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S1 Efficient calculation of the GIM cost function and gradient

In the main manuscript, we describe an iterative approach to estimate the fluxes that requires calculating the cost function and

gradient using the L-BFGS algorithm paired with a variable transformation (Sect. 4.1). These calculations require computing

the product G∗s∗ (dimensionsm×1) where G∗ = I−Q− 1
2X(XTQ−1X)−1XTQ− 1

2 . The matrix G∗ has dimensionsm×m
and is often prohibitively large to compute explicitly or store in memory.5

Instead, these calculations can be broken down into smaller components that are far more computationally efficient and

require comparatively less memory:

G∗s∗ = s∗

m×1

− A
m×p

(XTB)−1

p×p

(ATs∗)

p×1

(S1)

A=Q− 1
2X (S2)

B=Q−1X (S3)10

The calculations in Eq. S1 require multiplying several matrices with p rows and/or columns, where p <<m. Furthermore, we

can compute the matrices A and B efficiently in a manner that does not require explicitly formulating or manipulating Q in its

entirety. To do so, we use a Kronecker product and reformulate using the approach described in Yadav and Michalak (2013):
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The vector Xi,∗ denotes the rows of X corresponding to time period i. The variable D− 1
2 (i,1) corresponds to the ith row

and first column of the matrix D− 1
2 . Note that each line or block in the equations above has dimensions r× p. There are q

blocks, and collectively the matrix A and B have dimensions rq× p or, equivalently, m× p. Note that A and B need only be

calculated once and can subsequently be used in every iteration of the iterative solver.

One can use an analogous approach to calculate Q(HT ξ) in the minimum residual approach to the solution (Eq. 7–8 and5

Sect. 4.2) and Q
1
2 s∗ in Eqs. 14, 16, and 17 (Sect. 4.1).

S2 Generation of conditional realizations using L-BFGS and a variable transformation

A conditional realization or simulation of the fluxes (denoted sc, dimensions m× 1) is an estimate of the fluxes that randomly

samples from the posterior distribution. A large number of conditional realizations can be used to represent the posterior

uncertainties in the fluxes. Several existing studies detail how to create conditional realizations using the GIM system of linear10

equations (Eq. 7–8, Kitanidis, 1996; Saibaba and Kitanidis, 2012). Furthermore, Kitanidis (1995) and Snodgrass and Kitanidis

(1997) describe how to generate conditional realizations using the cost function and gradient without a variable transformation

(e.g., using the L-BFGS algorithm, Sect. 4.1). Here, we detail how to create conditional realizations using L-BFGS with a

variable transformation (Eq. 11–16).

We modify the cost function and gradient functions slightly to obtain the equations required for generating conditional15

realizations (sc). In this study, we estimate s∗c using the cost function and gradient paired with a L-BFGS minimum-finding

algorithm. Subsequently, we back-transform s∗c to obtain sc:

L(s∗c) = 1
2 (z+ εc−HQ

1
2 s∗c)

TR−1(z+ εc−HQ
1
2 s∗c)+

1
2 (s

∗
c −u)

TG∗(s∗c −u) (S6)

∇L(s∗c) = − 1
2Q

1
2HTR−1(z+ εc−HQ

1
2 s∗c)+

1
2G

∗(s∗c −u) (S7)

sc =Q
1
2 s∗c (S8)20

where εc is a random n× 1 vector with εc ∼N (0,R). If R is a diagonal matrix with diagonal elements σ2
R, then εc is a

random vector with a mean of zero and standard deviation of σR. The vector u has dimensions m× 1 and is randomly drawn

from a standard normal distribution. Both vectors εc and u must be re-generated anew when estimating each new conditional

realization.

S3 Additional detail on the OCO-2 case study setup25

The inverse model requires an estimate of atmospheric transport, and we use the Weather Research and Forecasting (WRF)

model paired with the Stochastic Time-Inverted Lagrangian Transport Model (STILT) for all atmospheric modeling in this

study. We generate WRF-STILT simulations for North America and for adjacent regions of the Pacific and Atlantic Oceans

(10◦ to 80◦ latitude and -10◦ to -180◦ longitude).
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WRF is a meteorological model, and the simulations used here have been specifically generated to be compatible with STILT

(e.g.. Nehrkorn et al., 2010). STILT, by contrast, is a particle trajectory model, described in detail by Lin et al. (2003). STILT

leverages a meteorological model like WRF to estimate how CO2 fluxes in different locations and at different times would

affect atmospheric CO2 levels at the measurement locations. Specifically, we use STILT to generate a set of gridded influence

footprints with units of ppm per unit flux. Each STILT footprint subsequently becomes one of n rows in H (e.g., Eq. 1), a key5

input of the inverse model. The WRF model outputs used here have a resolution of 10km over the continental US and 30km

for other regions of North America. By contrast, we compute the STILT footprints at a spatial resolution of 1◦ by 1◦ and a

3-hourly temporal resolution. Note that we do not run WRF-STILT for every OCO-2 observation due to the computational

cost. Instead, we generate STILT footprints corresponding to every 2 seconds along the OCO-2 flight track, yielding a total of

9.88× 104 footprints for the one-year study period (Sept. 2014 – Aug. 2015).10

All of the experiments in this study are synthetic; we generate a set of OCO-2-like observations using a known CO2 flux

estimate, and we use these synthetic observations in all of the inverse modeling experiments. This setup makes it possible to

compare the CO2 fluxes estimated using the inverse model against a known set of true CO2 fluxes. We further add randomly-

generated errors to the synthetic observations – errors with a standard deviation of 2ppm, a number similar to that estimated in

a recent top-down study using OCO-2 observations (Miller et al., 2018).15

Note that we only consider biospheric CO2 fluxes in the synthetic data setup. Many inverse modeling studies of CO2 fix

anthropogenic emissions at a specific value and/or pre-subtract the modeled contribution of anthropogenic emissions from the

observations. Hence, we do not consider anthropogenic emissions in the synthetic case study here.

The covariance matrices also play a key role in the inverse modeling setup. The covariance matrix R describes errors in

the inverse model that are unrelated to uncertain fluxes – errors due to the satellite retrieval, modeled atmospheric transport,20

and errors due to the finite resolution of the inverse model. For the setup here, R is a diagonal matrix with a variance of (2

ppm)2 on the diagonals. By contrast, the covariance matrix Q describes the spatial and temporal properties of the CO2 fluxes;

this matrix helps to guide the structure of the fluxes estimated by the inverse model. We use restricted maximum likelihood

(RML) estimation to estimate the variance, decorrelation time, and decorrelation length in 3-hourly CT2017 fluxes, and we

use these values to populate Q. RML is a statistical technique that can be used to estimate the spatial and temporal properties25

that are most likely given a dataset, in this case CO2 fluxes from CT2017 (e.g., Corbeil and Searle, 1976; Kitanidis, 1986;

Mueller et al., 2008). In this application, RML requires minimizing a cost function that describes the likelihood of the data

(i.e., CT2017 fluxes) given some guess for the variance, decorrelation time, and decorrelation length. For the case studies here,

we use unique values of the variance for each month, and we use a single estimate for the decorrelation length and time that

has been averaged across all months. Furthermore, we set up Q such that fluxes from one three-hour time window covary with30

fluxes from the same three hour window on adjacent days. However, fluxes from one three-hour time window will not covary

with fluxes from other time windows on the same day. For example, fluxes from noon to 15:00 UTC on May 5 will covary with

fluxes from noon to 15:00 UTC on May 4 and May 6 but will not covary with fluxes from 9am to noon or 15:00 to 18:00 on

May 5. This setup follows that of Gourdji et al. (2010) and Gourdji et al. (2012).
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Figure S1. The standard deviation of CO2 fluxes from CT2017 at long spatial and temporal distances, separated by month. The estimates

here are used to construct the Q covariance matrix. The estimated values show a distinct seasonal cycle that peaks during summer months.

The estimated covariance matrix parameters show a distinct seasonality. For the six week case study, we estimate a standard

deviation in the fluxes at long spatial and temporal distances of 10.0 µmol m−2 s−1 (i.e., the square root of the diagonal

elements of Q), a decorrelation length of 555 km (assuming a spherical covariance model), and a correlation time of 9.8 days

(also assuming a spherical model). Figure S1 shows the standard deviation of the fluxes at long spatial and temporal distances

by month for the one year case study. This figure has a distinct sinusoidal shape, and the standard deviations are highest during5

summer months. In that case study, we also use a decorrelation length of 586 km and a decorrelation time of 12.4 days. These

values are the average of the values estimated for each month of the year.

The matrix X is also a key input to the GIM. In many studies, the matrix X can include predictor variables that may

help describe the spatial and/or temporal distribution of the fluxes. For the setup here, X is non-informative and consists of

columns of ones. As a result of this setup, the fluxes estimated by the GIM will only reflect the information in the atmospheric10

observations and will not reflect any prior information about the fluxes. In the 6-week case study for June and July 2015, X has

dimensions m× 8. Each column of X corresponds to a different 3-hour time period of the day (for a total of 8 columns). For

the annual case, we include one column for each month. Both of these setups for X have been used in past GIM studies (e.g.,

Gourdji et al., 2008, 2012). The different columns of X account for the fact that the fluxes have different overall magnitudes

at different times of day and/or during different months of the year. The setup here also avoids including too many columns in15

X; the coefficients (β) estimated by the GIM will scale each column in X to fit the observations. The estimated values of these

coefficients are not guided by any prior estimate. As a result, there is nothing to regularize the coefficient (β) estimates, and

those coefficients are only estimated using the atmospheric observations. Hence, we do not want to include too many columns

in X to avoid overfitting the atmospheric observations and/or obtaining unrealistic estimates for the coefficients (β).
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