Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3179-2020
https://doi.org/10.5194/gmd-13-3179-2020
Development and technical paper
 | 
14 Jul 2020
Development and technical paper |  | 14 Jul 2020

Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: the Po Valley (Italy) case study

Arianna Valmassoi, Jimy Dudhia, Silvana Di Sabatino, and Francesco Pilla

Related authors

How to visualize the Urban Heat Island in Gridded Datasets?
Arianna Valmassoi and Jan D. Keller
Adv. Sci. Res., 18, 41–49, https://doi.org/10.5194/asr-18-41-2021,https://doi.org/10.5194/asr-18-41-2021, 2021

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Aegerter, C., Wang, J., Ge, C., Irmak, S., Oglesby, R., Wardlow, B., Yang, H., You, J., Shulski, M., Aegerter, C., Wang, J., Ge, C., Irmak, S., Oglesby, R., Wardlow, B., Yang, H., You, J., and Shulski, M.: Mesoscale Modeling of the Meteorological Impacts of Irrigation during the 2012 Central Plains Drought, J. Appl. Meteorol. Climatol., 56, 1259–1283, https://doi.org/10.1175/JAMC-D-16-0292.1, 2017. a, b, c, d, e, f
ARPAE: Bollettino agroclimatico mensile, Luglio 2015, Tech. rep., Arpae Servizio idro-meteo-clima, 2015a. a
ARPAE: Bollettino agroclimatico mensile, Giugno 2015, Tech. rep., Arpae Servizio idro-meteo-clima, 2015b. a, b
Bavi, A., Kashkuli, H. A., Boroomand, S., Naseri, A., and Albaji, M.: Evaporation losses from sprinkler irrigation systems under various operating conditions, J. Appl. Sci., 9, 597–600, https://doi.org/10.3923/jas.2009.597.600, 2009. a
Bin Abdullah, K.: Use of water and land for food security and environmental sustainability, in: Irrigation and Drainage, vol. 55, 219–222, John Wiley and Sons, Ltd., available https://doi.org/10.1002/ird.254, 2006. a, b
Download
Short summary
Irrigation affects the atmosphere and models are required to understand its full impact. However, there is no agreed procedure to describe irrigation within regional models. The present study introduces three new methods to integrate this process into the models and validates it for the Po Valley in northern Italy. All the tests done show that the results are improved with the new irrigation techniques when compared against some measures (e.g., temperature, potential evapotranspiration).