Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-597-2020
https://doi.org/10.5194/gmd-13-597-2020
Model description paper
 | 
17 Feb 2020
Model description paper |  | 17 Feb 2020

A coupled pelagic–benthic–sympagic biogeochemical model for the Bering Sea: documentation and validation of the BESTNPZ model (v2019.08.23) within a high-resolution regional ocean model

Kelly Kearney, Albert Hermann, Wei Cheng, Ivonne Ortiz, and Kerim Aydin

Related authors

Amplified bottom water acidification rates on the Bering Sea shelf from 1970–2022
Darren J. Pilcher, Jessica N. Cross, Natalie Monacci, Linquan Mu, Kelly A. Kearney, Albert J. Hermann, and Wei Cheng
Biogeosciences, 22, 3103–3125, https://doi.org/10.5194/bg-22-3103-2025,https://doi.org/10.5194/bg-22-3103-2025, 2025
Short summary
A regional physical-biogeochemical ocean model for marine resource applications in the Northeast Pacific (MOM6-COBALT-NEP10k v1.0)
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Morrison, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Remi Pages, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-195,https://doi.org/10.5194/gmd-2024-195, 2024
Revised manuscript accepted for GMD
Short summary

Related subject area

Biogeosciences
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary
Estimation of above- and below-ground ecosystem parameters for DVM-DOS-TEM v0.7.0 using MADS v1.7.3
Elchin E. Jafarov, Hélène Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev., 18, 3857–3875, https://doi.org/10.5194/gmd-18-3857-2025,https://doi.org/10.5194/gmd-18-3857-2025, 2025
Short summary
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary

Cited articles

Aguilar-Islas, A. M., Hurst, M. P., Buck, K. N., Sohst, B., Smith, G. J., Lohan, M. C., and Bruland, K. W.: Micro- and macronutrients in the southeastern Bering Sea: Insight into iron-replete and iron-depleted regimes, Prog. Oceanogr., 73, 99–126, https://doi.org/10.1016/j.pocean.2006.12.002, 2007. a, b, c, d, e
Ambrose, W. G., Von Quillfeldt, C., Clough, L. M., Tilney, P. V., and Tucker, T.: The sub-ice algal community in the Chukchi sea: Large- and small-scale patterns of abundance based on images from a remotely operated vehicle, Polar Biol., 28, 784–795, https://doi.org/10.1007/s00300-005-0002-8, 2005. a
Arhonditsis, G. B. and Brett, M. T.: Eutrophication model for Lake Washington (USA): Part I. Model description and sensitivity analysis, Ecol. Model., 187, 140–178, https://doi.org/10.1016/j.ecolmodel.2005.01.040, 2005. a, b
Arrigo, K. R. and Sullivan, C. W.: The influence of salinity and temperature covariation on the photophysiological characteristics of Antarctic sea ice microalgae, J. Phycol., 28, 746–756, 1992. a
Arrigo, K. R., Kremer, J. N., and Sullivan, C. W.: A simulated Antarctic fast ice ecosystem, J. Geophys. Res., 98, 6929–6946, https://doi.org/10.1029/93JC00141, 1993. a, b
Download
Short summary
We describe an ecosystem model for the Bering Sea. Biological components in the Bering Sea can be found in the water column, on and within the bottom sediments, and within the porous lower layer of seasonal sea ice. This model simulates the exchange of material between nutrients and plankton within all three environments. Here, we thoroughly document the model and assess its skill in capturing key biophysical features across the Bering Sea.
Share