Articles | Volume 13, issue 4
https://doi.org/10.5194/gmd-13-2073-2020
https://doi.org/10.5194/gmd-13-2073-2020
Model description paper
 | 
24 Apr 2020
Model description paper |  | 24 Apr 2020

HR3DHG version 1: modeling the spatiotemporal dynamics of mercury in the Augusta Bay (southern Italy)

Giovanni Denaro, Daniela Salvagio Manta, Alessandro Borri, Maria Bonsignore, Davide Valenti, Enza Quinci, Andrea Cucco, Bernardo Spagnolo, Mario Sprovieri, and Andrea De Gaetano

Related authors

Alternative dynamic regimes of plankton communities in perturbed environments
Guido Occhipinti, Davide Valenti, and Paolo Lazzari
EGUsphere, https://doi.org/10.5194/egusphere-2025-2994,https://doi.org/10.5194/egusphere-2025-2994, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Decadal thermohaline evolution and water mass variability along the Ligurian and Tyrrhenian shelf under climate forcing (2009–2022)
Roberto Sorgente, Antonia Di Maio, Alberto Ribotti, Andrea Cucco, Giovanni Quattrocchi, Simona Genovese, Ignazio Fontana, Giovanni Giacalone, Gualtiero Basilone, Salvatore Aronica, Marco Barra, Paola Rumolo, Antonio Bonanno, Rosalia Ferreri, and Angelo Bonanno
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-394,https://doi.org/10.5194/essd-2025-394, 2025
Preprint under review for ESSD
Short summary
Multiscale Modeling for Coastal Cities: Addressing Climate Change Impacts on Flood Events at Urban-Scale
Michele Bendoni, Francesca Caparrini, Andrea Cucco, Stefano Taddei, Iulia Anton, Roberta Paranunzio, Rossella Mocali, Massimo Perna, Michele Sacco, Giovanni Vitale, Manuela Corongiu, Alberto Ortolani, Salem Gharbia, and Carlo Brandini
EGUsphere, https://doi.org/10.5194/egusphere-2025-270,https://doi.org/10.5194/egusphere-2025-270, 2025
Short summary
A Mediterranean drifter dataset
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023,https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Hydrology of the seas around the Sardinia, western Mediterranean
Roberto Sorgente, Federica Pessini, Aldo Francis Drago, Alberto Ribotti, Simona Genovese, Marco Barra, Angelo Perilli, Giovanni Quattrocchi, Andrea Cucco, Ignazio Fontana, Giovanni Giacalone, Gualtiero Basilone, and Angelo Bonanno
EGUsphere, https://doi.org/10.5194/egusphere-2023-2193,https://doi.org/10.5194/egusphere-2023-2193, 2023
Preprint withdrawn
Short summary

Related subject area

Biogeosciences
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025,https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
pyVPRM: a next-generation vegetation photosynthesis and respiration model for the post-MODIS era
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
Geosci. Model Dev., 18, 4713–4742, https://doi.org/10.5194/gmd-18-4713-2025,https://doi.org/10.5194/gmd-18-4713-2025, 2025
Short summary
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary

Cited articles

Bagnato, E., Sprovieri, M., Barra, M., Bitetto, M., Bonsignore, M., Calabrese, S., Di Stefano, V., Oliveri, E., Parello, F., and Mazzola, S.: The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): Concentrations and evasion flux, Chemosphere, 93, 2024–2032, https://doi.org/10.1016/j.chemosphere.2013.07.025, 2013. a, b, c, d, e, f, g, h, i, j
Baines, S. B., Pace, M. L., and Karl, D. M.: Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans?, Limnol. Oceanogr., 39, 213–226, https://doi.org/10.4319/lo.1994.39.2.0213, 1994. a, b, c, d, e, f
Batrakova, N., Travnikov, O., and Rozovskaya, O.: Chemical and physical transformations of mercury in the ocean: a review, Ocean Sci., 10, 1047–1063, https://doi.org/10.5194/os-10-1047-2014, 2014. a, b, c, d, e, f
Bellucci, L. G., Giuliani, S., Romano, S., Albertazzi, S., Mugnai, C., and Frignani, M.: An integrated approach to the assessment of pollutant delivery chronologies to impacted areas: Hg in the Augusta Bay (Italy), Environ. Sci. Technol., 46, 2040–2046, https://doi.org/10.1021/es203054c, 2012. a
Bianchi, F., Dardanoni, G., Linzalone, N., and Pierini, A.: Malformazioni congenite nei nati residenti nel Comune di Gela (Sicilia, Italia), Epidemiol. Prev., 30, 19–26, 2006. a
Download
Short summary
The HR3DHG (high-resolution 3D mercury model) investigates the spatiotemporal behavior, in seawater and marine sediments, of three mercury species (elemental, inorganic, and organic mercury) in a highly polluted marine environment (Augusta Bay, southern Italy). The model shows fair agreement with the experimental data collected during six different oceanographic cruises and can possibly be used for a detailed exploration of the effects of climate change on mercury distribution.
Share