Articles | Volume 13, issue 9
Geosci. Model Dev., 13, 3947–3973, 2020
https://doi.org/10.5194/gmd-13-3947-2020
Geosci. Model Dev., 13, 3947–3973, 2020
https://doi.org/10.5194/gmd-13-3947-2020

Model evaluation paper 03 Sep 2020

Model evaluation paper | 03 Sep 2020

An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season

Swen Brands et al.

Related authors

A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the northern hemisphere
Swen Brands
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-418,https://doi.org/10.5194/gmd-2020-418, 2021
Preprint under review for GMD
Short summary
Sensitivity of CHIMERE to changes in model resolution and chemistry over the northwestern Iberian Peninsula
Swen Brands, Guillermo Fernández-García, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venancio, Pedro Melo da Costa, Paula Costa Tomé, Christina Otero, María Luz Macho, and Juan Taboada
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-351,https://doi.org/10.5194/acp-2019-351, 2019
Revised manuscript not accepted
Short summary

Related subject area

Atmospheric sciences
Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021,https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021,https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021,https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary

Cited articles

Alfaro, S. C. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas, J. Geophys. Res.Atmos., 106, 18075–18084, https://doi.org/10.1029/2000JD900339, 2001. a, b
Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., Hirtl, M., José, R. S., Tuccella, P., and Grell, G.: WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties, Atmos. Environ., 115, 604–619, https://doi.org/10.1016/j.atmosenv.2014.12.033, 2015. a
Banzhaf, S., Schaap, M., Kerschbaumer, A., Reimer, E., Stern, R., van der Swaluw, E., and Builtjes, P.: Implementation and evaluation of pH-dependent cloud chemistry and wet deposition in the chemical transport model REM-Calgrid, Atmos. Environ., 49, 378–390, https://doi.org/10.1016/j.atmosenv.2011.10.069, 2012. a
Banzhaf, S., Schaap, M., Kranenburg, R., Manders, A. M. M., Segers, A. J., Visschedijk, A. J. H., Denier van der Gon, H. A. C., Kuenen, J. J. P., van Meijgaard, E., van Ulft, L. H., Cofala, J., and Builtjes, P. J. H.: Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009, Geosci. Model Dev., 8, 1047–1070, https://doi.org/10.5194/gmd-8-1047-2015, 2015. a
Beegum, S. N., Gherboudj, I., Chaouch, N., Couvidat, F., Menut, L., and Ghedira, H.: Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories, Atmos. Environ., 128, 185–197, https://doi.org/10.1016/j.atmosenv.2016.01.010, 2016. a
Short summary
The capability of numerical models to predict air quality depends on many factors. Here, the role of the applied model resolution, emission configuration and model chemistry is assessed for the CHIMERE model and the northwestern Iberian Peninsula. Although heterogeneous results are obtained, the forecasts can be systematically improved by increasing the vertical resolution in the lower and middle troposphere. This finding might also apply to other regions with similar characteristics.