Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-2011-2021
https://doi.org/10.5194/gmd-14-2011-2021
Development and technical paper
 | 
15 Apr 2021
Development and technical paper |  | 15 Apr 2021

Towards multiscale modeling of ocean surface turbulent mixing using coupled MPAS-Ocean v6.3 and PALM v5.0

Qing Li and Luke Van Roekel

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Qing Li on behalf of the Authors (19 Feb 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Reconsider after major revisions (06 Mar 2021) by Simone Marras
ED: Publish as is (08 Mar 2021) by Simone Marras
AR by Qing Li on behalf of the Authors (08 Mar 2021)
Download
Short summary
Physical processes in the ocean span multiple spatial and temporal scales. Simultaneously resolving all these in a simulation is computationally challenging. Here we develop a more efficient technique to better study the interactions across scales, particularly focusing on the ocean surface turbulent mixing, by coupling a global ocean circulation model MPAS-Ocean and a large eddy simulation model PALM. The latter is customized and ported on a GPU to further accelerate the computation.