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Abstract Model-calculated forecasts of soil organic carbon (SOC) are important for approximating global terrestrial carbon 10 

pools and assessing their change. However, the lack of detailed observations limits the reliability and applicability of these 

SOC projections. Here, we studied if state data assimilation (SDA) can be used to continuously update the modeled state with 

available total carbon measurements in order to improve future SOC estimations. We chose six fallow test sites with 

measurements time series spanning 30 to 80 years for this initial test. In all cases, SDA improved future projections but to 

varying degrees. Furthermore, already including the first few measurements impacted the state enough to reduce the error in 15 

decades long projections in by at least 1 t C ha-1. Our results show the benefits of implementing SDA methods for forecasting 

SOC, but also highlight implementation aspects that need consideration and further research. 

 

1. Introduction 

Terrestrial soil organic carbon (SOC) pools serve a crucial role in the global carbon cycle by acting as a large long-term carbon 20 

storage for terrestrial systems and are, similarly to the other carbon cycle components, directly impacted by the changing 

climate and environment (Ciais et al., 2013). Local meteorological conditions drive soil temperature and moisture, which 

together with soil characteristics affect the microbial processes that decompose SOC (Orchard and Cook, 1983; Karhu et al, 

2014; Vogel et al. 2015). SOC input is largely composed of vegetation litter and extracts with contributions from soil bacteria 

and mycorrhiza (Cornwell et al., 2008). Thus, when the vegetation cover is altered due to changing environmental conditions 25 

or anthropogenic activities, it will also alter the long term SOC stocks. Furthermore, the SOC response to the new surface 

conditions is slow and it takes years to decades, or even longer, before the peatland draining or transformation of forest to 

agricultural field reaches a new stable state e (Mao et al, 2019). All these factors have made it difficult to empirically assess 

how both local and global SOC stocks will be affected by the changing climate and environment (Sulman et al., 2018). 

 30 

To address these challenges, several SOC models of varying complexity have been created over the years (e.g. CENTURY 

(Parton, 1996), MILLENIAL (Abramoff et al., 2017) and ORCHIDEE-SOM (Cammino-Serrano et al., 2018)) with an 
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increasing focus on how to better mathematically formulate the central physical soil processes (Liang et al. 2017). These 

models allow projecting SOC in different environments and, are important tools in approximating regional and global SOC 

distributions as well as how they are changing over time (Manzoni and Porporato, 2009). As such, they also serve an important 35 

role in estimating how climate change impacts the SOC stocks, which cause one of the largest uncertainties in future carbon 

cycle projections due to the size of pools and their direct link to ecosystem response (Hararuk et al. 2014). On a practical level, 

SOC models have been used to calculate soil carbon components for National Carbon Budgets or to determine carbon 

allocation in soils under different agricultural management conditions, when calculating carbon credit market values (Smith et 

al., 2020). 40 

 

Despite this increasing number and variety of modelling choices, the future projections produced by them all face similar 

difficulties which have resulted in high uncertainties (Bradford et al, 2016). Fundamental among these challenges is the lack 

of observation data required to parameterize and initialize the models (Sulman et al, 2018). Relevant measurement campaigns 

are resource-heavy and time-costly (Jandl et al., 2014). Consequently, single measurements are used to represent SOC 45 

concentrations for wider regions despite SOC varying highly spatially, which will inherently introduce error into SOC 

projections. Furthermore, vast majority of the available measurements represent bulk total soil carbon contents whereas the 

decomposition dynamics are greatly dependent on a more nuanced representation of the organic carbon state, such as which 

fraction of SOC is contained by stable long-lived carbon compounds as opposed to active short-lived carbon compounds 

(Lehmann and Kleber, 2015). The lack of detailed measurements forces models to use less reliable methods to approximate 50 

the initial SOC state, which in turn is a major limitation in trying to estimate how the projected SOC state reacts to 

environmental changes (Wutzler and Reichstein, 2007; Palosuo et al., 2012). 

 

Using observations to constrain state projections is a central question for all predictive tasks, and different approaches have 

been developed to address this need. State data assimilation (SDA) refers to Bayesian methods where state information from 55 

two or more sources are combined to create a more accurate estimation of the true state (Evensen, 2009). It has already been 

applied in several geophysical subjects (e.g., Elbern et al. 2000; Weaver et al. 2003; Viskari et al., 2012; Yang et al., 2019) 

and is a fundamental component that allows weather forecasts (Le Dimet and Talagrand ,1986). In recent years there have 

been efforts to also use SDA methods to better incorporate flux tower and satellite measurements (Viskari et al., 2015) to 

update ecological model projections. As one of the core advantages, SDA allows to update unobserved state variables with 60 

information from observed state variables based on the currently understood and presented process dynamics (Dietze, 2017). 

In SOC related systems, SDA applications have so far been limited and either focused on estimating model parameters 

(Trudinger et al., 2008) or constraining the drivers affecting the soil carbon fluxes (Yan et al., 2019). In Gao et al., (2011), 

SOC was estimated as a component of the total carbon allocated in a forest ecosystem, but even there the main focus was on 

the model parameter estimation. 65 
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Applying SDA methods in SOC research may address several current challenges in the field. As SDA makes it possible to 

continuously incorporate measurement information to update and correct the model state, it consequently both reduces the 

impact of initial state uncertainty and allows using multiple measurements to better constrain future SOC projections. Due to 

SDA being able to update unobserved state variables based on observed ones, it allows use of the total carbon measurements 70 

to correct the more detailed active and stable SOC pools. These state variables are needed in models or when estimating 

regional carbon stocks based on local measurements. However, while the basic equations for SDA remain the same, there are 

practical challenges in implementing SDA that depend on the system examined, such as varying frequencies for different 

observations or the types of observations uncertainties (Dietze, 2017). Consequently, implementing SDA for ecosystems 

requires addressing different issues and questions than implementing SDA in atmospheric systems (Dietze et al., 2018). 75 

 

In this study, our aim was to determine if SDA is able to effectively use coarse observation data to continuously update the 

model SOC state and improve associated model projections. More specifically, we wanted to both determine how the total 

carbon measurements affect the individual model pools and how many measurement points need to be included to start 

impacting the future predictions in a noticeable manner. The decades long SOC dataset measured at bare fallow agricultural 80 

fields around Europe (Barré et al. 2010) was used along with Yasso (Tuomi et al., 2011; https://github.com/YASSOModel), a 

SOC decomposition model that has been shown performing well for long-term SOC projections (Ortiz et al., 2013; Ziche et 

al., 2019), to test if updating the model projection with observations has an impact on future state predictions. The bare fallow 

sites do not include the uncertainty of litter input estimates and thus, allowed us to focus more on the impact SDA has on the 

model projections. We applied the Ensemble Adjustment Kalman filter (EAKF; Andersson, 2001) as the SDA method in the 85 

study. In EAKF, the ensemble is created by running the model with varying initial states, which are then all updated with the 

information from measurements as explained in more details in the following sections. Not only is EAKF a widely established 

SDA method, but it is a part of the Data Assimilation Research Testbed (DART; Anderson et al, 2009) workflow. 

 

 90 

2. Materials and methods 

 

 
2.1. Yasso model 

 95 

Yasso (Tuomi et al., 2011) is a soil organic carbon (SOC) model which simulates SOC decomposition by shifting C between 

different soil pools that represent different organic carbon forms before either releasing it back to the atmosphere as 

heterotrophic respiration or transforming it into inactive and slow-cycling humus. Within the model, carbon is divided into 

five different SOC pools: Ethanol (E), Water (W) and Acid (A) soluble pools and a non-soluble pool that is further divided in 

to lignin-like pool (N) and a humus (H) pool having different decomposition rates. Decomposition is affected by air 100 

temperature and precipitation, which are used in the model as indicators for soil temperature and moisture. Additionally, Yasso 
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accounts for the size dependency for woody mass as it takes longer in those situations for the microbes to break the litter down. 

Model SOC can only increase by the plant litter input. 

The change in state at time t, xt
’, is represented as a matrix equation 

𝑥𝑡
′ = 𝑥𝑡 + 𝑏            (1.) 105 

Where xt is a vector where each component is the amount of carbon in each pool and the litter input b is divided into the same 

chemical pool components as the Yasso SOC pools which added directly to the YASSO state vector. The division of b depends 

on the litter species. The matrix M represents the model dynamics affecting the system and is written out as 

𝐌 =

[
 
 
 
 
𝛼𝐴 𝑝𝑊𝐴 𝑝𝐸𝐴 𝑝𝑁𝐴 0
𝑝𝐴𝑊 𝛼𝑊 𝑝𝐸𝑊 𝑝𝑁𝑊 0
𝑝𝐴𝐸 𝑝𝑊𝐸 𝛼𝐸 𝑝𝑁𝐸 0
𝑝𝐴𝑁 𝑝𝑊𝑁 𝑝𝐸𝑁 𝛼𝑁 0
𝑝𝐻 𝑝𝐻 𝑝𝐻 𝑝𝐻 𝛼𝐻]

 
 
 
 

    

Where 𝛼𝑖 is the decomposition rate for pool i and pij is the fraction that is decomposed from pool i to pool j. The decomposition 110 

rate depends on environmental temperature and moisture, here indicated by the surface air temperature (T) and precipitation 

(P), as well as woody litter diameter according to the equation 

𝛼𝑖 =
𝛼𝑏𝑎𝑠𝑒,𝑖

4
ℎ(𝑑)(1 − 𝑒𝛾𝑖𝑃)∑ 𝑒𝛽𝑖1𝑇𝑘+𝛽𝑖2𝑇𝑘

24
𝑘=1         (3.) 

Where αbase,i is the baseline decomposition rate for pool i, h(d) is the function that determines the impact of the litter size on 

the decomposition, γ is the precipitation impact parameter and β1,i and β2 are the temperature impact terms for pool i. The 115 

annual temperature impact here is averaged over four points of the annual temperature cycle in order to capture the change in 

temperature. The total annual precipitation is used here as a proxy for the soil moisture. . The parameters associated with each 

process were estimated with an Adaptive Metropolis MCMC (Haario et al., 2001) method based on joint information from a 

number of different litter decomposition data bases such as CIDET (Trofymov, 1998), LIDET (Gholz et al., 2000) and 

Eurodeco (Berg et al, 1991a; Berg et al. 1991b). The parameter values for equations 1-3 and their associated uncertainties are 120 

shown in Supplemental Table 1. 

 

2.2 The measurement time series and the initial carbon pool 

 

Bare fallow experiments included in the study were kept vegetation-free and free of organic amendments for more than 25 125 

years. The study sites are in Europe and selected characteristic of these are presented in Table 1. The cultivation time that lead-

up to the bare fallow experiment varied from 75 years to centuries. All the SOC measurements are of the bulk soil C without 

details on AWEN fractions. The sites are introduced in detail by Barré et al. (2010) and Menichetti et al (2019). The detailed 

setup in Versailles is described also by van Oort et al. (2018) and in Askov by Christensen (1990) and Christensen and Johnston 

(1997).  130 
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Yasso model requires information on the initial AWENH fractions which we estimated site-specifically based on the Net 

Primary Production (NPP) in the presumable native habitat and the estimated litter input during time of cultivation (Figure 1, 

Table 1, Kulmala and Liski, 2018). In short, we first made a general NPP estimate in the native habitat using mean temperature 

and precipitation as in Del Grosso et al. (2008) and divided it into non-woody, small-sized woody and large woody litter 

fractions based on the native ecosystem. The different litter types had individual carbon fractions based on solubility. Next, 135 

we used Yasso to determine the steady state pool of soil carbon and its fractions using the NPP, different litter fractions, their 

chemical fractions and mean temperature and precipitation as driver data (Fig1-a). 

Before bare fallow, each field had been cultivated for 75–300 years. For that period, we simulated SOC starting from the steady 

state SOC and its chemical fractions achieved using the pre-agriculture litter approximating (Fig1-b), The same mean annual 

temperature and precipitation were used as drivers for both the pre-agriculture and agriculture SOC decomposition. The annual 140 

litter input for the cultivation period was estimated in a site-specific manner to meet the first SOC measurement after the 

cultivation period. The carbon fractions in that litter input were assumed to be as presented in Karhu et al. (2012) and the litter 

is assumed to be non-woody with a diameter of 0 cm. The resulting SOC as the starting point for the bare fallow period (Fig1-

c). The AWENH distributions calculated in this manner for each site are shown in Table 1 and are used to calculate the zf from 

eq. 4 for the first assimilation cycle as detailed below. 145 

 

2.3 State Data Assimilation method 

 

As there is no way to know the true state of a variable, all our information on it, be it modelled or observed, will be inherently 

uncertain (van Oijen, 2017). State data assimilation (SDA) is a Bayesian statistical method which combines information from 150 

multiple sources to create a statistically optimal state estimate. At each assimilation step, SDA updates a priori knowledge of 

the system state, almost always a model prediction, with state observations. This results in a posterior state estimate of both 

the expected value as well as the associated uncertainty. The posterior state estimate is considered the most reliable view on 

the true state given the available information in model predictions and state observations, thus being less uncertain than all the 

information sources used to estimate it. Each information source influences the posterior estimate in proportion to their 155 

uncertainties: higher observational uncertainty results in a posterior state estimate closer to the model prediction, and vice 

versa (Dietze, 2017). 

In our research we used the Ensemble Adjustment Kalman filter, (EAKF; Andersson, 2001) which is based on the Kalman 

Filter theory (Kalman, 1960). The ensemble consists of numerous model projections started from different initial conditions 

which are moved forward in time independently until the next observation, and the prior state uncertainty is determined from 160 
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the ensemble spread. At the time of each observation, an update (later called as analysis) is calculated with the following 

equation  

𝑧𝑖
𝑎 = 𝐴𝑇(𝑧𝑖

𝑓
− �́�𝑓) + �́�𝑎,           (4.) 

where z is a joint state-observation vector, index f denotes forecast, index a denotes analysis and index i denotes each individual 

ensemble member. Matrix A shifts the whole ensemble so that the updated ensemble has a mean equal to  165 

𝑧̅𝑎 =  𝑃𝑎[(𝑃𝑓)−1 𝑧̅𝑓 + 𝐻𝑇𝑅−1𝑦 ]          (5.) 

and covariance equal to  

𝑃𝑎 =  [(𝑃𝑓)−1 + 𝐻𝑇𝑅−1𝐻 ]−1,          (6.) 

where y is the observation vector, H denotes the observation operator, P is the model state error covariance matrix and R is the 

observation error covariance. In Ensemble Kalman Filter applications, each component Pf
ij of the forecast error covariance 170 

matrix Pf is calculated over the ensemble members  

𝑃𝑖𝑗
𝑓

=
∑ (𝑧𝑖,𝑘

𝑓
−�̅�𝑖

𝑓
)(𝑧𝑗,𝑘

𝑓
−�̅�𝑗

𝑓
)𝐿

𝑘=1

𝐿−1
           (7.) 

Where L is the size of the ensemble. It should be noted that the non-diagonal terms of the analysis error covariance matrix Pa 

represent the error covariances and allow the observation of a specific state also affect other members of the state variable 

vector. 175 

 

There are practical challenges that need to be accounted for when utilizing SDA methods, filter divergence (Schlee et al, 1967) 

being the most relevant one regarding this study. In practice, the ensemble uncertainty does not represent all the uncertainty 

sources affecting the model predictions. For example, process error arises due to underrepresented model processes or in-

sufficiently included model interactions. As there are no reliable ways to establish it for process-based simulators like YASSO 180 

(van Oijen, 2017), it cannot be accounted for in the assimilation process.  Consequently, the modelled uncertainty does not 

necessarily increase enough to balance out the reduction in posterior uncertainty during the analysis phase. As a result, the 

updating process gives too much weight to the prior state in comparison to the observed state as the projected uncertainty 

decreases while the observation uncertainty remains similar. Ultimately a stage is reached where the measurements stop 

affecting the estimate due to the difference in uncertainties. When this happens, the forecast begins to diverge from reality. 185 

There are several methods for dealing with filter divergence (Evensen, 2004; Anderson, 2006), but as this a preliminary study, 

we used a simple inflation method established in Hamill (2001). In this approach, the forecast/prior covariance is multiplied 

with a constant factor greater than 1 before every analysis/update step to ensure that the measurement continues to affect the 

estimate. The practical implementation is explained in more detail in the following section. 
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 190 

2.4 Simulation details 

The ensemble initial states were created with R language using the rnorm function with a condition checking that the outputs 

are non-negative. The initial ensemble values for each pool were determined by drawing from a normal distribution where the 

initial value for that site was used as a mean. A 10 % mean was used as the initial ensemble variance as there were no reliable 

initial state uncertainty approximation. This was found to be larger than just perturbing the litter inputs and, as such, was not 195 

likely to underestimate the initial uncertainty.  For this initial study covariances between the different SOC pools were not 

considered. The sampling was used to create an ensemble with 50 different states. This way we can represent the uncertainty 

in the total amount of soil organic carbon and how it is distributed among the five pools. The initial distributions for total 

carbon are shown in Fig 2. 

Using the first measurement to scale the initial SOC results in the first measurement to be used twice if the whole measurement 200 

time series is used in the SDA implementation. However, not scaling the initial state with the first measurement would cause 

large differences between the initial state and the first measurement, with the resulting SDA estimations expected to be clearly 

superior to the non-SDA predictions in such a situation. In other words, it would not be a fair comparison as generally in runs 

like these, the initial state would be constrained to some degree by available measurements. Other option could be to exclude 

the first observations from data assimilation. However, including the information from the first measurement in a 205 

decomposition time series in the SDA implementation is assumed to be important as the SOC state changes most drastically 

over the first few years which in turn would impact the initial state uncertainty propagation. In an ideal situation, there would 

be an independent SOC measurement that can be used to constrain the SOC initial state, but such additional data was not 

available here. Thus, we used the whole time series in the assimilation here as using the first measurement twice was expected 

to have only a very negligible effect on the overall results. We also did a comparison run where the SDA was only applied 210 

from the second measurement forward in order to be certain. These runs were set up identically except the relative error of the 

first measurement was used as variance to randomly draw the ensemble members. 

We used the Data Assimilation Research Testbed (DART; Anderson et al, 2009) to run our assimilation with the EAKF. The 

initial ensemble for each site was given to DART as a starting point and climate data measured at the sites were used as model 

drivers. The climate driver data is provided alongside with this article. The state vector consists of the five SOC pool stocks 215 

as presented in Yasso and the total SOC which is a sum of the five pools. The total SOC projection is compared to the 

measurements and the error covariances calculated by DART transfer the information to the other state vector components. 

 

The SDA was first tested by updating the model state variables at each measurement time according to eq. (4). and using the 

produced state estimation was then used by Yasso to determine the next predicted state. This basic test was repeated with three 220 

different inflation factors (1, 1.25 and 1.5) in order to examine how much filter divergence affects the projections and which 

inflation factor range produces satisfactory predictions. The inflation factors were implemented by scaling the posterior error 
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covariance matrix produced by eq. 6 according to the inflation factor chosen before using it in eq. 5, and consequently, in eq. 

4. Only the inflation factor results for 1. and 1.25 are shown here for the sake of clarity. In the second set of tests, only a limited 

number of initial measurements (first, first two, first three or first four) are used to update the state before it is then allowed to 225 

run the whole time series freely without being updated with measurement information  to determine how soon the measurement 

information begins to noticeably impact the model projections. Only the first four measurements were used in this phase as 

the central question was how assimilating SOC measurements impact long term forecasts. The inflation factor of 1.25 was 

used in these latter tests. 

 230 

All the forecasts produced with these tests were compared to both measurements and baseline Yasso SOC projection that was 

ran from the initial state without any SDA. In order to better assess how the SDA improved the state forecasts, we calculated 

the RMSE for the last four measurements at each site for all the five experiments: namely, the baseline YASSO model forecast, 

SDA with first observation only, SDA with first two, first three and first four observations using the forecasts that used the 

limited number of measurements as well as the baseline Yasso model forecast. 235 

 

3. Results 

 

Using SOC data to update the state of the model improved the model-calculated estimates compared to non-SDA model 

projections run from the approximated initial state (Fig. 2). While the inflated SDA predictions (Inflation factor 1.25) had 240 

larger uncertainties than the uninflated ones (Inflation factor 1.0), the predictions themselves remained close to each other with 

exception of the two Askov sites. There, systematic shifts occur in the observed states decades after the start of the time series, 

and indicative of the effect of the filter divergence, the uninflated SDA predictions did not react to these shifts while the 

inflated SDA predictions were adjusted to the new states. Applying the inflation value of 1.5, the analysis essentially matched 

the measurements (Supplemental figure 1).  245 

 

Due to the multiple changes in the Askov B4 time series, the more detailed model state response is represented for it  to see 

how the state estimate adapts to the changes there. Among the SOC pools, the humus pool changed most in response to the 

observations and always to their direction at Askov B4 (Fig. 3). The SDA estimate affected the AWEN pools only a little 

during the first half of the time series, but after approximately 10 years, these pools were also changed during the state update. 250 

Interestingly, these pools were changed to the opposite direction than the humus pool and observations. SDA affected the 

humus pool in a same way at other sites, and a similar difference in the behaviour between the AWEN and the humus pools 

was observed at Askov B3 after the systematic shift (Supplemental Figures 2-6).  
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At most sites incorporating information already from the first two observations had a noticeable impact on the time series 255 

prediction. Although at the Versailles site, the SDA forecast was close to the non-SDA forecasts at the end of the time series 

(Fig 4). At the Askov sites, the updated predictions ended up overestimating the latest measurements more than the model 

alone did due to the systematic shift in measurement values (At Askov B4 after 1966 and at Askov B3 after 1977). Finally, 

RMSE values (Table 2) show that aside from Askov, the assimilation reduced the RMSE at each site by the fourth measurement 

at the latest. 260 

 

The comparison runs where the assimilation was only done from the second measurement forward were nearly identical for 

the estimated total SOC values when continuously assimilating and when only using the first few observations to constrain the 

predictions (Figures not shown). The more detailed examination of the state at Askov B4 (Figure 5) did show a difference as 

the later corrections affecting the AWEN pools are more muted than if the assimilation begun from the first measurement of 265 

the time series. 

 

4. Discussion 

 

This study establishes that state data assimilation (SDA) improves soil organic carbon (SOC) forecasts by continuously 270 

incorporating total carbon measurements. As such, this adds another type of measurements that SDA can use to improve future 

projections in addition to previously shown positive impacts of assimilating soil environmental conditions (Yan et al., 2019).  

At all sites assimilating already the first few measurements had a clear impact on the forecasts (Fig 4; Table 2). It should be 

noted that at Askov, the non-SDA forecast is closer to the measurements towards the end of the time series than the SDA 

forecast that assimilated the first few observations. This is due to the systematic shift in measured SOC that happens at Askov 275 

B3 around 1965 and at Askov B4 around 1975. Before that, the SDA forecasts are closer to the SOC measurements than the 

non-SDA forecasts. This supports previous research on the impact of initial state uncertainty on SOC projections (Todd-Brown 

et al. 2014; He et al. 2016).  

 

While the inflation term does increase the uncertainty of the forecasts and thus reduces the filter divergence, the uninflated 280 

and inflated forecasts remain similar. Askov sites are the exception here as there the inflated SDA forecast reacts to the 

previously noted systematic shift in measurement time series. This is expected as the inflation reduces the impact of filter 

divergence and thus allows for the later observations affect the analysis more than they would without the uncertainty inflation. 

These results here indicate that it succeeds in the framework discussed in Anderson (2001) on how inflated systems should 

behave. However, once litter input will be introduced into the system, it will add a potentially systematic source of error as the 285 

uncertainties in the litter input affect the SOC projections. At that point, a more nuanced inflation approach or other more 

elaborate implementations, such as estimating the process variance from observations (Dietze, 2017), could be required. 
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When examining how SDA affects the model state, it is important to note that the total SOC measurements affect the model 

state based on the error covariances between the different pools and their total SOC. The initial uncertainties were introduced 290 

as independent of each other with the SDA calculating the error covariances between the different pools over the analysis 

process. The resulting error covariance between the humus pool and total SOC is strongly positive with a decrease in humus 

also decreasing total SOC and vice versa (Fig. 4). This is reasonable as the long-lived SOC is generally dominated by the 

stable humus pool (Lehmann and Kleber, 2015) and adjusting to it is crucial in capturing the decomposition without litter 

input. Furthermore, due to the slow decomposition rate of the H pool and the relatively high frequency of the observations, in 295 

Fig 4 the prior H value is essentially the posterior H of the previous assimilation cycle.  

 

Error covariances between the AWEN pools and total SOC are more complicated than between SOC and H pool. Thus, it takes 

more analysis cycles for the method to establish them. Consequently, the analysis appears to affect the humus SOC from the 

start of the time series while with AWEN pools the analysis impact appears to become stronger later into the time series. Due 300 

to this, the two Askov timeseries are the only sites, where we also capture the meaningful AWEN pool impacts due to the late 

shift in the observed state. Even there, though, covariance is strongly affected if the uncertainty spread over the first few years 

of the decomposition is included (Figs 4 and 6). It is noteworthy that once the SDA properly determines the error covariance 

structures, the analysis adjusts the AWEN pools to the opposite direction than it does the H pool. Initially, this might appear 

to be counterintuitive, as SDA increases the AWEN values in response for the forecast overestimating the SOC values, but 305 

this is due to model dynamics being reflected via the error covariances. Further complicating the matter is that the active 

AWEN pools are affected differently by the environmental conditions than the inactive H pools (Tuomi et al, 2008). This will 

cause the resulting AWENH error covariances to vary between locations even if the total carbon and H error covariance appears 

to be consistent.  

 310 

In addition to providing a valuable illustration in how the error covariances change over time and impact the later state 

corrections, the Askov sites also highlight both a strength and limitation of the SDA methods. As seen in the measurement 

time series (Fig 3), both Askov B3 and B4 have a systematic shift in measurements at different times due to reasons currently 

not known. The model projections alone cannot capture these developments as it is unclear if the sudden drop in observed 

SOC is even due to an ecological process not represented in the model or some issues relating to the measurements. In either 315 

case, the inflated SDA adapts to the new state within a few measurement cycles and produces a forecast that follows the new 

state well. This is clearly a strength of the SDA method that would be beneficial when forecasting SOC at locations where 

there are disturbances and alterations in the surface conditions. However, here the new state estimate appears questionable as 

there is a sudden increase in active SOC (i.e. AWEN pools) despite it being over a decade since there was any litter fall.  This 

goes against the current understanding of the system as there is no transference from the H pool back to the AWEN pools and 320 

no litter to provide those faster decomposing carbon compounds. In this case, the late increase of the AWEN pool 
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concentrations at the Askov sites are an artefact of the error covariances established earlier rather than a realistic representation 

of what is happening in the soil. Thus, while SDA is a beneficial tool when examining changing systems, the nature of SOC 

model dynamics makes it important to also expertly assess how the new estimated state reacts to those changes. 

 325 

Another site that shows SDA having challenges is Versailles where SDA only slightly improves the forecasts towards the end 

of the time series. This is probably due to either the model not representing a SOC decomposition dynamic relevant to that 

particular site or the input drivers are somehow lacking. This site highlights that while SDA is a valuable tool for improving 

forecasts, it is still limited by how well the applied model captures the local SOC dynamics. For instance, if the soil respiration 

parameters for the H pool is poorly represented for that location, then the resulting H pool, as well as the total SOC, projections 330 

would still be more uncertain even when applying SDA methods (Gao et al., 2011). However, SDA is still useful in these 

situations as it can indicate sites where the forecast error is not driven by the state uncertainty. Therefore, it is easier to analyse 

the differences between the sites like Ultuna and Versailles. For example, it is known that soil quality affects the SOC 

decomposition (Chapin et al. 2011; Vogel et al. 2015), so here it would support in further researching the soil properties at 

Versailles to determine if those dynamics have an impact there that should be acknowledged with SOC forecasts at other 335 

similar sites. 

 

The continuous SDA forecasts from Askov sites and Versailles (Fig. 3) also indicate the complexity of the filter divergence 

issue in SOC systems and how it should be accounted for. As explained in section 2.2, one of the key reasons for filter 

divergence is due to the prior state uncertainty being underestimated due to ignoring of model process error which results in 340 

the prior state being given progressively more and more weight in the assimilation phase. At more frequently measured sites, 

such as Askov B3 and B4, there are more assimilation steps, which would intuitively speed up the filter divergence issue. 

However, as can be seen in Eq. 6., the reduction in posterior uncertainty depends on the observation uncertainty, with less 

uncertain observations also reducing the posterior uncertainty more. Thus, at the Askov site, the measurement uncertainties 

are large enough that it partially balances out the measurement frequency and the resulting forecast uncertainty is large enough 345 

to allow for rapid adaptation to changes in the system. 

 

At Versailles, though, while the measurements are much less frequent, they also have small associated uncertainties, especially 

the first few ones. Furthermore, for long decomposition systems like this, the uncertainty propagation within the ensemble is 

so slow that it only marginally increases the state uncertainty until the next observation point, resulting in filter divergence 350 

becoming an even more pronounced issue here. As a result, even with uncertainty inflation, the first few assimilation steps 

reduce the state uncertainties to the degree that the difference between projections and measurements affects the state estimate 

much less than at the other sites. The new observations still affected the inflated SDA, as can be seen at the last Versailles 

measurement in Fig 3, but it will take multiple observations with increasing difference between forecasted and measured state 

for SDA to properly adjust to the new state. This highlights the importance to carefully consider the relationships between the 355 
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observation uncertainty, frequency and inflation in order to improve the assimilation results. This is also a general issue within 

the application of SDA in geosciences and, as such, there have already been attempts to mathematically address it such as Li 

et al. (2009). 

 

5. Conclusion 360 

 

The results here show that there are benefits in implementing SDA methods in SOC research as assimilating the first few 

observations was generally sufficient in improving long-term SOC projections when compared to later measurements. 

Furthermore, the SDA methods here successfully used coarse bulk C measurements to update the more detailed model state 

with the developing error covariance matrices connecting the different state variables. The work also highlights the need for 365 

additional study such as, for example, how to best address the filter divergence issue or what is driving the differences in how 

SDA performs at different sites. The focus here was in a very simple system where there was no litter input and on a specific 

SDA method with its own benefits and hindrances. Increasing the complexity of the system, such as by introducing different 

types of litter, using measurements from other locations to estimate local SOC or incorporating flux tower respiration 

measurements to constrain projected SOC changes, will raise new practical challenges that have to be addressed in future 370 

work. Still, by allowing actively incorporating multiple information sources, SDA is a crucial tool for all process-based model 

projections, for example approximating the amount of SOC in a forest or assessing how agricultural carbon allocation changes 

in response to field management. 
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Site Askov (B3, B4) Grignon Rothamsted Ultuna Versailles 
Country DE FR UK SWE FR 

Mean temperature (°C) 7.8 10.7 9.5 5.5 10.7 
Precipitation (mm) 862 649 712 533 628 

History  arable Arable grassland grassland grassland 
Bare fallow starting 1956 1959 1959 1956 1928 

Soil type (FAO) Luvisol Luvisol Luvisol Cambisol Luvisol 
Clay-silt-sand (%) 7-11-82 30-54-16 25-62-13 36-41-23 17-57-26 

Bulk density (kg dm-3) 1.5 1.2 0.94 1.44 1.3 
Fertilization ✓ – – – – 

Tillage frequency frequent 2/year 2-4/year 1/year 2/year 
Weeding by hand ✓ ✓ – ✓ ✓ 

Measurement time series 1956-1985 1959-2007 1959-2008 1956-2007 1929-2008 
Initial AWENH  

carbon pools (tC/ha) 
(4.4,0.5,0.3,8.9,38.1) 
(3.4,0.3,0.2,6.9,36.9)  

4.7,0.5,0.3,11.3,25.0 10.7,1.1,0.6,23.5,35.8 5.9,0.6,0.4,12.9,22.7 8.8,0.9,0.5,20.8,34.5 

 545 

Table 1: The bare fallow sites used in this study. The Askov site was fertilized by 70 kg N/ha until 1973 and by 100 kg after 

that. Before bare fallow, Askov was cultivated since 1800, Grignon since 1875, Kursk since app. 1765, and Versailles since 

17th century. Ultuna has been experimental field for agriculture for centuries. There are two different plots at Askov site (B3 

and B4) with different initial state values. 
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Experiments 

 

 

 

Non-SDA Yasso First 

measurement 

assimilated 

First two 

measurements 

assimilated 

First three 

measurements 

assimilated 

First four 

measurements 

assimilated 

Sites RMSE 

(t C ha-

1) 

MRE 

(%) 

RMSE 

(t C ha-

1) 

MRE 

(%) 

RMSE 

(t C ha-

1) 

MRE 

(%) 

RMSE 

(t C ha-

1) 

MRE 

(%) 

RMSE 

(t C ha-

1) 

MRE 

(%) 

Askov B3 2.5  7.0 2.6  7.3 2.5  7.0 3.3 9.4 3.5  9.8 

Askov B4 4.0  12 4.1  12 5.8  17 6.0 18 5.9 18 

Grignon 2.6  8.6 2.8  9.4 1.9  6.1 1.5  4.2 1.0  2.9 

Rothamsted 4.9  14 4.7  14 3.7  11 2.0  6.1 2.3  7.0 

Ultuna 3.2  12 3.3  12 0.8  2.8 0.5  1.5 0.8 2.9 

Versailles 6.6  26 6.9  28 7.2 29 7.5 30 5.4 22 

 

Table 2: The root mean square error (RMSE) as well as the mean relative error respective to the observation for the three last 

measurement at each site. The unit for the RMSE values is t C ha-1 
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 555 

 

Figure 1: Conceptual figure on how the initial states for the model runs are approximated. 
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 560 

 

Figure 2: The initial ensemble states of total soil carbon (t/ha) at the study sites in the beginning of the fallow campaign. 
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Fig 565 

Figure 3: Observed and modelled SOC with and without data assimilation (SDA) of all previous measurements using two 

different inflation factors (inf). The coloured area around the two different SDA estimates are the 95 % confidence interval.  

SDA with higher inflation factor improved predictions at all sites while the, the SDA with lower inflation factor was susceptible 

to filter divergence. 
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Figure 4: The mean of prior and posterior distribution SOC pools at Askov B4 before and after each assimilated observation. 575 

Different SOC pools showed different responses to SDA where humus pool was adjusted the most in response to the 

observations and always to their direction. AWEN pool dynamics responded SDA later over the course of assimilation. 
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 580 

 

 

Figure 5: Observed and forecasted SOC without data assimilation (black) and with 2-4 initial observations assimilated 

(coloured lines). Incorporating information already from the first two observations had a noticeable impact on the time series 

prediction. 585 
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Figure 6. The mean prior and posterior distribution SOC pools at Askov B4 before and after each assimilated observation if 

the assimilation begins from the second observation. While the AWEN pools still show an opposite shift to the H pool later in 590 

the assimilation cycle, it is smaller than in Fig 3. 

 

 


