Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1771-2020
https://doi.org/10.5194/gmd-13-1771-2020
Development and technical paper
 | 
02 Apr 2020
Development and technical paper |  | 02 Apr 2020

Geostatistical inverse modeling with very large datasets: an example from the Orbiting Carbon Observatory 2 (OCO-2) satellite

Scot M. Miller, Arvind K. Saibaba, Michael E. Trudeau, Marikate E. Mountain, and Arlyn E. Andrews

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Scot Miller on behalf of the Authors (04 Jan 2020)  Manuscript 
ED: Publish as is (11 Feb 2020) by James Annan
AR by Scot Miller on behalf of the Authors (15 Feb 2020)  Manuscript 
Download
Short summary
New observations of greenhouse gases from satellites and aircraft provide an unprecedented window into global carbon sources and sinks. However, these new datasets also present enormous computational challenges due to the sheer number of observations. In this article, we discuss the challenges of estimating greenhouse gas source and sinks using very large atmospheric datasets and evaluate several strategies for overcoming these challenges.