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Abstract. A multiscale modeling approach for studying the
ocean surface turbulent mixing is explored by coupling an
ocean general circulation model (GCM) MPAS-Ocean with
the Parallelized Large Eddy Simulation Model (PALM). The
coupling approach is similar to the superparameterization ap-
proach that has been used to represent the effects of deep
convection in atmospheric GCMs. However, the focus of
this multiscale modeling approach is on the small-scale tur-
bulent mixing and their interactions with the larger-scale
processes in the ocean, so that a more flexible coupling
strategy is used. To reduce the computational cost, a cus-
tomized version of PALM is ported on the general-purpose
graphics processing unit (GPU) with OpenACC, achieving
10–16 times overall speedup as compared to running on a
single CPU. Even with the GPU-acceleration technique, a
superparameterization-like approach to represent the ocean
surface turbulent mixing in GCMs using embedded high fi-
delity and three-dimensional large eddy simulations (LESs)
over the global ocean is still computationally intensive and
infeasible for long simulations. However, running PALM re-
gionally on selected MPAS-Ocean grid cells is shown to be
a promising approach moving forward. The flexible coupling
between MPAS-Ocean and PALM allows further exploration
of the interactions between the ocean surface turbulent mix-
ing and larger-scale processes, as well as future development
and improvement of ocean surface turbulent mixing parame-
terizations for GCMs.

1 Introduction

Turbulent motions in the ocean surface boundary layer
(OSBL) control the exchange of heat, momentum, and trace
gases such as CO2 between the atmosphere and ocean and
thereby affect the weather and climate. These turbulent mo-
tions are not resolved in regional and global ocean gen-
eral circulation models (GCMs) due to their small horizontal
scales (1–100 m), short temporal scales (103–105 s), and non-
hydrostatic nature. Effects of these subgrid-scale turbulent
motions are commonly parameterized in GCMs using simple
one-dimensional vertical mixing schemes (e.g., Large et al.,
1994; Burchard et al., 2008; Reichl and Hallberg, 2018).
However, significant discrepancies are found among many
such vertical mixing schemes, highlighting the uncertainties
in our understanding of turbulent mixing in the OSBL (Li
et al., 2019).

Improvements in OSBL vertical mixing parameterizations
will require better constraints under different realistic condi-
tions from either observations or high-fidelity simulations.
Due to the scarcity of direct measurements of OSBL tur-
bulence, conventional OSBL parameterization schemes are
commonly derived from scaling analysis constrained by
high-resolution and non-hydrostatic large eddy simulations
(LESs), in which the turbulent motions are resolved, with
various initial states and forcing conditions to cover a some-
what realistic parameter space (e.g., Li and Fox-Kemper,
2017; Reichl and Hallberg, 2018; Reichl and Li, 2019). As
shown by Li et al. (2019), many OSBL vertical mixing
schemes excel at situations in which the scheme was orig-
inally derived, but less so in other situations. The problem
is that when developing a parameterization for some partic-
ular process, we often need to control other factors in order
to isolate the effect of that particular process. Essentially, a
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separation of scales is often assumed and the exploration of
the parameter space is often restricted to a certain regime. In
reality, processes at different scales interact with each other
and the parameter space is vast.

Li et al. (2019) demonstrate a way to consistently evalu-
ate different OSBL vertical mixing schemes over a variety of
realistic surface forcing and background stratification condi-
tions. It can also be used to guide a systematic exploration of
the parameter space using LES. However, such an approach
ignores the interactions between the OSBL turbulence and
larger-scale processes, such as submesoscale fronts and ed-
dies, which have been shown to be important (e.g., Hamling-
ton et al., 2014; Bachman and Taylor, 2016; Fan et al., 2018;
Verma et al., 2019; Sullivan and McWilliams, 2019).

To study the interactions between the OSBL turbulence
and larger-scale processes, simulations that resolve all the
important processes across multiple scales are necessary. But
they can be extremely computationally expensive. For exam-
ple, LES that simultaneously resolves the OSBL turbulence
and permits some submesoscale features requires a grid size
of O(1m) and a domain size of O(10km) in the horizontal
(e.g., Hamlington et al., 2014; Verma et al., 2019; Sullivan
and McWilliams, 2019). Alternatively, the impact of large-
scale processes on the small-scale OSBL turbulence can be
studied by applying an externally determined large-scale lat-
eral buoyancy gradient in a much smaller LES domain (e.g.,
Bachman and Taylor, 2016; Fan et al., 2018), though at the
expense of missing the feedback to the large scales.

In this work we are building towards a multiscale model-
ing framework for studying the OSBL turbulent mixing by
coupling an ocean GCM, the Model for Prediction Across
Scales – Ocean (MPAS-Ocean; Ringler et al., 2013; Pe-
tersen et al., 2018), with an LES, the Parallelized Large
Eddy Simulation Model (PALM; Raasch and Schröter, 2001;
Maronga et al., 2015), effectively running PALM inside the
grid cells of MPAS-Ocean. To some extent, this is simi-
lar to the superparameterization approach (Randall et al.,
2003, 2016), which has long been used in the atmosphere
modeling community to represent the effects of cloud by
embedding a simplified cloud-resolving model in each grid
cell of an atmospheric GCM (Grabowski and Smolarkiewicz,
1999; Khairoutdinov and Randall, 2001; Grabowski, 2004;
Randall, 2013) and succeeded in simulating many phenom-
ena that are challenging for conventional cloud parameter-
izations, such as the diurnal cycle of precipitation and the
Madden–Julian oscillation (e.g., Khairoutdinov et al., 2005;
Benedict and Randall, 2009). A superparameterization ap-
proach in ocean modeling was also explored by Campin
et al. (2011) to represent the open-ocean deep convection
in a coarse-resolution ocean GCM. However, the primary
goal here is not to replace the conventional OSBL verti-
cal mixing parameterizations by an embedded LES, as in a
superparameterization-like approach. Instead, we seek to use
the coupled MPAS-Ocean and PALM with flexible coupling
strategies to systematically study the behavior of OSBL tur-

bulence under different forcing by the larger-scale processes
that are resolved in the GCMs, as well as their potential in-
teractions.

Since the small-scale turbulence is a crucial compo-
nent of the multiscale modeling framework in this study,
a high-fidelity three-dimensional LES is required to cap-
ture the rich and anisotropic turbulent structures in the
OSBL (e.g., McWilliams et al., 1997; Li and Fox-Kemper,
2020). This is different from the traditional superparam-
eterization approach, in which simplified two-dimensional
cloud-resolving models (e.g., Grabowski and Smolarkiewicz,
1999; Khairoutdinov and Randall, 2001; Grabowski, 2004)
or stochastic reduced models (Grooms and Majda, 2013) are
commonly used to represent the bulk effects of the small-
scale processes, with some variants, e.g., using two perpen-
dicular sets of narrow channels to partially overcome the
two-dimensionality (Jung and Arakawa, 2010). In addition,
here we are allowing the embedded LES to run on only se-
lected GCM grid cells, with a loose but flexible coupling with
the large-scale GCM fields. Without the computational bur-
den to run LES on every GCM grid cell, we have the flexibil-
ity to choose the LES domain and resolution to meet differ-
ent needs. We note that a similar regional superparameteriza-
tion approach using LES has recently been explored for the
cloud problem (Jansson et al., 2019). Aside from the focus
on OSBL turbulence, our approach also differs from theirs by
the coupling strategy and the graphics processing unit (GPU)
acceleration of the embedded LES (see Sect. 2 for more de-
tails).

Simulating processes across scales is a major goal of
MPAS-Ocean with its ability to regionally refine the resolu-
tion using an unstructured horizontal grid. This allows seam-
less regionally focused high-resolution simulations, e.g., in
the coastal regions, in a large background environment with-
out being nested inside a coarse-resolution simulation. Yet
the smallest scale that MPAS-Ocean permits is essentially
limited by the hydrostatic assumption. Therefore, coupling
with PALM is a natural extension for MPAS-Ocean, which
allows for extending multiscale simulations to a smaller scale
in which non-hydrostatic dynamics becomes important.

As an initial step towards a multiscale modeling frame-
work of the OSBL turbulent mixing, this paper focuses on
the implementation of the framework with some idealized
test cases. Rather than focusing on some specific scientific
problem, these test cases are chosen to validate the imple-
mentation, expose potential issues, and guide future devel-
opment and applications of the flexible coupling strategy as
detailed in the next section. A more sophisticated demonstra-
tion of the applications of this framework is left for a future
study.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the multiscale modeling framework to cou-
ple MPAS-Ocean with PALM and the approach to accelerate
PALM using GPU. The coupled MPAS-Ocean and PALM
are then tested in two idealized cases, a single-column case
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and a mixed layer eddy case, in Sect. 3. The advantages and
limitations of this approach, as well as some possible appli-
cations moving forward, are discussed in Sect. 4. This paper
ends with a brief summary and main conclusions in Sect. 5.

2 Methods

2.1 Coupling MPAS-Ocean with PALM

The Model for Prediction Across Scales – Ocean (MPAS-
Ocean, Ringler et al., 2013; Petersen et al., 2018) is the
ocean component of the US Department of Energy’s Earth
system model, the Energy Exascale Earth System Model
(E3SM, Golaz et al., 2019). It solves the hydrostatic, in-
compressible, and Boussinesq primitive equations on an un-
structured mesh using finite volume discretization. Model
domains may be spherical with realistic bottom topogra-
phy to simulate the Earth’s oceans, or Cartesian for ideal-
ized experiments. The Parallelized Large eddy simulation
Model (PALM, Raasch and Schröter, 2001; Maronga et al.,
2015) is a turbulence-resolving LES model to simulate tur-
bulent flows in the atmospheric and oceanic boundary lay-
ers. It solves the non-hydrostatic, incompressible and spa-
tially filtered Navier–Stokes equations with the Boussinesq
approximation on a Cartesian grid using finite-difference
discretization. It has been widely used to simulate a vari-
ety of processes in planetary boundary layers (see Maronga
et al., 2015, and the references therein). Both MPAS-Ocean
and PALM are under extensive development (see the lat-
est versions at https://github.com/MPAS-Dev/MPAS-Model/
releases, last access: 8 April 2021, and https://palm.muk.
uni-hannover.de/trac, last access: 8 April 2021). The cou-
pled MPAS-Ocean and PALM presented here are based on
MPAS-Ocean version 6.3 and PALM version 5.0.

To illustrate the coupling between MPAS-Ocean and
PALM, we write the momentum u and tracer θ equations on
a large domain with coarse resolution (denoted by the super-
script ()c) and a small domain with fine resolution (denoted
by the superscript ()f), representing the large-scale dynamics
in MPAS-Ocean and small-scale dynamics in PALM, respec-
tively. Essentially, the large-scale momentum and tracers are
governed by

∂tu
c
h =−uc

h · ∇
c
hu

c
h− f ẑ×uc

h (1)
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1
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c
hp

c
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where f is the Coriolis parameter, ẑ is the vertical unit vector,
ρ0 is the reference density, p is the pressure, d is the momen-
tum dissipation, and s is the tracer sources and sinks. A sub-
script ()h represents the horizontal components of a vector,
e.g., u= [uh,w] and ∇ = [∇h,∂z]. The hydrostatic balance,

0=−
1
ρ0
∂zp

c
+ bc, (3)

is assumed in the vertical, where b is the buoyancy deter-
mined by the tracers from the equation of state. The super-
script ()c effectively represents the low-pass-filtered fields
with a spatial scale greater than the grid scale of MPAS-
Ocean. F

uh
SS and F θSS represent the small-scale (subgrid-

scale) forcings that are not resolved in MPAS-Ocean. Note
that here scale separation is assumed only in the horizontal
directions, though unlike previous studies, we are not assum-
ing a shared vertical coordinate between the large and small
scales so that an interpolation in the vertical is necessary (see
more discussions later in this section). Similarly, the small-
scale momentum and tracers are governed by
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1
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The superscript ()f here represents the total fields with fine
resolution but in a limited PALM domain. So that the fol-
lowing constraints need to be satisfied at each MPAS-Ocean
grid cell to ensure consistency between the large-scale and
small-scale fields,

uf
h = uc

h, (7)

θ f = θc, (8)

where () is the horizontal average over the PALM domain.
Here we assume wf = 0. F u

LS and F θLS represent the large-
scale forcings that come from MPAS-Ocean. Note that we
are not explicitly writing out the subgrid-scale fields in
PALM, which occur at a much smaller scale, though we ac-
count for their contributions in, for example, the turbulent
momentum and tracer fluxes.

Different levels of tightness in the coupling are achieved
by combinations of different F

uh
SS, F θSS, F u

LS, and F θLS. For
F

uh
SS and F θSS, the horizontal and vertical components are of-

ten parameterized separately in GCMs due to the large aspect
ratio of the grid cell (the horizontal extent of a cell over the
vertical). They often represent the effects of different pro-
cesses, such as mesoscale eddies, which contribute mostly to
the horizontal fluxes, and submesoscale eddies and boundary
layer turbulence, both of which contribute mostly to the ver-
tical fluxes. Thus, scale separation of the dynamics among
multiple scales may be necessary. For the purpose here of
representing the ocean surface vertical turbulent mixing in
GCMs, we only explicitly consider the vertical component
of F

uh
SS and F θSS in Eqs. (1) and (2), while leaving the hori-

zontal component being parameterized by other routines in
MPAS-Ocean. The vertical component of F

uh
SS and F θSS can

be estimated from the vertical convergence of momentum
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and tracer fluxes in PALM by

F
uh
VSS =−∂zw

f ′u
f ′

h , (9)

F θVSS =−∂zw
f ′θf

′
, (10)

where ()′ = ()− () is the fluctuation around the PALM do-
main average. In our implementation, we also account for
the contributions of subgrid-scale fluxes, and these fluxes
are also averaged over an MPAS-Ocean time step (the cou-
pling period). Note that Eqs. (9) and (10) are consistent
with conventional parameterizations of vertical mixing, such
as the K-profile parameterization (KPP; Large et al., 1994;
Van Roekel et al., 2018), in which the fluxes are parameter-
ized.

The most straightforward way to enforce Eqs. (7) and (8)
is using relaxing terms for F u

LS and F θLS,

F u
LS =

uc
h−uf

h
τu

LS
, (11)

F θLS =
θc
− θ f

τ θLS
, (12)

where τu
LS and τ θLS are the relaxation timescales for momen-

tum and tracers. Both relaxing terms can be estimated at
the beginning of each coupling step and held constant un-
til the next coupling step. Note that this is different from
the tight coupling in the traditional superparameterization ap-
proach (e.g., Grabowski, 2004; Khairoutdinov et al., 2005),
in which the large-scale and small-scale tendencies are di-
rectly applied to the small-scale and large-scale dynamics,
respectively. In particular, here τu

LS and τ θLS are allowed to be
different from each other, and from the large-scale time step
1tLS (i.e., the time step of MPAS-Ocean and also the cou-
pling period). In addition, each of the coupling terms can be
switched on and off separately. Therefore, various levels of
tightness in the coupling can be achieved for sensitivity tests.
A reasonable choice for τ θLS is1tLS, which is consistent with
Campin et al. (2011). Campin et al. (2011) also suggest a re-
laxation timescale for momentum (in their case relaxing the
direction) shorter than the flow adjustment time (e.g., iner-
tial period) but longer than the large-scale time step to pre-
vent sudden changes of orientation due to numerical noise.
Here we tested different values of τu

LS from 30 min to 5 h. A
relatively long τu

LS of a few hours is necessary in our case
to alleviate the spurious influence of neighboring cells when
PALM is only running in selected MPAS-Ocean grid cells
– a feature of our approach that will be introduced later in
this section. We defer the details of this issue to later in this
section and in Sect. 3.

While part of the influences of the lateral gradients in
MPAS-Ocean are felt by PALM through the relaxing terms,
their effects on the small-scale dynamics are ignored here as
a first step. Such effects can be accounted for in the present

coupling framework by including additional lateral gradient
terms in F u

LS and F θLS in Eqs. (4) and (6),

F u
LS = ·· ·−u

f ′

h · ∇
c
hu

c, (13)

F θLS = ·· ·−u
f ′

h · ∇
c
hθ

c. (14)

However, to allow such large-scale gradient terms, appropri-
ate estimates of ∇c

hu
c and ∇c

hθ
c have to be made, which are

limited by the grid size of MPAS-Ocean. The relevance of
these terms therefore depends on the ratio of the large- and
small-scales of interest. A comprehensive exploration of the
effects of large-scale lateral gradients in this coupled frame-
work is beyond the scope of this model development paper
and left for a future study. See Sect. 4 for more discussions
on this.

To couple MPAS-Ocean with PALM, an interface between
the two models to exchange information is developed. In par-
ticular, the PALM main driver is modularized by wrapping up
all the necessary subroutines into three separate steps: ini-
tialization, time-stepping, and finalization. PALM can now
be compiled in either the standalone mode or the modular
mode, the latter of which can be easily used in other GCMs
too. MPAS-Ocean is coded in a modular way such that dif-
ferent parameterizations can be easily changed depending on
the input namelist. The PALM module is therefore used in
MPAS-Ocean as an additional option for vertical mixing, re-
placing the ocean vertical mixing schemes such as the KPP
(Large et al., 1994; Van Roekel et al., 2018) where needed.

In contrast to many previous implementations of the mul-
tiscale modeling framework, here we do not assume that
the coarse-resolution fields and fine-resolution fields are on
the same vertical grid. Therefore, a remapping step between
coarse vertical grid and fine vertical grid is necessary. Here
we use the piecewise quartic method described in White and
Adcroft (2008), realized by a high-order Piecewise Poly-
nomial Reconstruction (PPR, https://github.com/dengwirda/
PPR, last access: 8 April 2021) library. Although this remap-
ping method is conservative, monotonic, and highly accurate,
loss of information is unavoidable, especially when remap-
ping from high resolution to low resolution. When remap-
ping the PALM fields to the MPAS-Ocean grid, the averaged
effect of the high-resolution PALM is applied to the low-
resolution MPAS-Ocean, which is what we want. But when
applying the large-scale forcing from low-resolution MPAS-
Ocean to the high-resolution PALM fields, a simple relax-
ing to the MPAS-Ocean fields will cause loss of information,
e.g., near the base of the mixed layer where the gradients are
strong. To reduce such loss of information due to remapping,
both the large-scale and small-scale forcings are evaluated on
the original vertical grid and then remapped to the targeted
vertical grid. In this way, the relatively sharp vertical gradi-
ents in PALM fields that are not resolved in MPAS-Ocean are
preserved.

Instead of initializing a PALM instance at each coupling
step and running it to quasi-equilibrium, we initialize PALM
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Figure 1. Schematic diagram of coupling MPAS-Ocean with PALM
in time. PALM and MPAS-Ocean are running in parallel with time
steps1tLS and1tSS, respectively, and exchange information at ev-
ery 1tLS. PALM estimates the small-scale vertical momentum and
tracer fluxes due to turbulent mixing, whose vertical divergence in
Eqs. (9) and (10) are used in MPAS-Ocean. MPAS-Ocean provides
PALM the surface forcing and the large-scale forcing, which are
relaxing terms following Eqs. (11) and (12) here but can be ex-
tended to include the lateral gradients in Eqs. (4) and (6). PALM
also includes a spin-up phase after which the turbulent fluctuations
are preserved while the mean profiles are forced back to the initial
conditions following Eq. (16). See the text for more details.

at the beginning of the MPAS-Ocean simulation (by calling
the initialization subroutine) and let it run throughout the
simulation (by repeatedly calling the time-stepping subrou-
tine to step forward). See Fig. 1 for an illustration of MPAS-
Ocean and PALM running in parallel. This is intrinsically
different from using LES as a replacement of the conven-
tional parameterizations, in which an equilibrium of turbu-
lence to the changing external forcing is often assumed. The
equilibrium assumption may be valid if the time step of the
coarse-resolution model is long enough, within which the
turbulence can adjust to the changes in the external forcing.
However, as the time step of the ocean GCMs become shorter
and shorter (half an hour for a common global MPAS-Ocean
simulation but much shorter for regional simulations), the
equilibrium assumptions may no longer be valid. The cou-
pling approach here allows for disequilibrium of turbulence
when the forcing conditions change rapidly.

As in KPP, PALM is running at the center of an MPAS-
Ocean grid cell. A mask variable is introduced to allow
PALM to run only on selected MPAS-Ocean grid cells while
KPP is used for other cells following Van Roekel et al.
(2018). Figure 2 shows a schematic diagram of this flexible
layout of coupling MPAS-Ocean with PALM in space. In this
example, PALM is only running on cell c6, whereas all other
cells use KPP. The tracer fluxes from PALM are directly used
to update the tracer equations at c6 via Eqs. (2) and (10). The
momentum equation Eq. (1) is solved in MPAS-Ocean by
solving the normal velocity equation at all the edges (Ringler
et al., 2010). Therefore, the momentum fluxes from both
PALM at c6 and KPP at c11 contribute to the normal velocity

Figure 2. Schematic diagram of coupling MPAS-Ocean with PALM
with PALM running only on selected cells. In this example, PALM
is running at the center of cell c6 (in red), whereas KPP is used in
all other cells (in black). The normal velocity at the edge e6|11 is
therefore affected by both PALM at c6 and KPP at c11. See the text
for more details.

at edge e6|11. In practice, half of the momentum fluxes from
PALM running at the center of a certain cell are applied to
its edges. This is consistent with the present configuration of
KPP in MPAS-Ocean, in which the vertical viscosity at the
edges are the average of the values at its two neighboring
cells. Since the KPP vertical viscosity at the center of a cell
is set to zero whenever PALM is running on that cell, this
approach avoids double counting of the momentum fluxes at
the edges and allows for smooth transition from PALM cells
to KPP cells, regardless of the layout of PALM cells. How-
ever, this also means that the PALM cells are essentially cou-
pled with the neighboring KPP cells. When the momentum
of MPAS-Ocean and PALM are tightly coupled, e.g., through
a relaxing term with a short timescale, the solution of neigh-
boring KPP cells will influence the solution in PALM, which
is undesirable. Using a relatively longer relaxation timescale
of a few hours alleviates this problem. We will return to this
issue in Sect. 3 using an idealized diurnal heating and cooling
case in the single-column MPAS-Ocean setup.

Running PALM on only selected MPAS-Ocean grid cells
may cause a load imbalance, as the grid columns of MPAS-
Ocean with PALM running will be much slower than those
without. This problem can be alleviated by running PALM
on GPU (see the next section) and carefully designing the
mesh decomposition to balance the CPU jobs and GPU jobs
on each computational node.

2.2 PALM on GPU

Time-stepping the PALM instances is the most computation-
ally expensive step in the coupled MPAS-Ocean and PALM
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system described above. It is therefore sensible to acceler-
ate PALM using GPU. Since there is no need for communi-
cations among different instances of the embedded PALM,
they may run efficiently on GPUs in parallel on a massive
scale. Note that the size of the problem we intend to solve
by each embedded PALM instance is small enough to be de-
ployed on one GPU. In fact, a single GPU on modern high-
performance computing systems has enough memory to al-
low multiple PALM instances for our purposes. In addition,
each PALM instance is associated with an MPAS-Ocean grid
cell in our coupling framework and therefore a single MPI
task. For these reasons, we target our porting of PALM on a
single GPU without inter-GPU communications.

Significant modification and reduction of the PALM code
(version 5.0) were conducted before porting it on GPU. In
particular, all the special treatment of complex topography
and surface types were removed, along with the atmospheric
variables, all of which are irrelevant to our OSBL applica-
tion here. We also removed the option to use different nu-
merical schemes and hard-coded it to use the fifth- and sixth-
order advection scheme of Wicker and Skamarock (2002)
and third-order Runge–Kutta time-stepping scheme. We used
an external fast Fourier transform library (FFTW) for the
pressure solver (an option in PALM) in the CPU version for
benchmarking. These steps significantly reduced the amount
of effort required to port PALM on GPU.

This customized version of PALM was ported on GPU us-
ing OpenACC directive-based parallel programming model
(https://www.openacc.org/, last access: 8 April 2021) and
the NVIDIA CUDA Fast Fourier Transform library (cuFFT,
https://developer.nvidia.com/cufft, last access: 8 April 2021).
Porting PALM involved two iterative steps: (1) paralleliz-
ing the loops and (2) optimizing data locality. In the first
step we wrapped all the loops in the time integration sub-
routine with the OpenACC “parallel” directive, which allows
for automatic parallelization of loops. Some loops, especially
in the tridiagonal solver and the turbulence closure subrou-
tines, were restructured to ensure independency. A lower de-
gree of parallelism was employed for loops that cannot be
easily restructured to remove the dependency between iter-
ations. This step generally slows down the code because of
the large amount of data exchanges occurring between the
CPU and the GPU. Therefore, optimizing data locality is re-
quired. This was done by enlarging the data regions of the
parallelized loops on GPU. Then we moved on to parallelize
another segment of the code and iterated between the two
steps.

In the process of porting the code, some loops are executed
on the CPU and some on the GPU. So extreme caution is re-
quired to make sure the data are synchronized between the
CPU and the GPU when necessary. Eventually, the data re-
gion on GPU is large enough to cover the entire time integra-
tion subroutine. This reduces the data exchange between the
CPU and the GPU to mostly at the beginning and the end of
the time integration, which will occur once per MPAS-Ocean

time step. As most of the subroutines during the time integra-
tion are ported on GPU, values of the variables are updated
on the CPU rather infrequently only when it is necessary.
This significantly reduces the time-consuming data exchange
between the CPU and the GPU, which leads to overall accel-
eration of the code. The cuFFT library was used to accelerate
the pressure solver in PALM, which uses fast Fourier trans-
form to solve the Poisson equation.

The speedup of porting PALM on GPU was benchmarked
by running the standalone PALM with and without GPU on
two machines: (1) a Linux workstation with an Intel Xeon
Silver 4112 CPU at 2.60 GHz and an NVIDIA Quadro RTX
4000 GPU and (2) the High Performance Computing sys-
tem at Oak Ridge National Laboratory (Summit) with 2 IBM
POWER9 CPUs and 6 NVIDIA Tesla V100 GPUs on each
node. For the benchmarking on both machines, only 1 CPU
and 1 GPU were used. Figure 3 shows the speedup in to-
tal run time and the three most time-consuming subroutines.
The speedup factor is defined as the ratio of the run time on 1
CPU divided by the run time on 1 CPU and 1 GPU, all with 1
MPI task. Note that the model throughput per watt of power
consumption would be a much better measure of the speedup
and the benefit of porting the code on GPU. However, that
measure is difficult to obtain. In practice, since we intend to
run multiple PALM instances inside MPAS-Ocean, each as-
sociated with a single MPAS-Ocean grid cell and therefore
1 MPI task, and since the coupled MPAS-Ocean and PALM
as a whole will be running on multiple CPUs and GPUs, the
faster each PALM instance runs, the more flexible the par-
allel layout could be to achieve maximum overall efficiency.
Therefore, this measure of speedup in run time is useful.

In general, a 10–16 times speedup was achieved by porting
PALM on GPU, especially for relatively large problem sizes
for which the full capability of the GPU can be used. For
subroutines that have many independent loops, such as the
prognostic equations, the speedup can be larger than a factor
of 65. However, the overall speedup was strongly limited by
the pressure solver in which the Fourier transform restricts
the degree of parallelism, especially for smaller problems.
Note that this speedup is achieved by a straightforward appli-
cation of the OpenACC parallel directives to parallelize the
loops and copying the data to GPU at the beginning of the
time integration. Further speedup is possible by improving
the memory management, and fine-tuning the parallelization
of loops and data locality to better suit the GPU capability,
which are beyond the scope of this study.

3 Evaluation

Here we evaluate the coupled MPAS-Ocean and PALM us-
ing two idealized test cases. The first and simplest is in a
single-column configuration, which was used throughout the
development. The goal of this configuration is a test of one-
way coupling from small-scale to large-scale dynamics in
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Figure 3. Speedup factor as a function of problem size (Nx×Ny×
Nz). The speedup factor is defined here as the ratio of the run time
on 1 CPU divided by the run time on 1 CPU+ 1 GPU, all with 1
MPI task. The black line shows the speedup in total time and col-
ored lines show the speedup in the three most time-consuming sub-
routines. Solid lines show the speedup on Summit and dashed lines
on the Linux workstation.

Eqs. (1) and (2) by estimating the small-scale forcing terms
in Eqs. (9) and (10) from PALM. This also allows a test of
the remapping between the vertical grids of MPAS-Ocean
and PALM.

The second test case is a simulation of mixed layer eddies
in MPAS-Ocean with PALM running on multiple MPAS-
Ocean grid cells. The goal of this test case is twofold. First,
this case allows us to test the capability of running multiple
PALM instances within MPAS-Ocean and distributing the
different PALM instances on multiple GPUs. Second, this
case provides a way to test the two-way coupling between
MPAS-Ocean and PALM under more complex and realistic
conditions. In particular, the development of mixed layer ed-
dies in this case introduces spatial heterogeneity and large-
scale forcing from advection and lateral mixing, though baro-
clinic instability in PALM is excluded as a result of missing
the lateral gradients.

3.1 Single-column test

MPAS-Ocean allows for a minimum of 16 columns in a
“single-column” mode, in which the 16 columns are forced
by the same surface forcing and are essentially identical to
each other due to the lack of lateral processes. Therefore,
ideally running PALM in the single-column MPAS-Ocean is
essentially the same as running the standalone PALM as there
should be no large-scale forcing terms. In practice, this is true
only if PALM is running in all 16 columns. If PALM is only
running on one of these columns while KPP is used in other
columns, as illustrated in Fig. 2, different solutions between
PALM and KPP under the same forcing conditions will re-
sult in some spurious large-scale forcing to PALM. This is

especially the case for the momentum since the momentum
is solved on cell edges in MPAS-Ocean; i.e., it is affected by
the momentum fluxes from both the PALM cell and the KPP
cells. This 16-cell “single-column” MPAS-Ocean configura-
tion allows us to assess the impact of this issue and explore
possible remedies.

The coupled MPAS-Ocean and PALM is tested in this
single-column configuration under different idealized forc-
ing scenarios using various combinations of constant wind
stress, constant surface cooling, and diurnal solar heating.
Here we only present one case in detail as an example. In
this case the simulation is initialized from a stable stratifica-
tion with a surface temperature of 20 ◦C and a constant verti-
cal gradient of 0.01 ◦Cm−1. Salinity is constant at 35 psu to
make sure the coupling does not introduce spurious tenden-
cies. We run the MPAS-Ocean simulation from rest for two
days with a time step of 30 min. The depth of the simula-
tion domain is 102.4 m, divided into 80 layers with constant
layer thickness of 1.28 m. For some configurations we also
repeated the same simulation with a coarse vertical resolu-
tion of 5.12 m to test the sensitivity to vertical remapping.

The surface forcing is an idealized diurnal heating and
cooling with constant wind stress of 0.1 Nm−2. An idealized
diurnal cycle of the solar radiation Fs is used,

Fs(t)= F0max
{

cos
[

2π
(

t

86400
− 0.5

)]
,0
}
, (15)

where F0 = 500 Wm−2 is the maximum solar radiation at
noon and t is the time of a day in seconds. Absorption of
solar radiation in the water column is computed using the
two-band approximation of Paulson and Simpson (1977) as-
suming Jerlov water type IB. A constant surface cooling of
−159.15 Wm−2 is applied at the surface, balancing the solar
heating when integrated over a day. The Coriolis parameter
is set to 1.028× 10−4 s−1, equivalent to the value at a lati-
tude of 45◦ N. This test case yields an inertial oscillation in
the velocities with a period of about 17 h in addition to the
diurnal heating and cooling.

The coupled MPAS-Ocean and PALM is tested by run-
ning PALM only at the sixth cell c6 (see Fig. 2). All other
15 cells use KPP for the vertical mixing with a typical
configuration (Van Roekel et al., 2018). PALM runs on a
160m×160m×80m domain with 128×128×80 grid cells,
yielding a resolution of [dx,dy,dz] = [1.25,1.25,1]m. This
configuration of PALM is enough to give statistically robust
mean vertical profiles of the fluxes that are exchanged with
MPAS-Ocean. PALM starts with some small random per-
turbations on the temperature and velocity fields (between
depths of around 4 and 28 m) during the first 150 s and then
runs for 1 h to allow the turbulence to develop before the ini-
tial step of MPAS-Ocean. Then the mean fields of PALM are
forced back to the initial profiles of MPAS-Ocean described
above, while keeping the turbulent perturbations developed
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Figure 4. A comparison between KPP and standalone PALM simulations in the diurnal heating case. Panel (a) shows the simulated sea
surface temperature (SST, ◦C) in standalone PALM (solid line in black) and KPP (dashed line). For reference the diurnal factor (Fs/F0) in
Eq. (15) is also shown (gray line, vertical axis on the right). Panels (b), (c), (e), (f), (h), and (i) show the simulated temperature (T , ◦C) and
velocities (u, v, ms−1) in x and y directions, respectively, in PALM and KPP. Solid and dashed lines mark the boundary layer base in PALM
and KPP, respectively, defined as the depth where the stratification reaches its maximum. The dotted line in these panels marks the time when
the profiles in PALM and KPP are compared in (d), (g), and (j), respectively.

in the PALM initial step,

φf∗(x,y,z)= φf(x,y,z)−φf(z)+φc(z), (16)

where φf∗ is the updated PALM field, φf is the original, φf is
the horizontal average over the PALM domain, and φc is the
initial condition from MPAS-Ocean (see Fig. 1).

We first compare the solutions of this test case in stan-
dalone PALM and KPP in Fig. 4. It is clearly seen that in
this test case KPP gives quite different solutions than the
standalone PALM. In particular, KPP yields slightly stronger
vertical mixing indicated by the deeper boundary layer by a
few meters. As a result, the simulated temperature is cooler
throughout most parts and warmer near the base of the
boundary layer (panel d), and the maximum sea surface tem-
perature (SST) during a diurnal cycle is about 0.04 ◦C cooler
(panel a) in KPP than in PALM. The simulated velocities are
clearly affected by the diurnal heating during different phases
of the inertial oscillation in PALM, but not in KPP.

For the coupled MPAS-Ocean and PALM, with the small-
scale forcing Eqs. (9) and (10) from PALM applied to all

16 cells, we expect the results to be identical to the stan-
dalone PALM, except perhaps for some small differences due
to the differences in time stepping. This is indeed the case, as
shown by comparing the blue line and black line in Fig. 5.
Here the profiles in Fig. 5 are taken at the time of SST maxi-
mum indicated by the dotted line in Fig. 4.

Since the small-scale forcing of tracers in Eq. (10) is di-
rectly applied to the tracer equations at the MPAS-Ocean
cell centers, the coupling of tracers (here temperature) is
straightforward even though PALM is running on one cell c6
(Fig. 2) as there is no direct impact from neighboring cells.
This can be seen from the agreement of the dark red line
and the black line in Fig. 5a, in which τu

LS =∞ or equiv-
alently F u

LS = 0 following Eq. (11) effectively cuts off the
influence of neighboring KPP cells on the momentum equa-
tions in PALM. However, as the momentum at the center of
the PALM cell (c6) is directly coupled with the neighboring
KPP cells (by solving only the normal velocity at edges), we
see some differences as the coupling of the momentum gets
tighter with a shorter relaxation timescale for the momentum
(see the transition from dark red to light red in Fig. 5). In par-
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ticular, although the momentum profiles appear to be slightly
closer to the standalone PALM as the relaxing is stronger, the
temperature starts to be affected by this strong coupling with
neighboring cells. The surface temperature (upper 10 m) gets
warmer due to the diurnal heating and the layer immediately
below gets slightly cooler as compared to the standalone
PALM. This is probably an artifact due to the mismatching
tendencies of warmer surface temperature from PALM and
weaker velocity shear from KPP, making the surface layer
in the embedded PALM more stable. The momentum near
the base of the boundary layer is also strongly influence by
neighboring cells running KPP. Similar behavior is also seen
in a purely shear-driven entrainment case (not shown).

The similar results between the coarse vertical resolu-
tion (gray line) and the fine vertical resolution (red line) in
Fig. 5a suggest that embedding a high-fidelity LES is able
to improve the temperature distribution of a coarse-vertical-
resolution parent model, and the error of vertical remapping
with the piecewise quartic method (White and Adcroft, 2008)
is minimal. However, embedding a fine-vertical-resolution
KPP does not help, indicated by the similar results of black
and gray dashed lines in Fig. 5a (in this case the coarse reso-
lution KPP appears to perform better near the boundary layer
base; see also Van Roekel et al., 2018). Some improvements
over KPP in the simulated momentum are also seen in both
the fine-vertical-resolution case (red solid lines in Fig. 5b and
c) and the coarse-vertical-resolution case (gray solid lines in
Fig. 5b and c). But since the momentum at the cell center
is reconstructed from the normal velocities at all edges of a
cell, which are strongly influenced by the neighboring KPP
cells, its profiles resemble more the momentum profiles in
KPP than that in PALM.

Spatial influence of running PALM on the cell center of
a single cell in the 16-cell single-column configuration is
shown in Fig. 6. The difference between all the 15 KPP cells
and the PALM cell (marked by the plus sign) for temperature
is roughly uniform, except the two adjacent cells on the left
and right, and the cell at the upper right (panel a, note that the
domain is doubly periodic), likely due to the feedback from
changes in the velocity in those cells (panels b and c). The
changes in zonal and meridional velocities are results of the
interpolation of small-scale forcing terms from cell center to
cell edges, and the reconstruction of the zonal and meridional
velocities from normal velocities at edges. Note that the sur-
face fluxes are consistent across all cells and applied directly
as boundary conditions. So there is no feedback from the dif-
ferent simulated surface temperature and velocity between
PALM and KPP cells.

Note that running PALM on the cell edges of MPAS-
Ocean (e.g., on e6|11 in Fig. 2) would not help to eliminate
this issue in the coupling of the momentum. At first thought
it might appear promising as in that case the normal veloc-
ity at the edge can be directly used to update the momentum
in PALM. However, since the tangential velocity in MPAS-
Ocean (Ringler et al., 2010) is diagnosed from the normal

velocity at all the edges of the two neighboring cells (e.g., c6
and c11) of an edge (e.g., e6|11), the influence of neighboring
KPP cells is still there. We therefore choose to run PALM
on the MPAS-Ocean cell centers and use a relatively long
(5 h) relaxing timescale for the momentum to alleviate the
coupling issue, while acknowledging that this issue deserves
further investigation.

3.2 Mixed layer eddy test

The setup of the mixed layer eddy test case is guided by simi-
lar simulations in both GCMs (Fox-Kemper et al., 2008) and
LES models (Hamlington et al., 2014). However, since our
focus is not on the mixed layer eddy itself, we are not com-
paring the simulation results here with those in the literature.
Instead we focus on the coupling between MPAS-Ocean and
PALM in the presence of some mixed layer eddies.

Here we run MPAS-Ocean with a two-front, or warm fil-
ament, setup on a domain of 72km× 62.4km× 150m with
14 400 cells and 50 vertical levels, corresponding to horizon-
tal (distance between cell centers) and vertical grid sizes of
600 m and 3 m, respectively. The initial temperature field T0
is uniformly distributed in the x direction with two fronts in
the y direction,

T0(y,z)=Tb+
N2

αTg
(z+H)

+
LfM

2
f

2αTg

{
1+ tanh

[
2(y− y1)

Lf

]
− tanh

[
2(y− y2)

Lf

]}
, (17)

N2
=

{
N2

ml, if z >−H,

N2
int, if z ≤−H,

(18)

where Tb = 16 ◦C is the temperature at the base of the
mixed layer, H = 50 m is the mixed layer depth, and
N2

ml = 1.96× 10−7 s−2 is the stratification within the mixed
layer and N2

int = 1.96× 10−5 s−2 below, corresponding to
∂zT = 10−4 ◦Cm−1 and ∂zT = 10−2 ◦Cm−1, respectively,
using a linear equation of state with the thermal expan-
sion coefficient αT = 2× 10−4 ◦C−1 and the gravity g =

9.81 ms−2. The front width is Lf = 10 km, with the hori-
zontal buoyancy gradientM2

f = 3.92×10−8 s−2 (∂yT = 2×
10−5 ◦Cm−1). The initial front locations are y1 = 15.6 km
and y2 = 46.8 km. The salinity is constant at 35 psu. The
Coriolis parameter is f = 10−4 s−1. These parameters cor-
respond to a Richardson number Ri=N2

mlf
2/M4

f = 1.28 in
the frontal regions. The two fronts are initialized from rest
(unbalanced with the horizontal temperature gradients) with
small perturbations on the temperature fields to promote the
development of mixed layer instability. The surface is forced
by constant wind stress of 0.1 Nm−2 in the x direction. Since
the MPAS-Ocean simulation domain is doubly periodic in
the horizontal, the two fronts move to the right of the wind
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Figure 5. A comparison of the temperature (a), zonal velocity (b), and meridional velocity (c) profiles with different configurations and
coupling strategies. The profiles are taken at the SST maximum (about 3 h after the solar radiation maximum) during the second diurnal
cycle of the diurnal heating cases (dotted line in Fig. 4). On top of the profiles in the standalone PALM (black solid) and KPP (black dashed)
from panels d, g, and j of Fig. 4, we overlay the profiles from a set of sensitivity tests with different configurations and coupling strategies.
Light to dark red lines show the results of simulations with different momentum relaxing timescales from τu

LS = 0.5 h to zero momentum
relaxing (τu

LS =∞). The blue line shows the results of a simulation in which the tendencies of PALM are applied to all 16 cells, versus
only cell c6 in other cases. Gray solid and dashed lines show the same as the c6, τu

LS = 5 h case and the KPP case, respectively, but with
MPAS-Ocean running on a coarse resolution of dz= 5.12 m. In all cases (when applicable) the relaxing timescale for tracers is τ θLS = 0.5 h.

Figure 6. Distribution of the differences in temperature (a), zonal velocity (b), and meridional velocity (c) at the surface between the KPP
cells and the PALM cell (marked by “+”) in the single-column test. Here the relaxing timescale for the momentum and tracers are τu

LS = 5 h
and τ θLS = 0.5 h.

direction due to Ekman transport. The result is a stable front
in which warmer surface water moves over on top of the cold
water and an unstable front in which both the Ekman-driven
convective instability and baroclinic instability occur.

The MPAS-Ocean simulation is first spun up with KPP
for 15 d with a time step of 5 min, allowing the mixed layer
eddies to develop. Then starting from day 16, three branch
runs of 30 h are conducted, which are the focus of the anal-
ysis here. The first run continues to use KPP in all the cells.
The second run uses PALM at 8 selected cells and KPP
elsewhere, with a PALM domain of 160m× 160m× 120m
and 128× 128× 120 grid cells, and the same coupling strat-

egy as in the single-column test using relaxing timescales
of τ θLS = 0.5 h and τu

LS = 5 h. The third run is the same as
the second (i.e., same initial condition, surface forcing, and
PALM cells), except there is no coupling between MPAS-
Ocean and PALM (i.e., no exchange of large-scale and small-
scale forcings). Comparing the former two runs shows the
different responses in KPP and PALM to the same surface
wind forcing and large-scale forcing due to mixed layer ed-
dies, whereas comparing the latter two shows the impact
of the large-scale forcing on the small-scale turbulence in
PALM.
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Figure 7. Horizontal (a, c) and vertical (b, d) snapshots of the temperature (a, b; T in ◦C) and relative vorticity normalized by the Coriolis
parameter (c, d; ζ/f ) at the beginning of day 16 in the mixed layer eddy case. The location of each of the MPAS-Ocean cells running PALM
is marked by a black dot and assigned a number for quick reference. The wind is in the x direction as shown by the arrow, with a constant
wind stress of 0.1 Nm−2. Note that the contour lines for temperature have an interval of 0.05 ◦C below 16 ◦C and 0.01 ◦C above to highlight
the eddy structures in the mixed layer.

Figure 7 shows a snapshot of the temperature and rela-
tive vorticity fields at the beginning of day 16. Note that the
unstable front initially at y = 46.8 km has moved to around
y = 25 km, whereas the stable front initially at y = 15.6 km
has moved to around y = 45 km (out and re-entering the do-
main) due to the Ekman transport towards the negative y di-
rection and the doubly periodic domain. The locations of the
eight MPAS-Ocean cells running PALM are marked and la-
beled for quick reference. For brevity, here we only present
the results of four representative cells: cells 1 and 3 located
at both sides of the unstable front, where active mixed layer
eddies are developing, and cell 7 and 8 located at both sides
of the stable front, with the latter strongly affected by the
Ekman advection of surface warm water.

Figures 8–10 show the time evolution of the temperature
and the zonal and meridional velocities at four locations. It
is clearly seen that at cells 1 and 3, both the temperature and
momentum are strongly affected by the large-scale forcing
due to the mixed layer eddies (panels a, b, d and e in all
three figures), where otherwise under constant surface wind
forcing and rotation would develop strong inertial oscillation
with a period of about 17 h (panels c and f in Fig. 9 and 10).

The similarity between KPP and PALM at these two loca-
tions suggests the dominance of large-scale forcing due to
mixed layer eddies in the evolution of temperature and mo-
mentum, while small differences are still noticeable suggest-
ing the potential importance of boundary layer turbulence in
feeding back to the evolution of mixed layer eddies. At cell
7, the large-scale forcing is relatively small in the absence
of active mixed layer eddies and Ekman advection of sur-
face warm water. Therefore, the temperature and momentum
are similar to the uncoupled PALM simulations (panels g, h
and i of all three figures). At cell 8, a second shallower mixed
layer is developed and getting warmer and warmer as a result
of the Ekman advection of surface warm water. The tempera-
ture is strongly affected by this large-scale forcing (Fig. 8j–l),
whereas the momentum is relatively less affected (panels j–l
of Figs. 9 and 10).

Finally, we demonstrate the influence of large-scale forc-
ing on the small-scale turbulence statistics by showing the
time evolution of the vertical buoyancy flux profile in the
three runs in Fig. 11. The buoyancy flux in the KPP run (left
panels) is diagnosed from the MPAS-Ocean output of the
stratification, the vertical turbulent diffusivity and the non-
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Figure 8. Evolution of temperature profiles at the cells 1, 3, 7, and 8 labeled in Fig. 7. Three columns of panels show the profiles in the
MPAS-Ocean simulations with KPP (a, d, g, j) and PALM (b, e, h, k), and the profiles in the uncoupled PALM (c, f, i, l). Note that the
contour lines for the temperature have an interval of 0.05 ◦C below 16 ◦C and 0.005 ◦C above to highlight the structures in the mixed layer.

Figure 9. Same as Fig. 8, but for the zonal velocity.
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Figure 10. Same as Fig. 8, but for the meridional velocity.

local fluxes (zero in this case). The results in the coupled
and uncoupled PALM runs (middle and right panels) are the
sum of the resolved and subgrid-scale buoyancy fluxes in
PALM. Consistent with Figs. 8–10, the vertical buoyancy
flux is strongly affected by the large-scale forcing due to
mixed layer eddies and Ekman-driven convection at cells 1
and 3, but less so at cells 7 and 8. Though qualitatively simi-
lar, the vertical buoyancy fluxes in response to the large-scale
forcing of mixed layer eddies are quantitatively different be-
tween MPAS-Ocean runs with KPP and with PALM, sug-
gesting the potential importance of a better representation of
boundary layer turbulence in simulating the mixed layer ed-
dies.

Traditionally an OSBL parameterization is often tuned
against some forced LES without large-scale forcing, as in
the uncoupled PALM case (c, f, i, and l of Figs. 8–11),
whereas a mixed layer eddy parameterization is tuned using
GCMs with some OSBL parameterization, as in the KPP case
(a, d, g, and j). The results here suggest that we might need to
explicitly consider the influence of the mixed layer eddies on
the OSBL turbulence and vice versa when tuning the param-
eterizations. The coupled MPAS-Ocean and PALM provides
a way to do this. It should be noted that here we are showing
the differences, rather than quantifying the errors, between
the runs with and without the coupling across scales. The
latter would require a careful evaluation against an LES sim-
ulation of the interactions between mixed layer eddies and
the OSBL turbulence (e.g., Hamlington et al., 2014). We are
also missing the effect of the large-scale lateral gradients on

the dynamics of the small-scale turbulence in this test case,
which will be discussed in Sect. 4.1.

4 Discussion

Traditionally, the primary goal of embedding a fine-
resolution process-resolving model inside a coarse-
resolution GCM is to improve the skill of the coarse-
resolution GCMs by improving the representation of
small-scale processes. Alternatively, here we show that
embedding a high-fidelity, three-dimensional LES in GCMs
also provides a promising framework to systematically
conduct process studies of turbulent mixing in the OSBL in
the context of larger-scale processes, such as submesoscale
eddies and fronts. In the traditional case, the focus is on
the large-scale GCMs so that the embedded fine-resolution
model does not have to be accurate on its own merits, i.e.,
we only need to represent the most important effects of the
small-scale processes on large scales. This opens the door
for various choices of the embedded small-scale model with
reduced dimension or reduced physics, such as stochastic
models (e.g., Grooms and Majda, 2013) or machine learning
models (e.g., Brenowitz and Bretherton, 2018; O’Gorman
and Dwyer, 2018). In our case, however, the interests are also
on the small-scale processes. Therefore, a process-resolving
model with high fidelity such as an LES is necessary.

Given that direct measurements of turbulent mixing in the
ocean is sparse, recent development and tuning of new OSBL
vertical mixing schemes for GCMs rely heavily on forced
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Figure 11. Same as Fig. 8, but for the vertical buoyancy flux. Unlike Fig. 8, the middle panels are directly from the PALM output. The large
values at the beginning of the simulation for (b), (c), (h), and (i), for example, are due to the spin-up of the turbulence in PALM.

LES under a variety of different forcing conditions (e.g., Har-
court, 2013, 2015; Li and Fox-Kemper, 2017; Reichl and Li,
2019). Such LES is often idealized without the influences of
large-scale processes, assuming that such influences are ad-
ditive that can be accounted for by other parameterizations
in GCMs. As the horizontal resolution of a GCM becomes
finer and finer, such assumption may no longer be valid, es-
pecially for an OSBL scheme in which the boundary layer
depth is derived from a prognostic equation, such as the
OSMOSIS schemes (Damerell et al., 2020). The approach
described here may benefit the development of new OSBL
schemes by providing an efficient way to generate LES data
with the influence of large-scale processes for tuning of the
parameters.

One advantage of applying the coupled MPAS-Ocean and
PALM to focused process studies, as compared to the forced
LES approach, is that the small-scale LES is essentially cou-
pled, though rather loosely, with the large-scale GCM. The
effects of large-scale processes, such as advection and lat-
eral mixing, are naturally accounted for at different levels
of completeness depending on the flexible coupling strategy.
We can use different coupling strategies to study the interac-
tions between the large-scale processes and the small-scale
turbulent mixing. Additionally, this approach is also much
more computationally efficient as compared to an LES on a
large domain to resolve all the important processes, which is
often required to study the coupling across scales (e.g., Ham-
lington et al., 2014; Sullivan and McWilliams, 2019).

4.1 Remaining issues

The coupling between MPAS-Ocean and PALM presented
in Sect. 2.1 currently excludes the effect of a lateral gradi-
ent of large-scale quantities. Large-scale lateral gradients are
needed in the small-scale dynamics to allow processes like
baroclinic instability (e.g., Bachman and Taylor, 2016) and
are essential for the energy transfer from the large scale to
the small scale. In the superparameterization literature, as
well as the conventional OSBL parameterization literature,
it is often assumed that there is a scale separation between
the large-scale processes simulated by the GCMs and the
small-scale turbulent processes simulated by the embedded
process-resolving model or represented by the parameteri-
zation schemes. As the horizontal resolution of the GCMs
increases, and the scales of the resolved processes and the
small-scale turbulent processes therefore get closer, this as-
sumption may start to break. The multiscale modeling ap-
proach presented here can be extended to incorporate such
effects by allowing the large-scale forcing terms in Eqs. (4)
and (6). A similar approach has been suggested in, for exam-
ple, Grooms and Julien (2018) for multiscale modeling, as
well as applied in LES studies of the frontal regions (e.g.,
Bachman and Taylor, 2016; Fan et al., 2018). The tricky
part is estimating the lateral gradient of large-scale quan-
tities, which strongly depends on the horizontal resolution
of the GCMs. Therefore, great caution has to be exercised
when interpreting the resolved lateral gradients in the coarse-
resolution GCMs.
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Even with the GPU-acceleration technique, running
PALM in MPAS-Ocean is still computationally intensive. In
the present setup in the single-column test (running PALM on
one cell while using KPP in others), the total run time on one
CPU and one GPU is a few hundreds times longer than using
KPP in all cells. In the mixed layer eddy test case, running
PALM on 8 cells increases the total run time by over 40 times
on 16 CPUs and 8 GPUs. While the computational cost is
well justified for applications on studying the small-scale tur-
bulent mixing, for applications on improving the GCM per-
formance, a superparameterization-like approach with high-
fidelity and three-dimensional LES embedded in every grid
cell in a GCM is still far from practical.

4.2 Moving forward

We have tested the coupled MPAS-Ocean and PALM using
some very idealized test cases. The goals of these test cases
are to verify the functionality of the coupled system, which
provides the foundation for future extensions and applica-
tions to more realistic setups. Here we outline a few possible
use scenarios that will take advantage of the development in
this study.

As mentioned in the previous section, one obvious step
forward is to include the effects of large-scale lateral gradi-
ents in the embedded PALM. To overcome the limitation of a
doubly periodic domain in PALM, one can assume constant
background fields with large-scale gradients (∇c

h()
c terms in

Eqs. (13) and (14)), which are updated every coupling pe-
riod, and adapt Eqs. (4) and (6) to solve for the perturbations
around the background fields, to which periodic boundary
conditions can be applied. A similar technique has already
been used in LES studies of turbulent mixing in an ideal-
ized frontal zone assuming that the background buoyancy
gradient and velocity shear are in thermal wind balance (e.g.,
Bachman and Taylor, 2016). This allows the development of
baroclinic instability in the embedded LES and a direct com-
parison with an LES on a larger domain to study the turbulent
mixing in the presence of large-scale features such as subme-
soscale fronts and filaments (e.g., Hamlington et al., 2014;
Sullivan and McWilliams, 2019). In addition to significantly
reducing the computational cost as compared to an LES on
a large domain, the coupled MPAS-Ocean and PALM also
allows one to separate the contributions of lateral processes
and vertical mixing at different scales by combining differ-
ent domain sizes, resolutions, and coupling strategies for the
large-scale and small-scale dynamics. Of course in doing so
a horizontal scale separation is assumed and certain feedback
from the small scales to the large scales is lost. One step fur-
ther to address this is to include the lateral fluxes from the
small-scale LES to the large-scale GCM in Eqs. (1) and (2).

With the capability of MPAS-Ocean to use regionally re-
fined mesh, it is possible to set up simulations for focused
process studies with high resolution in the study region and
low resolution in the surrounding regions. This strategy has

already been adopted to conduct global MPAS-Ocean simu-
lations with refined resolution on the US coast and regional
simulations with a focus on estuaries (personal communica-
tion). The coupling with PALM can further extend the refined
study region in an MPAS-Ocean simulation to include non-
hydrostatic dynamics. In such applications one can choose
to embed PALM inside the finest grid cells of MPAS-Ocean
in the focused regions, where the domain size of PALM can
be similar to the grid cell size of MPAS-Ocean. In this way,
it is reasonable to pass the large-scale gradients estimated
in the MPAS-Ocean directly to PALM to allow the develop-
ment of baroclinic instability and other processes in PALM
as discussed above. It would also be interesting to study the
impact of turbulent mixing transitioning from an estuary en-
vironment to an open ocean environment using this coupled
system. This is critical for a seamless coastal to global simu-
lation that MPAS-Ocean is targeted at.

Another application is a systematic exploration of the
OSBL turbulent mixing using LES under regional and global
forcing conditions with and without the large-scale forcing.
One example is LES studies of Langmuir turbulence under
hurricane conditions at different phases and locations (e.g.,
Reichl et al., 2016; Wang et al., 2018). Such studies are tra-
ditionally conducted by setting up a set of LESs forced by
different conditions from a preexisting larger hurricane sim-
ulation. The coupled MPAS-Ocean and PALM will enable si-
multaneous simulations of the hurricane in MPAS-Ocean and
turbulent mixing in PALM, thereby allowing an assessment
of the effects of lateral adjustment versus surface forcing dur-
ing a hurricane. Such a setup also provides useful datasets to
assist the development of ocean turbulent mixing parameter-
izations in these scenarios.

Taking advantage of the flexibility of running PALM only
on selected locations in MPAS-Ocean, one may also explore
the possibility of improving the simulation results of a GCM
by having high-fidelity representations of the turbulent mix-
ing at only a few locations, perhaps borrowing ideas from the
data assimilation literature. The high-fidelity representations
of the turbulent mixing can be easily drawn from the coupled
LES as shown here. Results of such exploration may also be
relevant to incorporating direct measurements of OSBL tur-
bulent mixing at various platforms such as research vessels
and ocean stations into GCMs.

5 Conclusions

In this paper we have outlined the steps and the progress to-
wards a multiscale modeling approach of studying the ocean
surface turbulent mixing by coupling MPAS-Ocean with
PALM, following some ideas of the superparameterization
approach. However, in contrast to the traditional superparam-
eterization approach which seeks a way to replace the con-
ventional parameterizations, the goal here is to build a flex-
ible framework to better understand the interactions among
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different processes in the OSBL, thereby providing a path-
way to improve the OSBL turbulent mixing parameteriza-
tions. For this reason, a high-fidelity and three-dimensional
LES is used instead of a simplified model with reduced
physics and/or reduced dimensions.

To alleviate the computational burden of embedding
PALM in MPAS-Ocean, we ported a customized version
of PALM on GPU using OpenACC and achieved an over-
all speedup of 10–16. Although further speedup is pos-
sible, the relatively high computational demand of this
high-fidelity and three-dimensional LES still prevents a
superparameterization-like approach, with PALM running on
every grid cell of MPAS-Ocean, from being practical for long
simulations.

However, the flexibility of running PALM only on selected
grid cells of MPAS-Ocean, combined with the capability of
MPAS-Ocean using an unstructured grid, provides a promis-
ing pathway to move forward in simulating the ocean surface
turbulent mixing in a multiscale modeling approach. Here
we have demonstrated the functionality and potential of this
multiscale modeling approach using very simple test cases.
As discussed in the previous section, direct progress can be
made on various applications of this approach, from a re-
gionally focused process study of the OSBL turbulence in
the presence of large-scale phenomena to a systematic explo-
ration of better representations of small-scale OSBL turbu-
lent mixing in GCMs under broad and realistic forcing con-
ditions.
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