Articles | Volume 13, issue 10
Model description paper
22 Oct 2020
Model description paper |  | 22 Oct 2020

The Kinetic Energy Budget of the Atmosphere (KEBA) model 1.0: a simple yet physical approach for estimating regional wind energy resource potentials that includes the kinetic energy removal effect by wind turbines

Axel Kleidon and Lee M. Miller

Related authors

Estimating the technical wind energy potential of Kansas that incorporates the atmospheric response for policy applications
Jonathan Minz, Axel Kleidon, and Nsilulu Tresor Mbungu
Wind Energ. Sci. Discuss.,,, 2023
Preprint under review for WES
Short summary
Working at the limit: a review of thermodynamics and optimality of the Earth system
Axel Kleidon
Earth Syst. Dynam., 14, 861–896,,, 2023
Short summary
Understanding variations in downwelling longwave radiation using Brutsaert's equation
Yinglin Tian, Deyu Zhong, Sarosh Alam Ghausi, Guangqian Wang, and Axel Kleidon
EGUsphere,,, 2023
Short summary
Editorial: Global warming is due to an enhanced greenhouse effect, and anthropogenic heat emissions currently play a negligible role at the global scale
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242,,, 2023
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446,,, 2022
Short summary

Related subject area

Atmospheric sciences
Implementation of a satellite-based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data
Angel Liduvino Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina P. Nascimento
Geosci. Model Dev., 16, 6413–6431,,, 2023
Short summary
The capabilities of the adjoint of GEOS-Chem model to support HEMCO emission inventories and MERRA-2 meteorological data
Zhaojun Tang, Zhe Jiang, Jiaqi Chen, Panpan Yang, and Yanan Shen
Geosci. Model Dev., 16, 6377–6392,,, 2023
Short summary
Rapid O3 assimilations – Part 1: Background and local contributions to tropospheric O3 changes in China in 2015–2020
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Geosci. Model Dev., 16, 6337–6354,,, 2023
Short summary
Description and evaluation of the new UM–UKCA (vn11.0) Double Extended Stratospheric–Tropospheric (DEST vn1.0) scheme for comprehensive modelling of halogen chemistry in the stratosphere
Ewa M. Bednarz, Ryan Hossaini, N. Luke Abraham, and Martyn P. Chipperfield
Geosci. Model Dev., 16, 6187–6209,,, 2023
Short summary
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266,,, 2023
Short summary

Cited articles

Adams, A. S. and Keith, D.: Are global wind power resource estimates overstated?, Environ. Res. Lett., 8, 015021, doi:10.1088/1748-9326/8/1/015021, 2013. a, b
Agora Energiewende, Agora Verkehrswende, Technical University of Denmark, and Max-Planck-Institute for Biogeochemistry: Making the Most of Offshore Wind: Re-Evaluating the Potential of Offshore Wind in the German North Sea, Tech. Rep. 176/01-S-2020/EN, Agora Energiewende, Berlin, Germany, available at: (last access: 24 July 2020), 2020. a, b
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying the impact of wind turbine wakes on power output at offshore wind farms, J. Atmos. Ocean Tech., 27, 1302–1317,, 2010. a, b
Corten, G.: Novel views on the extraction of energy from wind: Heat generation and terrain concentration, Tech. rep., Proceedings of the 2001 EWEC conference, available at: (last access: 2 May 2014), 2001. a
Emeis, S.: A simple analytical wind park model considering atmospheric stability, Wind Energy, 13, 459–469,, 2010. a, b
Short summary
When winds are used as renewable energy by more and more wind turbines, one needs to account for the effect of wind turbines on the atmospheric flow. The Kinetic Energy Budget of the Atmosphere (KEBA) model provides a simple, physics-based approach to account for this effect very well when compared to much more detailed numerical simulations with an atmospheric model. KEBA should be useful to derive lower, more realistic wind energy resource potentials of different regions.