Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Community Firn Model (CFM) v1.0
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Vincent Verjans
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Jessica M. D. Lundin
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Salesforce, San Francisco, CA, USA
Emma C. Kahle
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Annika N. Horlings
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Brita I. Horlings
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
now at: Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
Edwin D. Waddington
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Related authors
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary
Short summary
Satellite altimeters measure the height or volume change over Earth's ice sheets, but in order to understand how that change translates into ice mass, we must account for various processes at the surface. Specifically, snowfall events generate large, transient increases in surface height, yet snow fall has a relatively low density, which means much of that height change is composed of air. This air signal must be removed from the observed height changes before we can assess ice mass change.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
Short summary
Ice sheets are covered by a firn layer, which is the transition stage between fresh snow and ice. Accurate modelling of firn density properties is important in many glaciological aspects. Current models show disagreements, are mostly calibrated to match specific observations of firn density and lack thorough uncertainty analysis. We use a novel calibration method for firn models based on a Bayesian statistical framework, which results in improved model accuracy and in uncertainty evaluation.
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024, https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
Short summary
We use the oldest Antarctic ice core to estimate the rate of diffusion of sulfuric acid. Sulfuric acid is a marker of past volcanic activity and is critical in developing ice core timescales. The rate of diffusion is uncertain and is important to know, both for selecting future ice core locations and interpreting ice core records. We find the effective diffusivity of sulfate is 10 times smaller than previously estimated, indicating that the sulfuric acid signals will persist for longer.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary
Short summary
Satellite altimeters measure the height or volume change over Earth's ice sheets, but in order to understand how that change translates into ice mass, we must account for various processes at the surface. Specifically, snowfall events generate large, transient increases in surface height, yet snow fall has a relatively low density, which means much of that height change is composed of air. This air signal must be removed from the observed height changes before we can assess ice mass change.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214, https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary
Short summary
We find that the area covered by lakes on George VI ice shelf in 2020 is similar to that seen in other years such as 1989. However, the climate conditions are much more in favour of lakes forming. We find that it is likely that snowfall, and the build up of a surface snow layer limits the development of lakes on the surface of George VI ice shelf in 2020. We also find that in future, snowfall is predicted to decrease, and therefore this limiting effect may be reduced in future.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
Short summary
Ice sheets are covered by a firn layer, which is the transition stage between fresh snow and ice. Accurate modelling of firn density properties is important in many glaciological aspects. Current models show disagreements, are mostly calibrated to match specific observations of firn density and lack thorough uncertainty analysis. We use a novel calibration method for firn models based on a Bayesian statistical framework, which results in improved model accuracy and in uncertainty evaluation.
Cited articles
Adolph, A. C. and Albert, M. R.: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties, The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, 2014. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Alexander, P., Tedesco, M., Koenig, L., and Fettweis, X.: Evaluating a regional
climate model simulation of Greenland ice sheet snow and firn density for
improved surface mass balance estimates, Geophys. Res. Lett., 46, 12073–12082,
https://doi.org/10.1029/2019GL084101, 2019. a
Alley, R. B.: The Younger Dryas cold interval as viewed from central Greenland,
Quatern. Sci. Rev., 19, 213–226,
https://doi.org/10.1016/S0277-3791(99)00062-1, 2000. a
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA
technical report NWS; 19, Office of Hydrology, National Weather Service,
1976. a
Bader, H.: Sorge's Law of Densification of Snow on High Polar Glaciers, J, Glaciol,, 2, 319–323, https://doi.org/10.3189/S0022143000025144, 1954. a
Barnola, J. M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.:
CO2-climate relationship as deduced from the Vostok ice core: a
re-examination based on new measurements and on a re-evaluation of the air
dating, Tellus B, 43, 83–90, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00002.x,
1991. a, b, c
Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarket, A. D.:
Atmospheric gas concentrations over the past century measured in air from
firn at the South Pole, Nature, 383, 231–235, https://doi.org/10.1038/383231a0, 1996. a
Birner, B., Buizert, C., Wagner, T. J. W., and Severinghaus, J. P.: The influence of layering and barometric pumping on firn air transport in a 2-D model, The Cryosphere, 12, 2021–2037, https://doi.org/10.5194/tc-12-2021-2018, 2018. a, b
Brandt, R. E. and Warren, S. G.: Temperature measurements and heat transfer in near-surface snow at the South Pole, J. Glaciol., 43, 339–351,
https://doi.org/10.3189/S0022143000003294, 1997. a
Brun, E.: Investigation on Wet-Snow Metamorphism in Respect of Liquid-Water
Content, Ann. Glaciol., 13, 22–26, https://doi.org/10.3189/S0260305500007576,
1989. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate
snow-cover stratigraphy for operational avalanche forecasting, J.
Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Buizert, C.: The influence of firn air transport processes and radiocarbon
production on gas records from polar firn and ice, PhD thesis, University of
Copenhagen, 2011. a
Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12, 4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. a, b, c, d, e
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153 173, https://doi.org/10.5194/cp-11-153-2015, 2015. a, b, c
Coléou, C. and Lesaffre, B.: Irreducible water saturation in snow:
experimental results in a cold laboratory, Ann. Glaciol., 26, 64–68,
https://doi.org/10.3189/1998AoG26-1-64-68, 1998. a
Cuffey, K. M. and Clow, G. D.: Temperature, accumulation, and ice sheet
elevation in central Greenland through the last deglacial transition, J. Geophys. Res.-Oceans, 102, 26383–26396,
https://doi.org/10.1029/96JC03981, 1997. a, b
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Elsevier, 2010. a
Cullather, R. I., Nowicki, S. M. J., Zhao, B., and Koenig, L. S.: A
Characterization of Greenland Ice Sheet Surface Melt and Runoff in
Contemporary Reanalyses and a Regional Climate Model, Front. Earth
Sci., 4, 10 pp., https://doi.org/10.3389/feart.2016.00010, 2016. a
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., Macferrin,
M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis,
C., and Braithwaite, R. J.: A snow density dataset for improving surface
boundary conditions in Greenland ice sheet firn modeling, Front. Earth
Sci., 6, 51 pp., https://doi.org/10.3389/feart.2018.00051, 2018. a
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a, b, c
Freitag, J., Dobrindt, U., and Kipfstuhl, J.: A new method for predicting
transport properties of polar firn with respect to gases on the pore-space
scale, Ann. Glaciol., 35, 538–544, https://doi.org/10.3189/172756402781816582,
2002. a
Gkinis, V., Simonsen, S., Buchardt, S., White, J., and Vinther, B.: Water
isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years
– Glaciological and paleoclimatic implications, Earth Planet. Sci.
Lett., 405, 132–141, https://doi.org/10.1016/j.epsl.2014.08.022, 2014. a
Goujon, C., Barnola, J.-M., and Ritz, C.: Modeling the densification of polar
firn including heat diffusion: Application to close-off characteristics and
gas isotopic fractionation for Antarctica and Greenland sites, J.
Geophys. Res.-Atmos., 108, 4792, https://doi.org/10.1029/2002JD003319, 2003. a, b, c, d, e, f, g, h, i
Gow, A. J.: On the Rates of Growth of Grains and Crystals in South Polar Firn,
J. Glaciol., 8, 241–252, https://doi.org/10.3189/S0022143000031233, 1969. a
Gow, A. J.: Time-temperature dependence of sintering in perennial isothermal
snowpacks, in: IAHS-AISH Publication No. 114, 25–41, 1975. a
Gow, A. J., Meese, D. A., and Bialas, R. W.: Accumulation variability, density
profiles and crystal growth trends in ITASE firn and ice cores from West
Antarctica, Ann. Glaciol., 39, 101–109,
https://doi.org/10.3189/172756404781814690, 2004. a
Gregory, S. A., Albert, M. R., and Baker, I.: Impact of physical properties and accumulation rate on pore close-off in layered firn, The Cryosphere, 8, 91–105, https://doi.org/10.5194/tc-8-91-2014, 2014. a
Helsen, M. M., van den Broeke, M. R., van de Wal, R. S. W., van de Berg, W. J., van Meijgaard, E., Davis, C. H., Li, Y., and Goodwin, I.: Elevation Changes in Antarctica Mainly Determined by Accumulation Variability, Science, 320, 1626–1629, https://doi.org/10.1126/science.1153894, 2008. a, b, c
Hughes, A. G., Jones, T. R., Vinther, B. M., Gkinis, V., Stevens, C. M., Morris, V., Vaughn, B. H., Holme, C., Markle, B. R., and White, J. W. C.: High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland, Clim. Past, 16, 1369–1386, https://doi.org/10.5194/cp-16-1369-2020, 2020. a
Hulbe, C. L. and Whillans, I. M.: A method for determining ice-thickness change at remote locations using GPS, Annal. Glaciol., 20, 263–268,
https://doi.org/10.3189/172756494794587348, 1994. a
Jiawen, R., Dahe, Q., and Maohuan, H.: Thermal properties and temperature
distribution of snow/firn on the Law Dome ice cap, Antarctica, Chinese
J. Polar Sci., 2, 38–46, 1991. a
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the isotope
effect in firn diffusion, in: Physics of ice core records,
Hokkaido University Press, 121–140, 2000. a
Jones, T., Cuffey, K., White, J., Steig, E., Buizert, C., Markle, B.,
McConnell, J., and Sigl, M.: Water isotope diffusion in the WAIS Divide ice
core during the Holocene and last glacial, J. Geophys. Res.-Ea. Surf., 122, 290–309, https://doi.org/10.1002/2016JF003938, 2017. a
Katsushima, T., Kumakura, T., and Takeuchi, Y.: A multiple snow layer model
including a parameterization of vertical water channel process in snowpack,
Cold Reg. Sci. Technol., 59, 143–151,
https://doi.org/10.1016/j.coldregions.2009.09.002, 2009. a
Kawamura, K., Severinghaus, J. P., Ishidoya, S., Sugawara, S., Hashida, G.,
Motoyama, H., Fujii, Y., Aoki, S., and Nakazawa, T.: Convective mixing of air
in firn at four polar sites, Earth Planet. Sc. Lett., 244, 672–682, https://doi.org/10.1016/j.epsl.2006.02.017, 2006. a
Kuipers Munneke, P., van den Broeke, M. R., Reijmer, C. H., Helsen, M. M., Boot, W., Schneebeli, M., and Steffen, K.: The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland, The Cryosphere, 3, 155–165, https://doi.org/10.5194/tc-3-155-2009, 2009. a
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J. T., Das, S. B., and van den Broeke, M. R.: Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014, The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, 2015. a, b, c, d, e, f, g, h
Langen, P. L., Fausto, R. S., Vandecrux, B., Mottram, R. H., and Box, J. E.:
Liquid water flow and retention on the Greenland ice sheet in the regional
climate model HIRHAM5: Local and large-scale impacts, Front. Earth
Sci., 4, 110 pp., https://doi.org/10.3389/feart.2016.00110, 2017. a, b
Li, J. and Zwally, H. J.: Modeled seasonal variations of firn density induced
by steady-state surface air-temperature cycle, Ann. Glaciol., 34,
299–302, https://doi.org/10.3189/172756402781817707, 2002. a, b
Li, J. and Zwally, H. J.: Modeling the density variation in the shallow firn
layer, Anna. Glaciol., 38, 309–313, 2004. a
Li, J. and Zwally, H. J.: Modeling of firn compaction for estimating ice-sheet
mass change from observed ice-sheet elevation change, Ann. Glaciol.,
52, 1–7, https://doi.org/10.3189/172756411799096321, 2011. a, b, c, d
Li, J. and Zwally, H. J.: Response times of ice-sheet surface heights to
changes in the rate of Antarctic firn compaction caused by accumulation and
temperature variations, J. Glaciol., 61, 1037–1047,
https://doi.org/10.3189/2015JoG14J182, 2015. a, b, c
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a, b, c, d
Ligtenberg, S. R. M., Kuipers Munneke, P., and van den Broeke, M. R.: Present and future variations in Antarctic firn air content, The Cryosphere, 8, 1711–1723, https://doi.org/10.5194/tc-8-1711-2014, 2014. a
Linow, S., Hörhold, M., and Freitag, J.: Grain-size evolution of polar
firn: A new empirical grain growth parameterization based on X-ray
microcomputer tomography measurements, J. Glaciol., 58, 1245–1252,
https://doi.org/10.3189/2012JoG11J256, 2012. a
Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., Ligtenberg,
S. R., Simonsen, S. B., Cummings, E., Essery, R., Leahy, W., Harris, P.,
Helsen, M. M., and Waddington, E. D.: Firn Model Intercomparison Experiment
(FirnMICE), J. Glaciol., 63, 401–422, https://doi.org/10.1017/jog.2016.114,
2017. a, b, c, d, e, f
Lüthi, M. P. and Funk, M.: Modelling heat flow in a cold, high-altitude
glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps,
J. Glaciol., 47, 314–324, 2001. a
Maeno, N. and Ebinuma, T.: Pressure sintering of ice and its implication to the
densification of snow at polar glaciers and ice sheets, J. Phys. Chem., 87, 4103–4110, https://doi.org/10.1021/j100244a023, 1983. a
Martinerie, P., Lipenkov, V. Y., Raynaud, D., Chappellaz, J., Barkov, N., and
Lorius, C.: Air content paleo record in the Vostok ice core (Antarctica): A
mixed record of climatic and glaciological parameters, J. Geophys.
Res.-Atmos., 99, 10565–10576, https://doi.org/10.1029/93JD03223, 1994. a
Meyer, C. R. and Hewitt, I. J.: A continuum model for meltwater flow through compacting snow, The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, 2017. a
Montgomery, L., Koenig, L., and Alexander, P.: The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland, Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018, 2018. a
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018. a, b
Patankar, S. V.: Numerical heat transfer and fluid flow, CRC Press, Boca Raton,
https://doi.org/10.1201/9781482234213, 1980. a
Pimienta, P.: Etude du comportement mécanique des glaces polycristallines
aux faibles contraintes: applications aux glaces des calottes polaires, PhD
thesis, Université Scientifique, Technique et Médicale de Grenoble,
1987. a
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quatern. Sci. Rev., 106,
14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014. a
Riche, F. and Schneebeli, M.: Thermal conductivity of snow measured by three independent methods and anisotropy considerations, The Cryosphere, 7, 217–227, https://doi.org/10.5194/tc-7-217-2013, 2013. a
Robin, G. d. Q.: Glaciology III: Seismic shooting and related investigations,
in: Norwegian-British-Swedish Antarctic Expedition, 1949–52, Scientific
Results, vol. 5, Norsk Polarinstit, Oslo, 1958. a
Schwander, J. and Stauffer, B.: Age difference between polar ice and the air
trapped in its bubbles, Nature, 311, 45–47, https://doi.org/10.1038/311045a0, 1984. a
Schwander, J., Stauffer, B., and Sigg, A.: Air Mixing in Firn and the Age of
the Air at Pore Close-Off, Ann. Glaciol., 10, 141–145,
https://doi.org/10.3189/S0260305500004328, 1988. a
Schwander, J., Sowers, T., Barnola, J.-M., Blunier, T., Fuchs, A., and
Malaizé, B.: Age scale of the air in the summit ice: Implication for
glacial-interglacial temperature change, J. Geophys. Res.-Atmos., 102, 19483–19493, https://doi.org/10.1029/97JD01309, 1997. a
Schwerdtfeger, P.: Theoretical derivation of the thermal conductivity and
diffusivity of snow, Int. Assoc. Sci. Hydrol. Publ, 61, 75–81, 1963. a
Schytt, V.: Glaciology II: Snow Studies at Maudheim: Snow Studies Inland: the
Inner Structure of the Ice Shelf at Maudheim as Shown by Core Drilling, in:
Norwegian-British-Swedish Antarctic Expedition, 1949–52, Scientific Results,
vol. 4, Norsk Polarinstitutt, Oslo, 1958. a
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,
E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D.,
Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J.,
Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores
for the past 104 ka reveal regional millennial-scale δ18O gradients
with possible Heinrich event imprint, Quatern. Sci. Rev., 106, 29– 46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014. a
Severinghaus, J. P., Grachev, A., and Battle, M.: Thermal fractionation of air in polar firn by seasonal temperature gradients, Geochemistry, Geophysics, Geosystems, 2, 1048, https://doi.org/10.1029/2000GC000146, 2001. a, b
Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A.,
Kawamura, K., Montzka, S. A., Mühle, J., Scambos, T. A., Shields, E.,
Shuman, C. A., Suwa, M., Tans, P., and Weiss, R. F.: Deep air convection in
the firn at a zero-accumulation site, central Antarctica, Earth Planet.
Sci. Lett., 293, 359–367, https://doi.org/10.1016/j.epsl.2010.03.003, 2010. a
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard,
H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B.,
Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg,
W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J.,
Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A
Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012. a
Simonsen, S. B., Stenseng, L., Adalgeirsdottir, G., Fausto, R. S., Hvidberg,
C. S., and Lucas-Picher, P.: Assessing a multilayered dynamic firn-compaction
model for Greenland with ASIRAS radar measurements, J. Glaciol., 59, 545–558,
https://doi.org/10.3189/2013JoG12J158, 2013. a, b, c, d
Sowers, T., Bender, M., Raynaud, D., and Korotkevich, Y. S.: δ15N of N2 in air trapped in polar ice: A tracer of gas transport in the firn and a
possible constraint on ice age-gas age differences, J. Geophys.
Res.-Atmos., 97, 15683–15697, https://doi.org/10.1029/92JD01297, 1992. a
Steffen, K. and Box, J.: Surface climatology of the Greenland Ice Sheet:
Greenland Climate Network 1995–1999, J. Geophys. Res.-Atmos., 106, 33951–33964, https://doi.org/10.1029/2001JD900161, 2001. a
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster,
R. R., Koenig, L. S., Kuipers Munneke, P., Lehning, M., Lhermitte, S.,
Ligtenberg, S. R. M., Miège, C., and Noël, B. P. Y.: Firn Meltwater
Retention on the Greenland Ice Sheet: A Model Comparison, Frontiers in Earth
Science, 5, 3 pp., https://doi.org/10.3389/feart.2017.00003, 2017. a
Stevens, C. M., Verjans, V., Lundin, J. M., Kahle, E. C., Horlings, A. N.,
Horlings, B. I., and Waddington, E. D.: UWGlaciology/CommunityFirnModel:
Version 1.0.5 of the Community Firn Model, https://doi.org/10.5281/zenodo.3585885, 2019. a
Sturm, M., Holmgren, J., König, M., and Morris, K.: The thermal
conductivity of seasonal snow, J. Glaciol., 43, 26–41,
https://doi.org/10.3189/S0022143000002781, 1997. a
Tange, O.: GNU Parallel: the command-line power tool, login: The USENIX
Magazine, 36, 42–47, https://doi.org/10.5281/zenodo.16303, 2011. a
The IMBIE Team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Trudinger, C. M., Enting, I. G., Etheridge, D. M., Francey, R. J., Levchenko,
V. A., Steele, L. P., Raynaud, D., and Arnaud, L.: Modeling air movement and
bubble trapping in firn, J. Geophys. Res.-Atmos., 102,
6747–6763, https://doi.org/10.1029/96JD03382, 1997. a
Tusima, K.: Grain Coarsening of Ice Particles Immersed in Pure Water, J. Jpn. Soc. Snow Ice, 40, 155–165,
https://doi.org/10.5331/seppyo.40.155, 1978. a
Van Dusen, M. S.: Thermal conductivity of non-metallic solids, in:
International critical tables of numerical data, physics, chemistry and
technology, edited by: Washburn, E. W., 5, 216–217, McGraw-Hill,
1929. a
van Kampenhout, L., Lenaerts, J. T., Lipscomb, W. H., Sacks, W. J., Lawrence,
D. M., Slater, A. G., and van den Broeke, M. R.: Improving the Representation
of Polar Snow and Firn in the Community Earth System Model, J.
Adv. Model. Earth Sy., 9, 2583–2600,
https://doi.org/10.1002/2017MS000988, 2017. a, b
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a
Vandecrux, B., Fausto, R. S., Langen, P. L., van As, D., MacFerrin, M., Colgan,
W. T., Ingeman-Nielsen, T., Steffen, K., Jensen, N. S., Møller, M. T., and
Box, J. E.: Drivers of Firn Density on the Greenland Ice Sheet Revealed by
Weather Station Observations and Modeling, J. Geophys. Res.-Ea. Surf. 123, 2563–2576, https://doi.org/10.1029/2017JF004597, 2018. a
Vandecrux, B., MacFerrin, M., Machguth, H., Colgan, W. T., van As, D., Heilig, A., Stevens, C. M., Charalampidis, C., Fausto, R. S., Morris, E. M., Mosley-Thompson, E., Koenig, L., Montgomery, L. N., Miège, C., Simonsen, S. B., Ingeman-Nielsen, T., and Box, J. E.: Firn data compilation reveals widespread decrease of firn air content in western Greenland, The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, 2019. a
Vandecrux, B., Mottram, R., Langen, P. L., Fausto, R. S., Olesen, M., Stevens, C. M., Verjans, V., Leeson, A., Ligtenberg, S., Kuipers Munneke, P., Marchenko, S., van Pelt, W., Meyer, C., Simonsen, S. B., Heilig, A., Samimi, S., Machguth, H., MacFerrin, M., Niwano, M., Miller, O., Voss, C. I., and Box, J. E.: The firn meltwater Retention Model Intercomparison Project (RetMIP): Evaluation of nine firn models at four weather station sites on the Greenland ice sheet, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-331, in review, 2020. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b
Voller, V. R., Swaminathan, C. R., and Thomas, B. G.: Fixed grid techniques for phase change problems: A review, Int. J. Numer. Meth. Eng., 30, 875–898, https://doi.org/10.1002/nme.1620300419, 1990. a
Witrant, E., Martinerie, P., Hogan, C., Laube, J. C., Kawamura, K., Capron, E., Montzka, S. A., Dlugokencky, E. J., Etheridge, D., Blunier, T., and Sturges, W. T.: A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites, Atmos. Chem. Phys., 12, 11465–11483, https://doi.org/10.5194/acp-12-11465-2012, 2012. a
Yen, Y.-C.: Review of thermal properties of snow, ice and sea ice, Tech. Rep.
Report 81-10, Cold Regions Research and Engineering Lab, 1981. a
Short summary
Understanding processes in snow (firn), including compaction and airflow, is important for calculating how much mass the ice sheets are losing and for interpreting climate records from ice cores. We have developed the open-source Community Firn Model to simulate these processes. We used it to compare 13 different firn compaction equations and found that they do not agree within 10 %. We also show that including firn compaction in a firn-air model improves the match with data from ice cores.
Understanding processes in snow (firn), including compaction and airflow, is important for...