Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-5959-2020
https://doi.org/10.5194/gmd-13-5959-2020
Methods for assessment of models
 | 
01 Dec 2020
Methods for assessment of models |  | 01 Dec 2020

Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation

Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Toni Viskari on behalf of the Authors (22 Sep 2020)
ED: Publish subject to technical corrections (09 Oct 2020) by Carlos Sierra
AR by Toni Viskari on behalf of the Authors (16 Oct 2020)  Author's response   Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The research here established whether a Bayesian statistical method called state data assimilation could be used to improve soil organic carbon (SOC) forecasts. Our test case was a fallow experiment where SOC content was measured over several decades from a plot where all vegetation was removed. Our results showed that state data assimilation improved projections and allowed for the detailed model state be updated with coarse total carbon measurements.