Fu, H., You, H., Wang, X., Ao, Y., Liu, F.,
Gan, L., Xiu, P., and Wang, L.: 10M-core scalable fully-implicit
solver for nonhydrostatic atmospheric dynamics, Paper presented
at SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
13–18 November 2016, Salt Lake City, Utah, IEEE, 2016.

Yashiro, H., Terai, M., Yoshida, R., Iga, S., Minami, K., and
Tomita, H.: Performance analysis and optimization of nonhydro-
static icosahedral atmospheric model (NICAM) on the K com-
puter and TSUBAME2, 5, Paper presented at Proceedings of the
Platform for Advanced Scientific Computing Conference, 8–10
June 2016, EPFL, Lausanne, Switzerland, 2016.

Yu, Y., Tang, S., Liu, H., Lin, P., and Li, X.: Development and
evaluation of the dynamic framework of an ocean general cir-
culation model with arbitrary orthogonal curvilinear coordi-
nate, Chinese Journal of Atmospheric Sciences, 42, 877–889,
https://doi.org/10.3878/j.issn.1006-9895.1805.17284, 2018.

Yuan, Y., Shi, F., Kirby, J. T., and Yu, F.: FUNWAVE-
GPU: Multiple-GPU Acceleration of a Boussinesq-Type Wave
Model, J. Adv. Model. Earth Sy., 12, e2019MS001957,
https://doi.org/10.1029/2019MS001957, 2020.

Zhang, H., Zhang, M., Jin, J., Fei, K., Ji, D., Wu, C., Zhu, J.,
He, J., Chai, Z. Y., Xie, J. B., Dong, X., Zhang, D. L., Bi, X. Q.,
Cao, H., Chen, H. S., Chen, K. J., Chen, X. S., Gao, X.,
Hao, H. Q., Jiang, J. R., Kong, X. H., Li, S. G., Li, Y. C.,
Lin, P. F., Lin, Z. H., Liu, H. L., Liu, X. H., Shi, Y., Song, M. R.,
Wang, H. J., Wang, T. Y., Wang, X. C., Wang, Z. F., Wei, Y.,
Wu, B. D., Xie, Z. H., Xu, Y. F., Yu, Y. Q., Yuan, L., Zeng, Q. C.,
Zeng, X. D., Zhao, S. W., Zhou, G. Q., and Zhu, J.: CAS-
ESM2: Description and Climate Simulation Performance of
the Chinese Academy of Sciences (CAS) Earth System Model
(ESM) Version 2, J. Adv. Model. Earth Sy., 12, e2020MS002210.
https://doi.org/10.1029/2020MS002210, 2020.

Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X.,
Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P.,
Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L.,
Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y.,
Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q.,
Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P.,
Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Op-
timizing high-resolution Community Earth System Model on
a heterogeneous many-core supercomputing platform, Geosci.
Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-
4809-2020, 2020.

Zhang, X. and Liang, X.: A numerical world ocean gen-
eral circulation model, Adv. Atmos. Sci., 6, 44–61,
https://doi.org/10.1007/BF02656917, 1989.

https://doi.org/10.5194/gmd-14-2781-2021 Geosci. Model Dev., 14, 2781–2799, 2021

https://doi.org/10.1175/mwr-d-16-0228.1
https://doi.org/10.1175/JPO-D-19-0034.1
https://doi.org/10.1175/JPO-D-19-0034.1
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.3878/j.issn.1006-9895.1805.17284
https://doi.org/10.1029/2019MS001957
https://doi.org/10.1029/2020MS002210
https://doi.org/10.5194/gmd-13-4809-2020
https://doi.org/10.5194/gmd-13-4809-2020
https://doi.org/10.1007/BF02656917

	Abstract
	Introduction
	The LICOM3 model and experiments
	The LICOM3 model
	Configurations of the models
	Hardware and software environments of the testing system

	LICOM3 GPU code structure and optimization
	Introduction to HIP on an AMD hardware platform
	Core computation process of LICOM3 and C transitional version
	Optimization and tuning methods in LICOM3-HIP
	Model I/O (input/output) optimization

	Model performance
	Model performance in computing
	Model performance in climate research

	Discussion
	Application of the ocean climate model beyond 100003muGPUs
	Energy to solution

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

