Articles | Volume 13, issue 4
https://doi.org/10.5194/gmd-13-1975-2020
https://doi.org/10.5194/gmd-13-1975-2020
Model description paper
 | 
21 Apr 2020
Model description paper |  | 21 Apr 2020

The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory

Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann

Related authors

A radar view of ice microphysics and turbulence in Arctic stratiform cloud systems
Jialin Yan, Mariko Oue, Pavlos Kollias, Edward Luke, and Fan Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2149,https://doi.org/10.5194/egusphere-2025-2149, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Detection of Multi-Modal Doppler Spectra. Part 1: Establishing Characteristic Signals in Radar Moment Data
Sarah Wugofski, Matthew R. Kumjian, Mariko Oue, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-671,https://doi.org/10.5194/egusphere-2025-671, 2025
Short summary
Synthesis of surface snowfall rates and radar-observed storm structures in 10+ years of Northeast US winter storms
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
EGUsphere, https://doi.org/10.5194/egusphere-2025-6,https://doi.org/10.5194/egusphere-2025-6, 2025
Short summary
Shallow cloud variability in Houston, Texas during the ESCAPE and TRACER field experiments
Zackary Mages, Pavlos Kollias, Bernat Puigdomenech Treserras, Paloma Borque, and Mariko Oue
EGUsphere, https://doi.org/10.5194/egusphere-2024-2984,https://doi.org/10.5194/egusphere-2024-2984, 2024
Short summary
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024,https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary

Related subject area

Atmospheric sciences
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025,https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025,https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025,https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a demonstration study
Maurin Zouzoua, Sophie Bastin, Fabienne Lohou, Marie Lothon, Marjolaine Chiriaco, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
Geosci. Model Dev., 18, 3211–3239, https://doi.org/10.5194/gmd-18-3211-2025,https://doi.org/10.5194/gmd-18-3211-2025, 2025
Short summary
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025,https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary

Cited articles

Albrecht, B. A.: Parameterization of trade-cumulus cloud amounts, J. Atmos. Sci., 38, 97–105, https://doi.org/10.1175/1520-0469(1981)038<0097:POTCCA>2.0.CO;2, 1981. 
Angevine, W, Olson, J., Kenyon, J., Gustafson, W., Endo, S., Suselj, K., and Turner, D.: Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations, Mon. Weather Rev., 146, 4303–4322, https://doi.org/10.1175/MWR-D-18-0115.1, 2018. 
Andsager, K., Beard, K. V., and Laird, N. F.: Laboratory measurements of axis ratios for large drops, J. Atmos. Sci., 56, 2673–2683, https://doi.org/10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2, 1999. 
Atmospheric Radiation Measurement (ARM) Research Facility. LASSO Data Bundles, 363618.0′′ N, 97296.0′′ W: Southern Great Plains Central Facility (C1), compiled by: Gustafson, W. I., Vogelmann, A. M., Cheng, X., Endo, S., Johnson, K. L., Krishna, B., Li, Z., Toto, T., and Xiao, H., ARM Data Archive: Oak Ridge, TN, USA, https://doi.org/10.5439/1342961, data set accessed at: September 2017. 
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley, New York, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition), 1998. 
Download
Short summary
We developed the Cloud-resolving model Radar SIMulator (CR-SIM) capable of apples-to-apples comparisons between the multiwavelength, zenith-pointing, and scanning radar and multi-remote-sensing (radar and lidar) observations and the high-resolution atmospheric model output. Applications of CR-SIM as a virtual observatory operator aid interpretation of the differences and improve understanding of the representativeness errors due to the sampling limitations of the ground-based measurements.
Share