Articles | Volume 13, issue 4
https://doi.org/10.5194/gmd-13-1865-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-1865-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BPOP-v1 model: exploring the impact of changes in the biological pump on the shelf sea and ocean nutrient and redox state
Global Systems Institute, University of Exeter, Exeter, EX4 4QE,
UK
Timothy M. Lenton
Global Systems Institute, University of Exeter, Exeter, EX4 4QE,
UK
Related authors
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Elisa Lovecchio, Nicolas Gruber, and Matthias Münnich
Biogeosciences, 15, 5061–5091, https://doi.org/10.5194/bg-15-5061-2018, https://doi.org/10.5194/bg-15-5061-2018, 2018
Short summary
Short summary
We find that the ocean's flow on scales of a few tens to a few hundred km has a central role in the lateral redistribution of the organic carbon from the coast to the open ocean. Narrow coastal filaments drive the offshore flux of organic carbon and strongly enhance its availability up to 1000 km from the coast. Eddies extend the flux up to 2000 km offshore containing 30 % of the organic matter in the open waters. Resolving these scales is essential to capture the coastal/open ocean coupling.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Sibel Eker, Timothy M. Lenton, Tom Powell, Jürgen Scheffran, Steven R. Smith, Deepthi Swamy, and Caroline Zimm
Earth Syst. Dynam., 15, 789–800, https://doi.org/10.5194/esd-15-789-2024, https://doi.org/10.5194/esd-15-789-2024, 2024
Short summary
Short summary
Cascading effects through cross-system interactions are one of the biggest promises of positive tipping points to create rapid climate and sustainability action. Here, we review these in terms of their interactions with sociotechnical systems such as energy, transport, agriculture, society, and policy.
Antony Philip Emenyu, Thomas Pienkowski, Andrew M. Cunliffe, Timothy M. Lenton, and Tom Powell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2531, https://doi.org/10.5194/egusphere-2023-2531, 2023
Short summary
Short summary
This paper explores what processes could boost adoption rates for regenerative agriculture programs in Africa and draws on insights from successful rapid scaling of TIST in east Africa. Found that the cultivation of reinforcing feedback processes that strengthened the social capital around adoption and elimination of barriers to carbon accreditation for RA projects to be key success factors and possible opportunities new and ongoing RA programs to boost their adoption rates.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Mila Kim-Chau Fiona Ong, Fenna Blomsma, and Timothy Michael Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-2361, https://doi.org/10.5194/egusphere-2023-2361, 2023
Short summary
Short summary
We investigate the initially successful transition from regional bottle reuse for mineral water to a widespread bottle reuse system in Germany, its subsequent destabilisation, and what this teaches us about tipping dynamics in packaging systems. Our findings demonstrate opportunities to create an enabling environment for change, and the role of specific reinforcing feedback loops and interventions in accelerating or impeding sustainable transitions.
Mark S. Williamson and Timothy M. Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-2036, https://doi.org/10.5194/egusphere-2023-2036, 2023
Short summary
Short summary
Climate models have transitioned to a superrotating atmospheric state under a broad range of warm climates. Such a transition would change global weather patterns should it occur. Here we simulate this transition using an idealized climate model and look for any early warnings of the superrotating state before it happens. We find several early warning indicators that we attribute to an oscillating pattern in the windfield fluctuations.
Chris A. Boulton, Joshua E. Buxton, and Timothy M. Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-2234, https://doi.org/10.5194/egusphere-2023-2234, 2023
Short summary
Short summary
Early warning signals (EWS) of tipping points (TP), are used to detect resilience loss in the incumbent regime of ICEVs, towards an electric vehicle (EV) dominated state. View share of EV ads on a UK car selling platform shows evidence of approaching a TP, with results suggesting low-mid price ranges may have passed it, likely due to achieved price parity between EVs and non-EVs in sectors of the second-hand market, showing that EWS of positive TPs are possible in social-technological systems.
Jakob Emanuel Deutloff, Hermann Held, and Timothy Michael Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-1469, https://doi.org/10.5194/egusphere-2023-1469, 2023
Short summary
Short summary
We investigate the probabilities of triggering climate tipping points under various emission scenarios and how they are altered by additional carbon emissions from tipping points within the Earth's carbon cycle. We find that even “middle of the road” emission scenarios are highly unsafe with regard to triggering climate tipping points. Under such scenarios, probabilities of triggering are increased substantially by carbon emissions from tipping points within the Earth's carbon cycle.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Thomas S. Ball, Naomi E. Vaughan, Thomas W. Powell, Andrew Lovett, and Timothy M. Lenton
Geosci. Model Dev., 15, 929–949, https://doi.org/10.5194/gmd-15-929-2022, https://doi.org/10.5194/gmd-15-929-2022, 2022
Short summary
Short summary
C-LLAMA is a simple model of the global food system operating at a country level from 2013 to 2050. The model begins with projections of diet composition and populations for each country, producing a demand for each food commodity and finally an agricultural land use in each country. The model can be used to explore the sensitivity of agricultural land use to various drivers within the food system at country, regional, and continental spatial aggregations.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Emma W. Littleton, Anna B. Harper, Naomi E. Vaughan, Rebecca J. Oliver, Maria Carolina Duran-Rojas, and Timothy M. Lenton
Geosci. Model Dev., 13, 1123–1136, https://doi.org/10.5194/gmd-13-1123-2020, https://doi.org/10.5194/gmd-13-1123-2020, 2020
Short summary
Short summary
This study presents new functionality to represent bioenergy crops and harvests in JULES, a land surface model. Such processes must be explicitly represented before the environmental effects of large-scale bioenergy production can be fully evaluated, using Earth system modelling. This new functionality allows for many types of bioenergy plants and harvesting regimes to be simulated, such as perennial grasses, short rotation coppicing, and forestry rotations.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Elisa Lovecchio, Nicolas Gruber, and Matthias Münnich
Biogeosciences, 15, 5061–5091, https://doi.org/10.5194/bg-15-5061-2018, https://doi.org/10.5194/bg-15-5061-2018, 2018
Short summary
Short summary
We find that the ocean's flow on scales of a few tens to a few hundred km has a central role in the lateral redistribution of the organic carbon from the coast to the open ocean. Narrow coastal filaments drive the offshore flux of organic carbon and strongly enhance its availability up to 1000 km from the coast. Eddies extend the flux up to 2000 km offshore containing 30 % of the organic matter in the open waters. Resolving these scales is essential to capture the coastal/open ocean coupling.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Sebastian Bathiany, Bregje van der Bolt, Mark S. Williamson, Timothy M. Lenton, Marten Scheffer, Egbert H. van Nes, and Dirk Notz
The Cryosphere, 10, 1631–1645, https://doi.org/10.5194/tc-10-1631-2016, https://doi.org/10.5194/tc-10-1631-2016, 2016
Short summary
Short summary
We examine if a potential "tipping point" in Arctic sea ice, causing abrupt and irreversible sea-ice loss, could be foreseen with statistical early warning signals. We assess this idea by using several models of different complexity. We find robust and consistent trends in variability that are not specific to the existence of a tipping point. While this makes an early warning impossible, it allows to estimate sea-ice variability from only short observational records or reconstructions.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
Mark S. Williamson, Sebastian Bathiany, and Timothy M. Lenton
Earth Syst. Dynam., 7, 313–326, https://doi.org/10.5194/esd-7-313-2016, https://doi.org/10.5194/esd-7-313-2016, 2016
Short summary
Short summary
We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.
Z. A. Thomas, F. Kwasniok, C. A. Boulton, P. M. Cox, R. T. Jones, T. M. Lenton, and C. S. M. Turney
Clim. Past, 11, 1621–1633, https://doi.org/10.5194/cp-11-1621-2015, https://doi.org/10.5194/cp-11-1621-2015, 2015
Short summary
Short summary
Using a combination of speleothem records and model simulations of the East Asian Monsoon over the penultimate glacial cycle, we search for early warning signals of past tipping points. We detect a characteristic slower response to perturbations prior to an abrupt monsoon shift at the glacial termination; however, we do not detect these signals in the preceding shifts. Our results have important implications for detecting tipping points in palaeoclimate records outside glacial terminations.
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
V. N. Livina and T. M. Lenton
The Cryosphere, 7, 275–286, https://doi.org/10.5194/tc-7-275-2013, https://doi.org/10.5194/tc-7-275-2013, 2013
Related subject area
Biogeosciences
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Learning from conceptual models – a study of emergence of cooperation towards resource protection in a social-ecological system
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
BOATSv2: New ecological and economic features improve simulations of High Seas catch and effort
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of carbon cycle in Central European beech forests
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Inferring the tree regeneration niche from inventory data using a dynamic forest model
A dynamical process-based model AMmonia–CLIMate v1.0 (AMCLIM v1.0) for quantifying global agricultural ammonia emissions – Part 1: Land module for simulating emissions from synthetic fertilizer use
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
A model of the within-population variability of budburst in forest trees
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas
Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES–HYDRO V1.0)
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Simulating Bark Beetle Outbreak Dynamics and their Influence on Carbon Balance Estimates with ORCHIDEE r7791
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
Implementation of trait-based ozone plant sensitivity in the Yale Interactive terrestrial Biosphere model v1.0 to assess global vegetation damage
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-57, https://doi.org/10.5194/gmd-2024-57, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Social-ecological systems are the subject of many sustainability problems. Because of the complexity of these systems we must be careful when intervening in them, otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation, and simulated an intervention measure to save a forest from infestation.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-26, https://doi.org/10.5194/gmd-2024-26, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Numerical models that capture key features of the global dynamics of fish communities play a crucial role in addressing the impacts of climate change and industrial fishing on ecosystems and societies. Here, we detail an update of the BiOeconomic marine Trophic Size-spectrum model that corrects the model representation of the dynamic of fisheries in the High Seas. This update also allows a better representation of biodiversity to improve future global and regional fisheries studies.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošeľa, Doroteja Bitunjac, Masa Zorana Ostrogovic Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-45, https://doi.org/10.5194/gmd-2024-45, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values, aiming to strike a balance between their local precision and broad applicability. Using Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
EGUsphere, https://doi.org/10.5194/egusphere-2024-962, https://doi.org/10.5194/egusphere-2024-962, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use, whilst taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers were lost due to NH3 emissions. Hot and dry conditions and regions with high pH soils can expect higher NH3 emissions.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, and Christoph Müller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2946, https://doi.org/10.5194/egusphere-2023-2946, 2024
Short summary
Short summary
We present a new approach to model biological nitrogen fixation (BNF) in the Lund Potsdam Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, the nitrogen (N) deficit and carbon (C) costs. The new approach improved global sums and spatial patterns of BNF compared to the scientific literature and the models’ ability to project future C and N cycle dynamics.
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024, https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
Short summary
Quantification of carbon fluxes of crops is an essential building block for the construction of a monitoring, reporting, and verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates, through a Bayesian approach, high-resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in situ flux towers and yield maps and analysed at regional scale.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023, https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary
Short summary
We present an along BGC-Argo track 1D modelling framework. The model physics is constrained by the BGC-Argo temperature and salinity profiles to reduce the uncertainties related to mixed layer dynamics, allowing the evaluation of the biogeochemical formulation and parameterization. We objectively analyse the model with BGC-Argo and satellite data and improve the model biogeochemical dynamics. We present the framework, example cases and routines for model improvement and implementations.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713, https://doi.org/10.5194/gmd-16-4699-2023, https://doi.org/10.5194/gmd-16-4699-2023, 2023
Short summary
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne-Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1216, https://doi.org/10.5194/egusphere-2023-1216, 2023
Short summary
Short summary
This research looks at how climate change influences forests, particularly how altered wind and insect activities could make forests emit, instead of absorb, carbon. We've updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, like insect outbreaks, can dramatically affect carbon storage, offering crucial insights for tackling climate change.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Yimian Ma, Xu Yue, Stephen Sitch, Nadine Unger, Johan Uddling, Lina M. Mercado, Cheng Gong, Zhaozhong Feng, Huiyi Yang, Hao Zhou, Chenguang Tian, Yang Cao, Yadong Lei, Alexander W. Cheesman, Yansen Xu, and Maria Carolina Duran Rojas
Geosci. Model Dev., 16, 2261–2276, https://doi.org/10.5194/gmd-16-2261-2023, https://doi.org/10.5194/gmd-16-2261-2023, 2023
Short summary
Short summary
Plants have been found to respond differently to O3, but the variations in the sensitivities have rarely been explained nor fully implemented in large-scale assessment. This study proposes a new O3 damage scheme with leaf mass per area to unify varied sensitivities for all plant species. Our assessment reveals an O3-induced reduction of 4.8 % in global GPP, with the highest reduction of >10 % for cropland, suggesting an emerging risk of crop yield loss under the threat of O3 pollution.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Cited articles
Acevedo-Trejos, E., Brandt, G., Steinacher, M., and Merico, A.: A glimpse
into the future composition of marine phytoplankton communities, Front.
Marine Sci., 1, 15 pp., https://doi.org/10.3389/fmars.2014.00015, 2014.
Alonso-González, I. J., Arístegui, J., Lee, C., Sanchez-Vidal, A.,
Calafat, A., Fabrés, J., Sangrá, P., Masqué, P.,
Hernández-Guerra, A., and Benítez-Barrios, V.: Role of slowly
settling particles in the ocean carbon cycle, Geophys. Res. Lett.,
37, L13608, https://doi.org/10.1029/2010GL043827, 2010.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8,
65–80, https://doi.org/10.1029/93gb03318, 1994.
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L., Yool, A., Gehlen, M., Belcher, A., Riley, J. S., Smith, H. E., and Sanders, R.: Slow-sinking
particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and
potential controls, Global Biogeochem. Cy., 31, 1051–1065, 2017.
Barrón, C. and Duarte, C. M.: Dissolved organic carbon pools and export
from the coastal ocean, Global Biogeochem. Cy., 29, 1725–1738,
https://doi.org/10.1002/2014gb005056, 2015.
Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F.,
Finkel, Z. V., Kiørboe, T., and Ward, B. A.: The biogeography of marine
plankton traits, Ecol. Lett., 16, 522–534, https://doi.org/10.1111/ele.12063, 2013.
Boyd, P. and Trull, T.: Understanding the export of biogenic particles in
oceanic waters: is there consensus?, Prog. Oceanogr., 72, 276–312,
2007.
Boyle, R., Dahl, T., Bjerrum, C., and Canfield, D.: Bioturbation and
directionality in Earth's carbon isotope record across the
Neoproterozoic–Cambrian transition, Geobiology, 16, 252–278, 2018.
Brocks, J. J., Jarrett, A. J., Sirantoine, E., Hallmann, C., Hoshino, Y.,
and Liyanage, T.: The rise of algae in Cryogenian oceans and the emergence
of animals, Nature, 548, 578–581, https://doi.org/10.1038/nature23457, 2017.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, 2009.
Burdige, D. J.: Preservation of organic matter in marine sediments:
controls, mechanisms, and an imbalance in sediment organic carbon budgets?,
Chem. Rev., 107, 467–485, 2007.
Carr, M.-E., Friedrichs, M. A., Schmeltz, M., Aita, M. N., Antoine, D.,
Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., and Behrenfeld, M.:
A comparison of global estimates of marine primary production from ocean
color, Deep-Sea Res. Pt. II, 53,
741–770, 2006.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization of
particulate organic carbon in an ocean oxygen minimum zone, Nat.
Commun., 8, 14847, https://doi.org/10.1038/ncomms14847, 2017.
Chavez, F. P. and Messié, M.: A comparison of eastern boundary
upwelling ecosystems, Prog. Oceanogr., 83, 80–96, 2009.
Cole, S. T., Wortham, C., Kunze, E., and Owens, W. B.: Eddy stirring and
horizontal diffusivity from Argo float observations: Geographic and depth
variability, Geophys. Res. Lett., 42, 3989–3997, 2015.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and Wallmann, K.: Organic carbon production, mineralisation and preservation on the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, 2015.
DeVries, T. and Weber, T.: The export and fate of organic matter in the
ocean: New constraints from combining satellite and oceanographic tracer
observations, Global Biogeochem. Cy., 31, 535–555,
https://doi.org/10.1002/2016gb005551, 2017.
Duursma, E. and Boisson, M.: Global oceanic and atmospheric oxygen
stability considered in relation to the carbon cycle and to different time
scales, Oceanol. Acta, 17, 117–141, 1994.
Fennel, K., Follows, M., and Falkowski, P. G.: The co-evolution of the
nitrogen, carbon and oxygen cycles in the Proterozoic ocean, Am. J. Sci., 305, 526–545, 2005.
Filippelli, G. M.: The Global Phosphorus Cycle: Past, Present, and Future,
Elements, 4, 89–95, https://doi.org/10.2113/gselements.4.2.89, 2008.
Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean
circulation, heat transport and mixing from hydrographic data, Nature, 408,
453, https://doi.org/10.1038/ncomms14847, 2000.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, Volume 4: Dissolved Inorganic
Nutrients (phosphate, nitrate and nitrate + nitrite, silicate), edited by: Mishonov, A., available at: https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html (last access: November 2019), 2018a.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen,
Apparent Oxygen Utilization, and Oxygen Saturation, edited by: Mishonov, A., available at: https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html (last access: November 2019), 2018b.
Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M.,
Richey, J. E., Lankao, P. R., Schulze, E.-D., and Chen, C.-T. A.: The
vulnerability of the carbon cycle in the 21st century: An assessment of
carbon-climate-human interactions, Scope-Scientific committee on problems of
the environment international council of scientific unions, 62, 45–76,
2004.
Gruber, N., Frenzel, H., Doney, S. C., Marchesiello, P., McWilliams, J. C.,
Moisan, J. R., Oram, J. J., Plattner, G.-K., and Stolzenbach, K. D.:
Eddy-resolving simulation of plankton ecosystem dynamics in the California
Current System, Deep-Sea Res. Pt. I, 53,
1483–1516, 2006.
Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., and
Keil, R. G.: Sedimentary organic matter preservation; a test for selective
degradation under oxic conditions, Am. J. Sci., 299,
529–555, 1999.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, L04606, https://doi.org/10.1029/2011GL046735, 2011.
Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J., and Pearson, A.: Dominant eukaryotic export production during ocean anoxic events
reflects the importance of recycled ,
P. Natl. Acad. Sci USA, 109, 2269–2274,
https://doi.org/10.1073/pnas.1104313109, 2012.
Inthorn, M., Wagner, T., Scheeder, G., and Zabel, M.: Lateral transport
controls distribution, quality, and burial of organic matter along
continental slopes in high-productivity areas, Geology, 34, 205–208,
https://doi.org/10.1130/g22153.1, 2006.
Iversen, M. H. and Ploug, H.: Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates, Biogeosciences, 7, 2613–2624, https://doi.org/10.5194/bg-7-2613-2010, 2010.
Iversen, M. H. and Poulsen, L. K.: Coprorhexy, coprophagy, and coprochaly
in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona
similis, Mar. Ecol. Prog. Ser., 350, 79–89, 2007.
Jackson, G. A. and Burd, A. B.: Simulating aggregate dynamics in ocean
biogeochemical models, Prog. Oceanogr., 133, 55–65, 2015.
Karakaş, G., Nowald, N., Schäfer-Neth, C., Iversen, M., Barkmann, W., Fischer, G., Marchesiello, P., and Schlitzer, R.: Impact of particle
aggregation on vertical fluxes of organic matter, Prog. Oceanogr.,
83, 331–341, 2009.
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., and Falkowski, P. G.:
Evolutionary Trajectories and Biogeochemical Impacts of Marine Eukaryotic
Phytoplankton, Annu. Rev. Ecol. Evol. S., 35,
523–556, https://doi.org/10.1146/annurev.ecolsys.35.112202.130137, 2004.
Katz, M. E., Fennel, K., and Falkowski, P. G.: Geochemical and biological
consequences of phytoplankton evolution, in: Evolution of primary producers
in the sea, Elsevier, 405–430, https://doi.org/10.1016/B978-012370518-1/50019-9, 2007.
Keeling, R. F., Najjar, R. P., Bender, M. L., and Tans, P. P.: What
atmospheric oxygen measurements can tell us about the global carbon cycle,
Global Biogeochem. Cy., 7, 37–67, 1993.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in
a Warming World, Annu. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Klausmeier, C. A., Litchman, E., and Levin, S. A.: Phytoplankton growth and
stoichiometry under multiple nutrient limitation, Limnol. Oceanogr., 49, 1463–1470, 2004.
Krumhardt, K. M., Callnan, K., Roache-Johnson, K., Swett, T., Robinson, D.,
Reistetter, E. N., Saunders, J. K., Rocap, G., and Moore, L. R.: Effects of
phosphorus starvation versus limitation on the marine cyanobacterium
Prochlorococcus MED4 I: uptake physiology, Environ. Microbiol., 15,
2114–2128, https://doi.org/10.1111/1462-2920.12079, 2013.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air–sea carbon balance, Nat. Geosci., 2,
630, https://doi.org/10.1038/ngeo612, 2009.
Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic ocean biological
pump: Insights from a global compilation of particulate organic carbon,
CaCO3, and opal concentration profiles from the mesopelagic, Global
Biogeochem. Cy., 25, GB3009, https://doi.org/10.1029/2010gb003868, 2011.
Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.: Temperature
and oxygen dependence of the remineralization of organic matter, Global
Biogeochem. Cy., 31, 1038–1050, 2017.
Lenton, T. M. and Daines, S. J.: Biogeochemical transformations in the
history of the ocean, Annu. Rev. Mar. Sci., 9, 31–58, 2017.
Lenton, T. M. and Daines, S. J.: The effects of marine eukaryote evolution
on phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic
transition, Emerging Topics in Life Sciences, 2, 267–278, 2018.
Lenton, T. M. and Watson, A. J.: Redfield revisited: 1. Regulation of
nitrate, phosphate, and oxygen in the ocean, Global Biogeochem. Cy.,
14, 225–248, 2000.
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., and
Butterfield, N. J.: Co-evolution of eukaryotes and ocean oxygenation in the
Neoproterozoic era, Nat. Geosci., 7, 257–265, https://doi.org/10.1038/ngeo2108, 2014.
Lenton, T. M., Daines, S. J., and Mills, B. J.: COPSE reloaded: an improved
model of biogeochemical cycling over Phanerozoic time, Earth-Sci.
Rev., 178, 1–28, 2018.
Lin, S., Litaker, R. W., and Sunda, W. G.: Phosphorus physiological ecology
and molecular mechanisms in marine phytoplankton, J. Phycol., 52,
10–36, https://doi.org/10.1111/jpy.12365, 2016.
Logan, G. A., Hayes, J., Hieshima, G. B., and Summons, R. E.: Terminal
Proterozoic reorganization of biogeochemical cycles, Nature, 376, 53–56,
https://doi.org/10.1038/376053a0, 1995.
Lomas, M. W., Bonachela, J. A., Levin, S. A., and Martiny, A. C.: Impact of
ocean phytoplankton diversity on phosphate uptake, P.
Natl. Acad. Sci. USA, 111, 17540–17545, https://doi.org/10.1073/pnas.1420760111,
2014.
Lovecchio, E., Gruber, N., Münnich, M., and Lachkar, Z.: On the long-range offshore transport of organic carbon from the Canary Upwelling System to the open North Atlantic, Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, 2017.
Lu, W., Ridgwell, A., Thomas, E., Hardisty, D. S., Luo, G., Algeo, T. J.,
Saltzman, M. R., Gill, B. C., Shen, Y., and Ling, H.-F.: Late inception of
a resiliently oxygenated upper ocean, Science, 361, 174–177, 2018.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E. P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon
flux through the mesopelagic ocean, P. Natl. Acad.
Sci. USA, 112, 1089–1094, 2015.
Martiny, A. C., Vrugt, J. A., and Lomas, M. W.: Concentrations and ratios of
particulate organic carbon, nitrogen, and phosphorus in the global ocean,
Sci. Data, 1, 1–7, 2014.
McDonnell, A. M. P., and Buesseler, K. O.: Variability in the average
sinking velocity of marine particles, Limnol. Oceanogr., 55,
2085–2096, https://doi.org/10.4319/lo.2010.55.5.2085, 2010.
Meyer, A., Sloyan, B. M., Polzin, K. L., Phillips, H. E., and Bindoff, N. L.: Mixing Variability in the Southern Ocean, J. Phys.
Oceanogr., 45, 966–987, https://doi.org/10.1175/jpo-d-14-0110.1, 2015.
Meyer, K., Ridgwell, A., and Payne, J.: The influence of the biological pump
on ocean chemistry: implications for long-term trends in marine redox
chemistry, the global carbon cycle, and marine animal ecosystems,
Geobiology, 14, 207–219, 2016.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models, Biogeosciences, 6, 923–935, https://doi.org/10.5194/bg-6-923-2009, 2009.
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., and Delaygue, G.: Climate
and atmospheric history of the past 420 000 years from the Vostok ice core,
Antarctica, Nature, 399, 429–436, 1999.
Ploug, H.: Small-scale oxygen fluxes and remineralization in sinking
aggregates, Limnol. Oceanogr., 46, 1624–1631, 2001.
Polovina, J. J., Mitchum, G. T., and Evans, G. T.: Decadal and basin-scale
variation in mixed layer depth and the impact on biological production in
the Central and North Pacific, 1960–88, Deep-Sea Res. Pt. I, 42, 1701–1716, 1995.
Reinhard, C. T., Planavsky, N. J., Gill, B. C., Ozaki, K., Robbins, L. J.,
Lyons, T. W., Fischer, W. W., Wang, C., Cole, D. B., and Konhauser, K. O.:
Evolution of the global phosphorus cycle, Nature, 541, 386–389, https://doi.org/10.1038/nature20772, 2017.
Ridgwell, A.: Evolution of the ocean's “biological pump”, P. Natl. Acad. Sci. USA, 108, 16485–16486, 2011.
Riley, J., Sanders, R., Marsay, C., Le Moigne, F. A., Achterberg, E. P., and
Poulton, A.: The relative contribution of fast and slow sinking particles to
ocean carbon export, Global Biogeochem. Cy., 26, 2012.
Rivkin, R. B. and Legendre, L.: Biogenic Carbon Cycling in the Upper Ocean:
Effects of Microbial Respiration, Science, 291, 2398–2400,
https://doi.org/10.1126/science.291.5512.2398, 2001.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, Princeton 2006.
Sharples, J., Middelburg, J. J., Fennel, K., and Jickells, T. D.: What
proportion of riverine nutrients reaches the open ocean?, Global
Biogeochem. Cy., 31, 39–58, https://doi.org/10.1002/2016gb005483, 2017.
Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus cycle: sensitivity to oceanic circulation, Biogeosciences, 4, 155–171, https://doi.org/10.5194/bg-4-155-2007, 2007.
Stukel, M. R. and Ducklow, H. W.: Stirring up the biological pump: Vertical
mixing and carbon export in the Southern Ocean, Global Biogeochem.
Cy., 31, 1420–1434, 2017.
Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R.,
Thompson, S. A., Black, B. A., and Bograd, S. J.: Climate change and wind
intensification in coastal upwelling ecosystems, Science, 345, 77–80,
https://doi.org/10.1126/science.1251635, 2014.
Tantanasarit, C., Englande, A. J., and Babel, S.: Nitrogen, phosphorus and
silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high
nutrient concentrations, J. Exp. Mar. Biol. Ecol.,
446, 67–75, 2013.
Van Cappellen, P. and Ingall, E. D.: Redox Stabilization of the Atmosphere
and Oceans by Phosphorus-Limited Marine Productivity, Science, 271, 493–496,
https://doi.org/10.1126/science.271.5248.493, 1996.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cy., 24, GB4030, https://doi.org/10.1029/2009GB003643, 2010.
Watson, A. J., Lenton, T. M., and Mills, B. J. W.: Ocean deoxygenation, the
global phosphorus cycle and the possibility of human-caused large-scale
ocean anoxia, Philos. T. R. Soc. A, 375, 20160318,
https://doi.org/10.1098/rsta.2016.0318, 2017.
Wilson, S. E., Steinberg, D. K., and Buesseler, K. O.: Changes in fecal
pellet characteristics with depth as indicators of zooplankton repackaging
of particles in the mesopelagic zone of the subtropical and subarctic North
Pacific Ocean, Deep-Sea Res. Pt. II,
55, 1636–1647, 2008.
Wollast, R.: Evaluation and comparison of the global carbon cycle in the
coastal zone and in the open ocean, The Sea, 10, 213–252, 1998.
Yool, A. and Tyrrell, T.: Role of diatoms in regulating the ocean's silicon
cycle, Global Biogeochem. Cy., 17, 1103, https://doi.org/10.1029/2002GB002018, 2003.
Short summary
We present here the newly developed BPOP box model. BPOP is aimed at studying the impact of large-scale changes in the biological pump, i.e. the cycle of production, export and remineralization of the marine organic matter, on the nutrient and oxygen concentrations in the shelf and open ocean. This model has been developed to investigate the global consequences of the evolution of larger and heavier phytoplankton cells but can be applied to a variety of past and future case studies.
We present here the newly developed BPOP box model. BPOP is aimed at studying the impact of...