Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4323-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4323-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Sam-Erik Walker
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Gabriela Sousa-Santos
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Matthias Vogt
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Dam Vo-Thanh
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Susana Lopez-Aparicio
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Philipp Schneider
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Martin O. P. Ramacher
Chemistry Transport Modelling Department, Institute of Coastal
Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Matthias Karl
Chemistry Transport Modelling Department, Institute of Coastal
Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Related authors
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Claire Lamotte, Jonathan Guth, Virginie Marécal, Martin Cussac, Paul David Hamer, Nicolas Theys, and Philipp Schneider
Atmos. Chem. Phys., 21, 11379–11404, https://doi.org/10.5194/acp-21-11379-2021, https://doi.org/10.5194/acp-21-11379-2021, 2021
Short summary
Short summary
Improvements are made in a global chemical transfer model by considering a new volcanic SO2 emissions inventory, with more volcanoes referenced and more information on the altitude of injection. Better constraining volcanic emissions with this inventory improves the global, but mostly local, tropospheric sulfur composition. The tropospheric sulfur budget shows a nonlinearity to the volcanic contribution, especially to the sulfate aerosol burden and sulfur wet deposition.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Claire Lamotte, Jonathan Guth, Virginie Marécal, Martin Cussac, Paul David Hamer, Nicolas Theys, and Philipp Schneider
Atmos. Chem. Phys., 21, 11379–11404, https://doi.org/10.5194/acp-21-11379-2021, https://doi.org/10.5194/acp-21-11379-2021, 2021
Short summary
Short summary
Improvements are made in a global chemical transfer model by considering a new volcanic SO2 emissions inventory, with more volcanoes referenced and more information on the altitude of injection. Better constraining volcanic emissions with this inventory improves the global, but mostly local, tropospheric sulfur composition. The tropospheric sulfur budget shows a nonlinearity to the volcanic contribution, especially to the sulfate aerosol burden and sulfur wet deposition.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Cited articles
Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., Fay, B., Finardi, S., Hoe, S. C., Jantunen, M., Karppinen, A., Rasmussen, A., Skouloudis, A., Sokhi, R. S., Sørensen, J. H., and Ødegaard, V.: Integrated systems for forecasting urban meteorology, air pollution and population exposure, Atmos. Chem. Phys., 7, 855–874, https://doi.org/10.5194/acp-7-855-2007, 2007.
Baldasano, J., Pay, M., Jorba, O., Gassó, S. and Jimenez-Guerrero, P.:
An annual assessment of air quality with the CALIOPE modeling system over
Spain, Sci. Total Environ., 409, 2163–2178, 2011.
Basu, S. and Porté-Agel, F.: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modelling approach, J. Atmos. Sci., 63, 2074–2091, 2006.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341,
1991
Benavides, J., Snyder, M., Guevara, M., Soret, A., Pérez García-Pando, C., Amato, F., Querol, X., and Jorba, O.: CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain), Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, 2019.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I.,
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L.,
Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X.
and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1, 2017.
Bott, A.: A Positive Definite Advection Scheme Obtained by Nonlinear
Renormalization of the Advective Fluxes, Mon. Weather Rev., 117,
1006–1016, https://doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2, 1989.
Bott, A.: Monotone Flux Limitation in the Area-preserving Flux-form
Advection Algorithm, Mon. Weather Rev., 120, 2592–2602,
https://doi.org/10.1175/1520-0493(1992)120<2592:MFLITA>2.0.CO;2,
1992.
Bott, A.: The monotone area-preserving flux-form advection algorithm:
reducing the time-splitting error in two-dimentional flow fields, Mon.
Weather Rev., 121, 2637–2641, https://doi.org/10.1175/1520-0493(1993)121<2637:TMAPFF>2.0.CO;2, 1993.
Briggs, G. A.: Plume rise, U.S. Atomic Energy Commission, Oak Ridge
Tennessee, 1969.
Briggs, G. A.: Some recent analyses of plume rise observation, in:
Proceedings of the Second International Clean Air Congress, edited by: Englund, H. M. and Berry, W. T., Academic Press, New York, 1029–1032, 1971.
Briggs, G. A.: Diffusion estimation for small emissions, Environmental research laboratories air resources atmospheric turbulence and diffusion laboratory 1973 annual report, USAEC Rep ATDL-106 Natl. Oceanic Atmos. Admin., Washington, DC, 1974.
Briggs, G. A.: Plume rise predictions, in: Lectures on Air Pollution and Environmental Impact Analysis, edited by: Haugen, D. A., Amer. Meteor. Soc., Boston, MA, 59–111, 1975.
Businger, J. A. and Arya, S. P. S.: Height of the mixed layer in the stably stratified planetary boundary layer, in: Turbulent Diffusion in
Environmental Pollution, edited by: Frenkiel, F. N. and Munn, R. E., Adv. Geophys., 18A, Academic Press, New York, 73–92, 1974.
Businger, J. A., Wyngaard, J. C., Izumi, Y. and Bradley, E. F.: Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28,
181–189, 1971.
Byun, D. and Schere, K. L.: Review of the governing equations, computational
algorithms, and other components of the Models-3 Community Multiscale Air
Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, 2006.
Byun, D. W., Young, J., Pleim, J., Odman, M. T., and Alapaty, K.: Chapter 7, Numerical Transport Algorithms for the Community Multiscale
Air Quality (CMAQ) Chemical Transport Model in Generalized Coordinates, in: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA/600/R-99/030, U.S. Environmental Protection Agency, Office of Research and
Development, Washington, DC, 1999.
Denby, B. R. and Süld, J. K.: NBV report on meteorological data for 2015. Deliverable 6, Work package 3 (Met Report, 2016). Oslo: Norwegian Meteorological Institute, ISSN 2387-4201, 2016.
Denby, B. R., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman,
M., Kupiainen, K., Gustafsson, M., Blomqvist, G., and Omstedt, G.: A coupled
road dust and surface moisture model to predict non-exhaust road traffic
induced particle emissions (NORTRIP). Part 1: Road dust loading and
suspension modelling, Atmos. Environ., 77, 283–300, 2013.
Denby, B. R., Sundvor, I., Høiskar, B. A. K., and Kristensen, A.: Bedre
byluft 2016 – Forskningsresultater og utvikling av prognoser for meteorologi
og luftkvalitet i norske byer 2016,
Norwegian Meteorological Institute, Oslo, 2017.
Dentener, F. J. and Crutzen, P. J.: Reaction of N2O5 on tropospheric
aerosols: Impact on the global distributions of NOx, O3, and OH, J.
Geophys. Res.-Atmos., 98, 7149–7163, 1993.
EU: Directive 2008/50/EC of the European Parliament and of the Council of 21
May 2008 on ambient air quality and cleaner air for Europe, Off. J. Eur.
Communities, 152, 1–43, available at:
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF (last access: 11 September 2020),
2008.
Fagerli, H., Tsyro, S., Denby, B. R., Gauss, M., Simpson, D., Wind, P.,
Benedictow, A., Jonson, J. E., Klein, H., Schulz, M., Griesfeller, J., Aas,
W., Hjellbrekke, A., Solberg, S., Platt, S. M., Fiebig, M., Yttri, K. E.,
Rud, R. O., Mareckova, K., Pinterits, M., Tista, M., Ullrich, B., Posch, M.,
Imhof, H., Putaud, J., Cavalli, F., Poulain, L., Schlag, P., Heikkinen, L.
M., Swietlicki, E., Martinsson, J., Vana, M., Smejkalova, A. H., Kouvarakis,
G., and Mihalopoulos, N.: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP Status Report 2017, available at: http://emep.int/publ/reports/2017/EMEP_Status_Report_1_2017.pdf (last access: 11 September 2020), 2017.
Fedra, K. and Haurie, A.: A decision support system for air quality
management combining GIS and optimisation techniques, Int. J. Environ.
Pollut., 12, 125–146, 1999.
Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-2010, 2010.
Franke, J., Hellsten, A., Schlunzen, K. H., and Carissimo, B.: The COST 732
Best Practice Guideline for CFD simulation of flows in the urban
environment: a summary, Int. J. Environ. Pollut., 44, 419–427, 2011.
Grythe, H., Lopez-Aparicio, S., Vogt, M., Vo Thanh, D., Hak, C., Halse, A. K., Hamer, P., and Sousa Santos, G.: The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway, Atmos. Chem. Phys., 19, 10217–10237, https://doi.org/10.5194/acp-19-10217-2019, 2019.
Hurley P.: TAPM v. 4, Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper No. 25, 2008.
Hurley, P., Physick, W., and Luhar, A.: TAPM – a practical approach to prognostic meteorological and air pollution modelling, Environ.
Modell. Softw., 20, 737–752, https://doi.org/10.1016/j.envsoft.2004.04.006, 2005.
Irwin, J. S.: Estimating Plume Dispersion-A Comparison of Several Sigma
Schemes, J. Clim. Appl. Meteorol., 22, 92–114,
https://doi.org/10.1175/1520-0450(1983)022<0092:EPDACO>2.0.CO;2,
1983.
Jensen, S. S., Berkowicz, R., Sten Hansen, H., and Hertel, O.: A Danish
decision-support GIS tool for management of urban air quality and human
exposures, Transport. Res. D-Tr. E., 6, 229–241,
https://doi.org/10.1016/S1361-9209(00)00026-2, 2001.
Karl, M., Walker, S.-E., Solberg, S., and Ramacher, M. O. P.: The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg, Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019, 2019.
Lamb, R. G. and Durran, D. R.: Eddy diffusivities derived from a numerical model of the convective boundary layer, Il Nuovo Cimento, 1c, 1–17, 1978.
Lateb, M., Meroney, R. N., Yataghene, M., Fellouah, H., Saleh, F., and
Boufadel, M. C.: On the use of numerical modelling for near-field pollutant
dispersion in urban environments – A review, Environ. Pollut., 208,
271–283, https://doi.org/10.1016/j.envpol.2015.07.039, 2016.
Lopez-Aparicio, S. and Vo, D. T.: Emission estimates for Norwegian cities,
NBV_Emission Database v.0. Norsk institutt for luftforskning
(NILU), Kjeller, available at:
https://www.nilu.no/wp-content/uploads/dnn/35-2015-NBV_DeliverableAP2_D3_accepted-rnh.pdf. (last access: 11 September 2020), 2015.
López-Aparicio, S., Tønnesen, D., Thanh, T. N., and Neilson, H.:
Shipping emissions in a Nordic port: Assessment of mitigation strategies,
Transport. Res. D-Tr. E., 53, 205–216, 2017.
Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production, Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, 2015.
McRae, G. J., Goodin, W. R., and Seinfeld, J. H.: Development of a
second-generation mathematical model for urban air pollution – I. Model
formulation, Atmos. Environ., 16, 679–696, 1982.
Monteiro, A., Durka, P., Flandorfer, C., Georgieva, E., Guerreiro, C.,
Kushta, J., Malherbe, L., Maiheu, B., Miranda, A. I., Santos, G., Stocker, J., Trimpeneers, E., Tognet, F., Stortini, M., Wesseling, J., Janssen, S., and Thunis, P.:
Strengths and weaknesses of the FAIRMODE benchmarking methodology for the
evaluation of air quality models, Air Qual. Atmos. Hlth., 11, 373–383,
2018.
Pay, M. T., Piot, M., Jorba, O., Gassó, S., Gonçalves Basart, M., S.,
Dabdub, D., Jiménez-Guerrero, P., and Baldasano, J. M.: A full year
evaluation of the CALIOPE-EU air quality modeling system over Europe for
2004, Atmos. Environ., 44, 3322–3342,
https://doi.org/10.1016/j.atmosenv.2010.05.040, 2010.
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A parameterization
of dry thermals and shallow cumuli for mesoscale numerical weather
prediction, Bound.-Lay. Meteorol., 132, 82, https://doi.org/10.1007/s10546-009-9388-0, 2009.
Petersen, W. B.: User's guide for HIWAY-2. A highway air pollution model, U.S. Environmental Protection Agency, Washington, D.C., EPA/600/8-80/018 (NTIS PB80227556),
1980.
Petersen, W. B. and Lavdas, L. G.: INPUFF 2. 0-a multiple-source Gaussian
puff dispersion algorithm, User's guide, Final report, 1986.
Seinfeld, J. H. and Pandis, S. N.: Ch. 18.4, Equations Governing the Mean Concentration of Species in Turbulence, in: Atmospheric Chemistry
and Physics, From Air Pollution to Climate Change, 2nd Edn., John Wiley & Sons Inc., Hoboken, NJ, USA, 2006
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Mon. Weather Rev., 139, 976–991, 2011.
Shir, C. C.: A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer, J. Atmos. Sci., 30, 1327–1339, 1973.
Simpson, D., Andersson-Skøld, Y., and Jenkin, M. E.: Updating the chemical
scheme for the EMEP MSC-W oxidant model:current status, Oslo, available at:
https://emep.int/publ/reports/1993/EMEP_1993_N2.pdf (last access: 11 September 2020), 1993.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Sivertsen, B. and Bøhler, T.: On-line Air Quality Management System for
Urban Areas in Norway, air our cities–it's everybody's business”, Euro-CASE and European Council of Applied Sciences and Engineering,
Paris, France, 16–18 February, ETDE-FR-20133814, 44–47,
2000.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner,
J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A
Description of the Advanced Research WRF Version 4, NCAR Tech, Note
NCAR/TN-556+STR, 145, https://doi.org/10.5065/1dfh-6p97, 2019.
Slørdal, L. H., Solberg, S., and Walker, S.-E.: The Urban Air Dispersion
Model EPISODE applied in AirQUIS2003, Technical description, Kjeller,
Norway, 2003.
Slørdal, L. H., McInnes, H., and Krognes, T.: The Air Quality Information
System AirQUIS, Info. Techn. Environ. Eng, 1, 21–33, 2008a.
Slørdal, L. H., McInnes, H., and Krognes, T.: The air quality information
system AirQUIS, Environ. Sci. Eng., 1, 40–47, 2008b.
Slørdal, L. H., Walker, S.-E., Hamer, P., Sousa Santos, G., Weydahl, T., and Karl, M.: EPISODE Urban Air Quality Model (Version 10.0), Zenodo, https://doi.org/10.5281/zenodo.3244056, 2019.
Smith, G. D.: Numerical solution of partial differential equations: finite
difference methods, Clarendon Press, Oxford, UK, 1985.
Tarodo, J.: Continuous emission monitoring, World cement, 34, 67–72, 2003.
Tarrasón, L., Santos, G. S., Thanh, D. V., López-aparicio, S.,
Denby, B., and Tønnesen, D.: Air quality in Norwegian cities in 2015, Evaluation Report for NBV Main Results, NILU-Norwegian Institute for Air Research, Kjeller,
2017.
Thunis, P. and Cuvelier, C.: DELTA Version 5.6 Concepts, User's Guide,
Diagrams, Ispra, 2018.
Thunis, P., Pederzoli, A., and Pernigotti, D.: Performance criteria to
evaluate air quality modeling applications, Atmos. Environ., 59, 476–482,
2012.
Walker, S. E. and Grønskei, K.: Spredningsberegninger for on-line
overvåking i Grenland, Programbeskrivelse og brukerveiledning,
Lillestrøm, 1992.
Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, O. F., and Kristensen, H. O.: Emission inventories for ships in the arctic based on satellite sampled AIS data, Atmos. Environ., 91, 1–14, 2014.
World Health Organization: Ambient Air Pollution: A global assessment of
exposure and burden of disease, World Heal. Organ., 1–131,
2016.
Short summary
EPISODE is an air quality model designed to give information on air pollution in cities down to distances measured in metres from the roadside and other pollution sources. We demonstrate that EPISODE can adequately describe nitrogen dioxide air pollution in a case study in six Norwegian cities. From this, we conclude that EPISODE can be used to provide air quality information to public bodies and society in order to help in the understanding and management of air pollution in urban environments.
EPISODE is an air quality model designed to give information on air pollution in cities down to...