Articles | Volume 13, issue 11
Geosci. Model Dev., 13, 5119–5145, 2020
https://doi.org/10.5194/gmd-13-5119-2020

Special issue: Particle-based methods for simulating atmospheric aerosol...

Geosci. Model Dev., 13, 5119–5145, 2020
https://doi.org/10.5194/gmd-13-5119-2020

Development and technical paper 30 Oct 2020

Development and technical paper | 30 Oct 2020

Collisional growth in a particle-based cloud microphysical model: insights from column model simulations using LCM1D (v1.0)

Simon Unterstrasser et al.

Related authors

Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme
Andreas Bier, Simon Unterstrasser, and Xavier Vancassel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-361,https://doi.org/10.5194/acp-2021-361, 2021
Preprint under review for ACP
Short summary
On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0
Michael Olesik, Sylwester Arabas, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, and Simon Unterstrasser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-404,https://doi.org/10.5194/gmd-2020-404, 2021
Preprint under review for GMD
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018,https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Collection/aggregation algorithms in Lagrangian cloud microphysical models: rigorous evaluation in box model simulations
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 10, 1521–1548, https://doi.org/10.5194/gmd-10-1521-2017,https://doi.org/10.5194/gmd-10-1521-2017, 2017
Short summary
Properties of young contrails – a parametrisation based on large-eddy simulations
Simon Unterstrasser
Atmos. Chem. Phys., 16, 2059–2082, https://doi.org/10.5194/acp-16-2059-2016,https://doi.org/10.5194/acp-16-2059-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021,https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021,https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021,https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary

Cited articles

Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017. a, b
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited, Atmos. Chem. Phys., 8, 969–982, https://doi.org/10.5194/acp-8-969-2008, 2008. a
Andrejczuk, M., Reisner, J. M., Henson, B., Dubey, M. K., and Jeffery, C. A.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008. a
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian cloud model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010. a
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015. a, b
Download
Short summary
Particle-based cloud models use simulation particles for the representation of cloud particles like droplets or ice crystals. The collision and merging of cloud particles (i.e. collisional growth a.k.a. collection in the case of cloud droplets and aggregation in the case of ice crystals) was found to be a numerically challenging process in such models. The study presents verification exercises in a 1D column model, where sedimentation and collisional growth are the only active processes.