Articles | Volume 13, issue 12
Geosci. Model Dev., 13, 5935–5957, 2020
Geosci. Model Dev., 13, 5935–5957, 2020

Development and technical paper 01 Dec 2020

Development and technical paper | 01 Dec 2020

Numerical integrators for Lagrangian oceanography

Tor Nordam and Rodrigo Duran

Related authors

The effect of vertical mixing on the horizontal drift of oil spills
Johannes Röhrs, Knut-Frode Dagestad, Helene Asbjørnsen, Tor Nordam, Jørgen Skancke, Cathleen E. Jones, and Camilla Brekke
Ocean Sci., 14, 1581–1601,,, 2018
Short summary

Related subject area

The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467,,, 2021
Short summary
Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance
William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink
Geosci. Model Dev., 14, 1125–1145,,, 2021
Short summary
Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 1: Evaluation of ocean forecasts
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100,,, 2021
Short summary
Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing
Pavel Perezhogin, Ilya Chernov, and Nikolay Iakovlev
Geosci. Model Dev., 14, 843–857,,, 2021
Short summary
The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0)
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794,,, 2021
Short summary

Cited articles

Ali, S. and Shah, M.: A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007, IEEE, 1–6,, 2007. a, b
Allshouse, M. R., Ivey, G. N., Lowe, R. J., Jones, N. L., Beegle-Krause, C., Xu, J., and Peacock, T.: Impact of windage on ocean surface Lagrangian coherent structures, Environ. Fluid Mech., 17, 473–483, 2017. a
Barkan, R., McWilliams, J. C., Molemaker, M. J., Choi, J., Srinivasan, K., Shchepetkin, A. F., and Bracco, A.: Submesoscale dynamics in the northern Gulf of Mexico. Part II: Temperature–salinity relations and cross-shelf transport processes, J. Phys. Oceanogr., 47, 2347–2360, 2017. a
Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. J.: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures, Geophys. Res. Lett., 35, L12603,, 2008. a
Beron-Vera, F. J., Olascoaga, M. J., Brown, M. G., Koçak, H., and Rypina, I. I.: Invariant-tori-like Lagrangian coherent structures in geophysical flows, Chaos, 20, 017514,, 2010. a
Short summary
In applied oceanography, a common task is to calculate the trajectory of objects floating at the sea surface or submerged in the water. We have investigated different numerical methods for doing such calculations and discuss the benefits and challenges of some common methods. We then propose a small change to some common methods that make them more efficient for this particular application. This will allow researchers to obtain more accurate answers with fewer computer resources.