Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3241-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3241-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling – Part 1: Description of the one-way model
Haipeng Lin
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen, Guangdong, China
Heng Tian
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Yaping Ma
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Lijuan Zhang
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Daniel J. Jacob
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Robert M. Yantosca
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Melissa P. Sulprizio
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Elizabeth W. Lundgren
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Jiawei Zhuang
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Qiang Zhang
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Lin Zhang
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Lu Shen
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Jianping Guo
State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
Sebastian D. Eastham
Laboratory for Aviation and the Environment, Massachusetts Institute of Technology, Cambridge, MA, USA
Christoph A. Keller
Universities Space Research Association, Columbia, MD, USA
Model code and software
WRF-GC v1.0 H. Lin, X. Feng, T.-M. Fu, H. Tian, Y. Ma, L. Zhang, D. J. Jacob, R. M. Yantosca, M. P. Sulprizio, E. W. Lundgren, J. Zhuang, Q. Zhang, X. Lu, L. Zhang, L. Shen, J. Guo, S. D. Eastham, and C. A. Keller https://doi.org/10.5281/zenodo.3550330
Short summary
Online coupling of meteorology and chemistry models often presents maintenance issues with hard-wired coding. We present WRF-GC, an one-way online coupling of the WRF meteorological model and GEOS-Chem atmospheric chemistry model for regional atmospheric chemistry and air quality modeling. Our coupling structure allows future versions of either parent model to be immediately integrated into WRF-GC. The WRF-GC model was able to well reproduce regional PM2.5 with greater computational efficiency.
Online coupling of meteorology and chemistry models often presents maintenance issues with...