Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-537-2020
https://doi.org/10.5194/gmd-13-537-2020
Model description paper
 | 
11 Feb 2020
Model description paper |  | 11 Feb 2020

FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics

Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke

Related authors

Testing an optimality-based model of rooting zone water storage capacity in temperate forests
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018,https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary

Related subject area

Biogeosciences
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025,https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
pyVPRM: a next-generation vegetation photosynthesis and respiration model for the post-MODIS era
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
Geosci. Model Dev., 18, 4713–4742, https://doi.org/10.5194/gmd-18-4713-2025,https://doi.org/10.5194/gmd-18-4713-2025, 2025
Short summary
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary

Cited articles

Anderegg, L. D. L., Anderegg, W. R. L., and Berry, J. A.: Not all droughts are created equal: translating meteorological drought into woody plant mortality, Tree Physiol., 33, 672–683, https://doi.org/10.1093/treephys/tpt044, 2013. a
Andréassian, V.: Waters and forests: from historical controversy to scientific debate, J. Hydrol., 291, 1–27, https://doi.org/10.1016/j.jhydrol.2003.12.015, 2004. a, b
Bachofen, H., Brändli, U., Brassel, P., Kasper, H., Lüscher, P., Mahrer, F., Riegger, W., Stierlin, H., Strobel, T., Sutter, R., Wenger, C., Winzeler, C., and Zingg, A.: Schweizerisches Landesforstinventar – Ergebnisse der Erstaufnahme 1982–1986, Tech. rep., Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf, available at: https://www.lfi.ch/publikationen/publ/LFI1_Ergebnisbericht.pdf (last access: 10 February 2020), 1988. a, b, c
Badoux, A., Witzig, J., Germann, P. F., Kienholz, H., Lüscher, P., Weingartner, R., and Hegg, C.: Investigations on the runoff generation at the profile and plot scales, Swiss Emmental, Hydrol. Process., 20, 377–394, https://doi.org/10.1002/hyp.6056, 2006. a
Download
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Share