Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-5935-2020
https://doi.org/10.5194/gmd-13-5935-2020
Development and technical paper
 | 
01 Dec 2020
Development and technical paper |  | 01 Dec 2020

Numerical integrators for Lagrangian oceanography

Tor Nordam and Rodrigo Duran

Related authors

Handling discontinuities in numerical ODE methods for Lagrangian oceanography
Jenny Margareta Mørk, Tor Nordam, and Siren Rühs
EGUsphere, https://doi.org/10.5194/egusphere-2025-2109,https://doi.org/10.5194/egusphere-2025-2109, 2025
Short summary
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023,https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary

Cited articles

Ali, S. and Shah, M.: A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007, IEEE, 1–6, https://doi.org/10.1109/CVPR.2007.382977, 2007. a, b
Allshouse, M. R., Ivey, G. N., Lowe, R. J., Jones, N. L., Beegle-Krause, C., Xu, J., and Peacock, T.: Impact of windage on ocean surface Lagrangian coherent structures, Environ. Fluid Mech., 17, 473–483, 2017. a
Barkan, R., McWilliams, J. C., Molemaker, M. J., Choi, J., Srinivasan, K., Shchepetkin, A. F., and Bracco, A.: Submesoscale dynamics in the northern Gulf of Mexico. Part II: Temperature–salinity relations and cross-shelf transport processes, J. Phys. Oceanogr., 47, 2347–2360, 2017. a
Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. J.: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures, Geophys. Res. Lett., 35, L12603, https://doi.org/10.1029/2008GL033957, 2008. a
Beron-Vera, F. J., Olascoaga, M. J., Brown, M. G., Koçak, H., and Rypina, I. I.: Invariant-tori-like Lagrangian coherent structures in geophysical flows, Chaos, 20, 017514, https://doi.org/10.1063/1.3271342, 2010. a
Download
Short summary
In applied oceanography, a common task is to calculate the trajectory of objects floating at the sea surface or submerged in the water. We have investigated different numerical methods for doing such calculations and discuss the benefits and challenges of some common methods. We then propose a small change to some common methods that make them more efficient for this particular application. This will allow researchers to obtain more accurate answers with fewer computer resources.
Share