Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6011-2020
https://doi.org/10.5194/gmd-13-6011-2020
Model evaluation paper
 | 
01 Dec 2020
Model evaluation paper |  | 01 Dec 2020

Effects of horizontal resolution and air–sea coupling on simulated moisture source for East Asian precipitation in MetUM GA6/GC2

Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi

Related authors

Competing effects of aerosol reductions and circulation changes for future improvements in Beijing haze
Liang Guo, Laura J. Wilcox, Massimo Bollasina, Steven T. Turnock, Marianne T. Lund, and Lixia Zhang
Atmos. Chem. Phys., 21, 15299–15308, https://doi.org/10.5194/acp-21-15299-2021,https://doi.org/10.5194/acp-21-15299-2021, 2021
Short summary
Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 3215–3233, https://doi.org/10.5194/gmd-11-3215-2018,https://doi.org/10.5194/gmd-11-3215-2018, 2018
Short summary
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 1823–1847, https://doi.org/10.5194/gmd-11-1823-2018,https://doi.org/10.5194/gmd-11-1823-2018, 2018
Short summary
Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models
L. Guo, A. G. Turner, and E. J. Highwood
Atmos. Chem. Phys., 15, 6367–6378, https://doi.org/10.5194/acp-15-6367-2015,https://doi.org/10.5194/acp-15-6367-2015, 2015
The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon
L. Guo, E. J. Highwood, L. C. Shaffrey, and A. G. Turner
Atmos. Chem. Phys., 13, 1521–1534, https://doi.org/10.5194/acp-13-1521-2013,https://doi.org/10.5194/acp-13-1521-2013, 2013

Related subject area

Atmospheric sciences
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025,https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025,https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025,https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary

Cited articles

Baker, A. J., Sodemann, H., Baldini, J. U. L., Breitenbach, S. F. M., Johnson, K. R., van Hunen, J., and Pingzhong, Z.: Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18, J. Geophys. Res.-Atmos., 120, 5850–5862, https://doi.org/10.1002/2014JD022919, 2015. a
Barsugli, J. J. and Battisti, D. S.: The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability, J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2, 1998. a
Chen, H. and Sun, J.: Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3, Climatic Change, 129, 197–211, https://doi.org/10.1007/s10584-014-1319-5, 2015. a
Chu, Q., Wang, Q., and Feng, G.: Determination of the major moisture sources of cumulative effect of torrential rain events during the preflood season over South China using a Lagrangian particle model, J. Geophys. Res.-Atmos., 122, 8369–8382, https://doi.org/10.1002/2016JD026426, 2017. a
Download
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Share