Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-979-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-979-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a dynamic dust source map for NMME-DREAM v1.0 model based on MODIS Normalized Difference Vegetation Index (NDVI) over the Arabian Peninsula
Stavros Solomos
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Athens, Greece
Department of Geography and Urban Planning, National Space Science and Technology Center, United Arab Emirates University, United Arab Emirates
Abdelgadir Abuelgasim
CORRESPONDING AUTHOR
Department of Geography and Urban Planning, National Space Science and Technology Center, United Arab Emirates University, United Arab Emirates
Christos Spyrou
Department of Geography, Harokopio University of Athens (HUA), El. Venizelou Str. 70, 17671 Athens, Greece
Ioannis Binietoglou
National Institute of R&D for Optoelectronics, 409 Atomiştilor Str., Magurele 77125, Romania
Slobodan Nickovic
Republic Hydrometeorological Service of Serbia, 11000 Belgrade, Serbia
Related authors
Christos Spyrou, Ilias Fountoulakis, Stavros Solomos, Nikolaos Papadimitriou, Alkiviadis Bais, Julian Groebner, Daniela Meloni, and Christos Zerefos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3570, https://doi.org/10.5194/egusphere-2025-3570, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Dust particles originating from desert areas of the planet have significant radiative impacts on the ground and atmospheric column. The magnitude of the dust radiative effect is dependent on their optical properties and mineralogical content. Therefore, we upgrade the METAL-WRF model to incorporate the direct radiative impact of the minerals in dust. The capabilities of the model to simulate the chemical composition and associated impacts is significantly improved.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Antonis Gkikas, Vincenzo Obiso, Carlos Pérez García-Pando, Oriol Jorba, Nikos Hatzianastassiou, Lluis Vendrell, Sara Basart, Stavros Solomos, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 18, 8757–8787, https://doi.org/10.5194/acp-18-8757-2018, https://doi.org/10.5194/acp-18-8757-2018, 2018
Short summary
Short summary
The present study investigates the direct radiative effects (DREs), induced during 20 intense Mediterranean desert dust outbreaks, based on regional short-term numerical simulations of the NMMB-MONARCH model: more specifically, (i) the DREs and their associated impacts on temperature and surface sensible and latent heat fluxes, (ii) the feedbacks on dust AOD and dust emissions, and (iii) the possible improvements in short-term forecasts (up to 84 h) of temperature and radiation.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Eleni Marinou, Vassilis Amiridis, Ioannis Binietoglou, Athanasios Tsikerdekis, Stavros Solomos, Emannouil Proestakis, Dimitra Konsta, Nikolaos Papagiannopoulos, Alexandra Tsekeri, Georgia Vlastou, Prodromos Zanis, Dimitrios Balis, Ulla Wandinger, and Albert Ansmann
Atmos. Chem. Phys., 17, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, https://doi.org/10.5194/acp-17-5893-2017, 2017
Short summary
Short summary
We provide a 3D multiyear analysis on the evolution of Saharan dust over Europe, using a dust product retrieved from the CALIPSO satellite and using EARLINET methods. The results reveal for the first time the 9-year 3D seasonal patterns of dust over its transport paths from the Sahara towards the Mediterranean. The dataset is unique with respect to its potential applications, including the evaluation of dust models and the estimation of ice nuclei concentration profiles from space.
Stavros Solomos, Albert Ansmann, Rodanthi-Elisavet Mamouri, Ioannis Binietoglou, Platon Patlakas, Eleni Marinou, and Vassilis Amiridis
Atmos. Chem. Phys., 17, 4063–4079, https://doi.org/10.5194/acp-17-4063-2017, https://doi.org/10.5194/acp-17-4063-2017, 2017
Short summary
Short summary
An extreme dust storm affected Middle East and the Eastern Mediterranean in September 2015. This event was produced by a combination of meteorological and land-use properties. Analysis with remote sensing observations and modeling simulations reveals (i) transport of warm moist air from the Red and Arabian seas, (ii) formation of a thermal low over Syria, (iii) convective outflows and haboob formation (i.e. propagating dust walls), and (iv) changes in land-use and dust erodibility due to war.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Alexandra Tsekeri, Vassilis Amiridis, Franco Marenco, Athanasios Nenes, Eleni Marinou, Stavros Solomos, Phil Rosenberg, Jamie Trembath, Graeme J. Nott, James Allan, Michael Le Breton, Asan Bacak, Hugh Coe, Carl Percival, and Nikolaos Mihalopoulos
Atmos. Meas. Tech., 10, 83–107, https://doi.org/10.5194/amt-10-83-2017, https://doi.org/10.5194/amt-10-83-2017, 2017
Short summary
Short summary
The In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) provides vertical profiles of aerosol optical, microphysical and hygroscopic properties from airborne in situ and remote sensing measurements. The algorithm is highly advantageous for aerosol characterization in humid conditions, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. IRRA can find valuable applications in aerosol–cloud interaction schemes and in validation of active space-borne sensors.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann
Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, https://doi.org/10.5194/acp-15-7127-2015, 2015
Short summary
Short summary
LIVAS is a 3-D multi-wavelength global aerosol and cloud optical database optimized for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The global database is based on CALIPSO observations at 532nm, while for the conversion at 355nm EARLINET data are utilized.
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
Christos Spyrou, Ilias Fountoulakis, Stavros Solomos, Nikolaos Papadimitriou, Alkiviadis Bais, Julian Groebner, Daniela Meloni, and Christos Zerefos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3570, https://doi.org/10.5194/egusphere-2025-3570, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Dust particles originating from desert areas of the planet have significant radiative impacts on the ground and atmospheric column. The magnitude of the dust radiative effect is dependent on their optical properties and mineralogical content. Therefore, we upgrade the METAL-WRF model to incorporate the direct radiative impact of the minerals in dust. The capabilities of the model to simulate the chemical composition and associated impacts is significantly improved.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
África Barreto, Emilio Cuevas, Rosa D. García, Judit Carrillo, Joseph M. Prospero, Luka Ilić, Sara Basart, Alberto J. Berjón, Carlos L. Marrero, Yballa Hernández, Juan José Bustos, Slobodan Ničković, and Margarita Yela
Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022, https://doi.org/10.5194/acp-22-739-2022, 2022
Short summary
Short summary
In this study, we categorise the different patterns of dust transport over the subtropical North Atlantic and for the first time robustly describe the dust vertical distribution in the Saharan Air Layer (SAL) over this region. Our results revealed the important role that both dust and water vapour play in the radiative balance in summer and winter and confirm the role of the SAL in the formation of mid-level clouds as a result of the activation of heterogeneous ice nucleation processes.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Abderrazak Bannari and Abdelgader Abuelgasim
SOIL Discuss., https://doi.org/10.5194/soil-2021-55, https://doi.org/10.5194/soil-2021-55, 2021
Manuscript not accepted for further review
Short summary
Short summary
The study aims to analyze the ability of vegetation indices (VI’s) to map soil salt contents compared to the potential of evaporite mineral indices (EMI). The method used is based on simulated and satellite data acquired over two study areas: Kuwait-State and Omongwa salt-pan in Namibia. The obtained results demonstrated that it is impossible for VI’s to discriminate or to predict soil salinity. While, the EMI performed very well for the salt-affected soil classes mapping.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Nikolaos Papagiannopoulos, Lucia Mona, Aldo Amodeo, Giuseppe D'Amico, Pilar Gumà Claramunt, Gelsomina Pappalardo, Lucas Alados-Arboledas, Juan Luís Guerrero-Rascado, Vassilis Amiridis, Panagiotis Kokkalis, Arnoud Apituley, Holger Baars, Anja Schwarz, Ulla Wandinger, Ioannis Binietoglou, Doina Nicolae, Daniele Bortoli, Adolfo Comerón, Alejandro Rodríguez-Gómez, Michaël Sicard, Alex Papayannis, and Matthias Wiegner
Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, https://doi.org/10.5194/acp-18-15879-2018, 2018
Short summary
Short summary
A stand-alone automatic method for typing observations of the European Aerosol Research Lidar Network (EARLINET) is presented. The method compares the observations to model distributions that were constructed using EARLINET pre-classified data. The algorithm’s versatility and adaptability makes it suitable for network-wide typing studies.
Doina Nicolae, Jeni Vasilescu, Camelia Talianu, Ioannis Binietoglou, Victor Nicolae, Simona Andrei, and Bogdan Antonescu
Atmos. Chem. Phys., 18, 14511–14537, https://doi.org/10.5194/acp-18-14511-2018, https://doi.org/10.5194/acp-18-14511-2018, 2018
Short summary
Short summary
A new aerosol typing algorithm based on artificial neural networks (ANNs) has been developed. The algorithm is providing the most probable aerosol type based on EARLINET LIDAR profiles. The ANNs used by the algorithm were trained using synthetic data, for which a new aerosol model has been developed. Blind tests on EARLINET data samples showed the capability of the algorithm to retrieve the aerosol type from a large variety of data, with different quality and physical content.
Antonis Gkikas, Vincenzo Obiso, Carlos Pérez García-Pando, Oriol Jorba, Nikos Hatzianastassiou, Lluis Vendrell, Sara Basart, Stavros Solomos, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 18, 8757–8787, https://doi.org/10.5194/acp-18-8757-2018, https://doi.org/10.5194/acp-18-8757-2018, 2018
Short summary
Short summary
The present study investigates the direct radiative effects (DREs), induced during 20 intense Mediterranean desert dust outbreaks, based on regional short-term numerical simulations of the NMMB-MONARCH model: more specifically, (i) the DREs and their associated impacts on temperature and surface sensible and latent heat fluxes, (ii) the feedbacks on dust AOD and dust emissions, and (iii) the possible improvements in short-term forecasts (up to 84 h) of temperature and radiation.
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, https://doi.org/10.5194/amt-11-2897-2018, 2018
Short summary
Short summary
The paper's scope is to evaluate the performance of in situ atmospheric aerosol instrumentation on board unmanned aerial vehicles (UAVs) and the performance of algorithms used to calculate the aerosol mass from remote sensing instruments by comparing the two independent techniques to each other. Our results indicate that UAV-based aerosol measurements (using specific in situ and remote sensing instrumentation) can provide reliable ways to determine the aerosol mass throughout the atmosphere.
Lev D. Labzovskii, Alexandros Papayannis, Ioannis Binietoglou, Robert F. Banks, Jose M. Baldasano, Florica Toanca, Chris G. Tzanis, and John Christodoulakis
Ann. Geophys., 36, 213–229, https://doi.org/10.5194/angeo-36-213-2018, https://doi.org/10.5194/angeo-36-213-2018, 2018
Short summary
Short summary
This study aims to evaluate synergetic methods for relative humidity vertical profiling based on lidar–radiometer and lidar–simulation combinations. We demonstrate the effectiveness of combined lidar-based methods for relative humidity profiling in comparison with radiometer observations or WRF simulations and assess temperature-related uncertainties in resulting relative humidity profiles. All results are acquired during the HygrA-CD campaign in Athens (Greece) in 2014.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Eleni Marinou, Vassilis Amiridis, Ioannis Binietoglou, Athanasios Tsikerdekis, Stavros Solomos, Emannouil Proestakis, Dimitra Konsta, Nikolaos Papagiannopoulos, Alexandra Tsekeri, Georgia Vlastou, Prodromos Zanis, Dimitrios Balis, Ulla Wandinger, and Albert Ansmann
Atmos. Chem. Phys., 17, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, https://doi.org/10.5194/acp-17-5893-2017, 2017
Short summary
Short summary
We provide a 3D multiyear analysis on the evolution of Saharan dust over Europe, using a dust product retrieved from the CALIPSO satellite and using EARLINET methods. The results reveal for the first time the 9-year 3D seasonal patterns of dust over its transport paths from the Sahara towards the Mediterranean. The dataset is unique with respect to its potential applications, including the evaluation of dust models and the estimation of ice nuclei concentration profiles from space.
Jann Schrod, Daniel Weber, Jaqueline Drücke, Christos Keleshis, Michael Pikridas, Martin Ebert, Bojan Cvetković, Slobodan Nickovic, Eleni Marinou, Holger Baars, Albert Ansmann, Mihalis Vrekoussis, Nikos Mihalopoulos, Jean Sciare, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, https://doi.org/10.5194/acp-17-4817-2017, 2017
Short summary
Short summary
In this paper we present data of ice-nucleating particles (INPs) from a 1-month campaign in the Eastern Mediterranean using unmanned aircraft systems (UASs, drones) and offline sampling with subsequent laboratory analysis. To our knowledge, this is the first time INPs were measured onboard a UAS. We find that INP concentrations were 1 magnitude higher aloft than at the ground, highlighting that surface-based measurement of INP may only be of limited significance for the situation at cloud level.
Stavros Solomos, Albert Ansmann, Rodanthi-Elisavet Mamouri, Ioannis Binietoglou, Platon Patlakas, Eleni Marinou, and Vassilis Amiridis
Atmos. Chem. Phys., 17, 4063–4079, https://doi.org/10.5194/acp-17-4063-2017, https://doi.org/10.5194/acp-17-4063-2017, 2017
Short summary
Short summary
An extreme dust storm affected Middle East and the Eastern Mediterranean in September 2015. This event was produced by a combination of meteorological and land-use properties. Analysis with remote sensing observations and modeling simulations reveals (i) transport of warm moist air from the Red and Arabian seas, (ii) formation of a thermal low over Syria, (iii) convective outflows and haboob formation (i.e. propagating dust walls), and (iv) changes in land-use and dust erodibility due to war.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Alexandra Tsekeri, Vassilis Amiridis, Franco Marenco, Athanasios Nenes, Eleni Marinou, Stavros Solomos, Phil Rosenberg, Jamie Trembath, Graeme J. Nott, James Allan, Michael Le Breton, Asan Bacak, Hugh Coe, Carl Percival, and Nikolaos Mihalopoulos
Atmos. Meas. Tech., 10, 83–107, https://doi.org/10.5194/amt-10-83-2017, https://doi.org/10.5194/amt-10-83-2017, 2017
Short summary
Short summary
The In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) provides vertical profiles of aerosol optical, microphysical and hygroscopic properties from airborne in situ and remote sensing measurements. The algorithm is highly advantageous for aerosol characterization in humid conditions, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. IRRA can find valuable applications in aerosol–cloud interaction schemes and in validation of active space-borne sensors.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
Slobodan Nickovic, Bojan Cvetkovic, Fabio Madonna, Marco Rosoldi, Goran Pejanovic, Slavko Petkovic, and Jugoslav Nikolic
Atmos. Chem. Phys., 16, 11367–11378, https://doi.org/10.5194/acp-16-11367-2016, https://doi.org/10.5194/acp-16-11367-2016, 2016
Short summary
Short summary
Specific physical and mineralogical properties of desert dust particles cause extremely efficient production of ice crystals in clouds, thus influencing climate and weather even in regions far from dust sources. This study describes a methodology for predicting conditions of cold cloud formation due to dust. This approach required development of an integrated dust-atmospheric modelling system, designed to improve operational forecasts of weather in general, and cloud/precipitation in particular.
María José Granados-Muñoz, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, Juan Antonio Bravo-Aranda, Ioannis Binietoglou, Sergio Nepomuceno Pereira, Sara Basart, José María Baldasano, Livio Belegante, Anatoli Chaikovsky, Adolfo Comerón, Giuseppe D'Amico, Oleg Dubovik, Luka Ilic, Panos Kokkalis, Constantino Muñoz-Porcar, Slobodan Nickovic, Doina Nicolae, Francisco José Olmo, Alexander Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez, Kerstin Schepanski, Michaël Sicard, Ana Vukovic, Ulla Wandinger, François Dulac, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 16, 7043–7066, https://doi.org/10.5194/acp-16-7043-2016, https://doi.org/10.5194/acp-16-7043-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the Mediterranean region regarding aerosol microphysical properties during the ChArMEx/EMEP campaign in July 2012. An in-depth analysis of the horizontal, vertical, and temporal dimensions is performed using LIRIC, proving the algorithm's ability in automated retrieval of microphysical property profiles within a network. A validation of four dust models is included, obtaining fair good agreement, especially for the vertical distribution of the aerosol.
N. Huneeus, S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. Pérez García-Pando, G. Pejanovic, S. Nickovic, P. Arsenovic, M. Schulz, E. Cuevas, J. M. Baldasano, J. Pey, S. Remy, and B. Cvetkovic
Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, https://doi.org/10.5194/acp-16-4967-2016, 2016
Short summary
Short summary
Five dust models are evaluated regarding their performance in predicting an intense Saharan dust outbreak affecting western and northern Europe (NE). Models predict the onset and evolution of the event for all analysed lead times. On average, differences among the models are larger than differences in lead times for each model. The models tend to underestimate the long-range transport towards NE. This is partly due to difficulties in simulating the vertical dust distribution and horizontal wind.
Nikolaos Papagiannopoulos, Lucia Mona, Lucas Alados-Arboledas, Vassilis Amiridis, Holger Baars, Ioannis Binietoglou, Daniele Bortoli, Giuseppe D'Amico, Aldo Giunta, Juan Luis Guerrero-Rascado, Anja Schwarz, Sergio Pereira, Nicola Spinelli, Ulla Wandinger, Xuan Wang, and Gelsomina Pappalardo
Atmos. Chem. Phys., 16, 2341–2357, https://doi.org/10.5194/acp-16-2341-2016, https://doi.org/10.5194/acp-16-2341-2016, 2016
Short summary
Short summary
Satellite-derived products must undergo data evaluation with reference data sets in order to identify any possible reasons of discrepancy or to assess their representativity. In that direction, data coming from CALIPSO satellite were compared with observations from the ground. We identified a CALIPSO underestimation that could be linked to an assumption in the satellites' algorithms. The proposed correction improves the performance and could enhance aerosol modeling.
G. D'Amico, A. Amodeo, H. Baars, I. Binietoglou, V. Freudenthaler, I. Mattis, U. Wandinger, and G. Pappalardo
Atmos. Meas. Tech., 8, 4891–4916, https://doi.org/10.5194/amt-8-4891-2015, https://doi.org/10.5194/amt-8-4891-2015, 2015
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J. M. Baldasano, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
Atmos. Meas. Tech., 8, 4587–4613, https://doi.org/10.5194/amt-8-4587-2015, https://doi.org/10.5194/amt-8-4587-2015, 2015
Short summary
Short summary
In the framework of the ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. The paper describes the measurement protocol and discusses the delivery of real-time and near-real-time lidar-derived products.
I. Binietoglou, S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. M. Baldasano, D. Balis, L. Belegante, J. A. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comerón, G. D'Amico, M. Filioglou, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi, L. Mona, F. Monti, C. Muñoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S. N. Pereira, M. R. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodríguez-Gómez, M. Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeri, A. Vukovic, U. Wandinger, and J. Wagner
Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015, https://doi.org/10.5194/amt-8-3577-2015, 2015
V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann
Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, https://doi.org/10.5194/acp-15-7127-2015, 2015
Short summary
Short summary
LIVAS is a 3-D multi-wavelength global aerosol and cloud optical database optimized for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The global database is based on CALIPSO observations at 532nm, while for the conversion at 355nm EARLINET data are utilized.
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
A. Vukovic, M. Vujadinovic, G. Pejanovic, J. Andric, M. R. Kumjian, V. Djurdjevic, M. Dacic, A. K. Prasad, H. M. El-Askary, B. C. Paris, S. Petkovic, S. Nickovic, and W. A. Sprigg
Atmos. Chem. Phys., 14, 3211–3230, https://doi.org/10.5194/acp-14-3211-2014, https://doi.org/10.5194/acp-14-3211-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
S. Nickovic, A. Vukovic, and M. Vujadinovic
Atmos. Chem. Phys., 13, 9169–9181, https://doi.org/10.5194/acp-13-9169-2013, https://doi.org/10.5194/acp-13-9169-2013, 2013
Related subject area
Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Chempath 1.0: an open-source pathway analysis program for photochemical models
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Atmospheric moisture tracking with WAM2layers v3
A new set of indicators for model evaluation complementing FAIRMODE's modelling quality objective (MQO)
Impact of multiple radar wind profiler data assimilation on convective-scale short-term rainfall forecasts: OSSE studies over the Beijing–Tianjin–Hebei region
New submodel for emissions from Explosive Volcanic ERuptions (EVER v1.1) within the Modular Earth Submodel System (MESSy, version 2.55.1)
Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
The third Met Office Unified Model–JULES Regional Atmosphere and Land Configuration, RAL3
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a demonstration study
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Similarity-based analysis of atmospheric organic compounds for machine learning applications
The Atmospheric Potential Oxygen forward Model Intercomparison Project (APO-MIP1): Evaluating simulated atmospheric transport of air-sea gas exchange tracers and APO flux products
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Development of a High-Resolution Coupled SHiELD-MOM6 Model. Part I – Model Overview, Coupling Technique, and Validation in a Regional Setup
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
A REtrieval Method for optical and physical Aerosol Properties in the stratosphere (REMAPv1)
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025, https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Short summary
In order to investigate the feedbacks of chemical data assimilation on meteorological forecasts, we developed a strongly coupled aerosol–meteorology four-dimensional variational (4D-Var) assimilation system, CMA-GFS-AERO 4D-Var, based on the framework of the incremental analysis scheme of the China Meteorological Administration Global Forecasting System (CMA-GFS) operational global numerical weather model. The results show that assimilating BC (black carbon) observations can generate analysis increments not only for BC but also for atmospheric variables.
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025, https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Short summary
We develop the data-driven method of dynamic mode decomposition for producing a robust and stable surrogate reduced-order model of atmospheric chemistry dynamics. The model is computationally efficient, provides interpretable patterns of activity, and produces uncertainty quantification metrics. It is ideal for the forecasting of atmospheric chemistry in a computationally tractable manner.
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025, https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Short summary
This study evaluates various machine learning and statistical methods for interpolating turbulent heat flux data over the Tibetan Plateau. The Transformer model showed the best performance, leading to the development of the Transformer_CNN model, which combines global and local attention mechanisms. Results show that Transformer_CNN outperforms the other models and was successfully applied to interpolate heat flux data from 2007 to 2016.
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025, https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Short summary
We introduce a new simulation platform based on the Dutch Atmospheric Large-Eddy Simulation (DALES) to simulate carbon dioxide (CO2) emissions and their dispersion in turbulent environments at a hectometer resolution. This model incorporates both anthropogenic emission inventories and online ecosystem fluxes. Simulation results for the main urban area in the Netherlands demonstrate the strong potential of DALES to improve CO2 emission modeling and to support mitigation strategies.
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025, https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Short summary
A numerical model that simulates the measurement processes behind the ground-based radars used to detect volcanic ash clouds is introduced. Using weather radars to detect volcanic clouds is not ideal, as fine ash particles are smaller than raindrops and remain undetected. We evaluate the performance of weather radars to study ash clouds and to identify optimal frequencies that balance the trade-off between a higher return signal and the higher path attenuation that comes at these higher frequencies.
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025, https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary
Short summary
Photochemical models describe how the composition of the atmosphere changes due to chemical reactions, transport, and other processes. These models are useful for studying the composition of the Earth's and other planets' atmospheres. Understanding the results of these models can be difficult. Here, we build on previous work to develop open-source code that can identify the reaction chains (pathways) that produce the results of these models, facilitating the understanding of these results.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
Geosci. Model Dev., 18, 4335–4352, https://doi.org/10.5194/gmd-18-4335-2025, https://doi.org/10.5194/gmd-18-4335-2025, 2025
Short summary
Short summary
We introduce a new version of WAM2layers (Water Accounting Model – 2 layers), a computer program that tracks how the weather brings water from one place to another. It uses data from weather and climate models, whose resolution is steadily increasing. Processing the latest data had become a challenge, and the updates presented here ensure that WAM2layers runs smoothly again. We also made it easier to use the program and to understand its source code. This makes it more transparent, reliable, and easier to maintain.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
Geosci. Model Dev., 18, 4231–4245, https://doi.org/10.5194/gmd-18-4231-2025, https://doi.org/10.5194/gmd-18-4231-2025, 2025
Short summary
Short summary
We assess relevance and utility indicators by evaluating nine Copernicus Atmospheric Monitoring Service models in calculated air pollutant values. For NO2, the results highlight difficulties at traffic stations. For PM2.5 and PM10 the bias and winter–summer gradients reveal issues. O3 evaluation shows that seasonal gradients are useful. Overall, the indicators reveal model limitations, yet there is a need to reconsider the strictness of some indicators for certain pollutants.
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev., 18, 4075–4101, https://doi.org/10.5194/gmd-18-4075-2025, https://doi.org/10.5194/gmd-18-4075-2025, 2025
Short summary
Short summary
A series of observing system simulation experiments are conducted to assess the impact of multiple radar wind profiler (RWP) networks on convective-scale numerical weather prediction. Results from three southwest-type heavy rainfall cases in the Beijing–Tianjin–Hebei region suggest the added forecast skill of ridge and foothill networks associated with the Taihang Mountains over the existing RWP network. This research provides valuable guidance for designing optimal RWP networks in the region.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
Geosci. Model Dev., 18, 3985–4007, https://doi.org/10.5194/gmd-18-3985-2025, https://doi.org/10.5194/gmd-18-3985-2025, 2025
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfur aerosols, potentially persisting for several years. We developed a new submodel, Explosive Volcanic ERuptions (EVER), that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup, successfully evaluated with satellite observations. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Gunho Loren Oh and Philip H. Austin
Geosci. Model Dev., 18, 3921–3940, https://doi.org/10.5194/gmd-18-3921-2025, https://doi.org/10.5194/gmd-18-3921-2025, 2025
Short summary
Short summary
It is difficult to study the behaviour of a cloud field due to internal fluctuations and observational noise. We perform a high-resolution simulation of the boundary-layer cloud field and introduce statistical and numerical techniques, including machine-learning models, to study the evolution of the cloud field, which shows a periodic behaviour. We aim to use the numerical techniques to identify the underlying behaviour within noisy observations.
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025, https://doi.org/10.5194/gmd-18-3965-2025, 2025
Short summary
Short summary
Modelling the size distribution and the number concentration is important to represent ultrafine particles. A new analytic formulation is presented to compute coagulation partition coefficients, allowing us to lower the numerical diffusion associated with the resolution of aerosol dynamics. The significance of this effect is assessed in a 0D box model and over greater Paris with a chemistry transport model, using different size resolutions of the particle distribution.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025, https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Short summary
Aerosol data assimilation has gained popularity as it combines the advantages of modelling and observation. However, few studies have addressed the challenges in the prior vertical structure. Different observations are assimilated to examine the sensitivity of assimilation to vertical structure. Results show that assimilation can optimize the dust field in general. However, if the prior introduces an incorrect structure, the assimilation can significantly deteriorate the integrity of the aerosol profile.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025, https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
Short summary
Tuning a climate model means adjusting uncertain parameters in the model to best match observations like the global radiation balance and cloud cover. This is usually done by running many simulations of the model with different settings, which can be time-consuming and relies heavily on expert knowledge. To make this process faster and more objective, we developed a machine learning emulator to create a large ensemble and apply a method called history matching to find the best settings.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025, https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Short summary
We developed a deep learning method to estimate CO2 emissions from power plants using satellite images. Trained and validated on simulated data, our model accurately predicts emissions despite challenges like cloud cover. When applied to real OCO3 satellite images, the results closely match reported emissions. This study shows that neural networks trained on simulations can effectively analyse real satellite data, offering a new way to monitor CO2 emissions from space.
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025, https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Short summary
Microphysics model-based diagnosis, such as the spectral bin model (SBM), has recently been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM has a relatively higher accuracy for dry-snow and wet-snow events, whereas it has lower accuracy for rain events. When the microphysics scheme in the SBM was optimized for the corresponding region, the accuracy for rain events improved.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025, https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
Short summary
Reducing emissions of methane, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from individual basin to global scales with continuous emissions monitoring.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Maurin Zouzoua, Sophie Bastin, Fabienne Lohou, Marie Lothon, Marjolaine Chiriaco, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
Geosci. Model Dev., 18, 3211–3239, https://doi.org/10.5194/gmd-18-3211-2025, https://doi.org/10.5194/gmd-18-3211-2025, 2025
Short summary
Short summary
This study proposes using a statistical model to freeze errors due to differences in environmental forcing when evaluating the surface turbulent heat fluxes from numerical simulations with observations. The statistical model is first built with observations and then applied to the simulated environment to generate possibly observed fluxes. This novel method provides insight into differently evaluating the numerical formulation of turbulent heat fluxes with a long period of observational data.
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025, https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
Short summary
This paper presents the result of many years of effort of the author, who developed an original mathematical numerical model of heat and moisture exchange processes in soil, vegetation, and snow. The author relied on her 30 years of research experience in atmospheric numerical modelling. The presented model is the fruit of the author's research on physical processes at the surface–atmosphere interface and their numerical approximation and aims at improving numerical weather forecasting and climate simulations.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Short summary
We estimate carbon monoxide emissions through inverse modeling, an approach where measurements of tracers in the atmosphere are fed to a model to calculate backwards in time (inverse) where the tracers came from. We introduce measurements from a new satellite instrument and show that, in most places globally, these on their own sufficiently constrain the emissions. This alleviates the need for additional datasets, which could shorten the delay for future carbon monoxide source estimates.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025, https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Short summary
Machine learning has the potential to aid the identification of organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning models in atmospheric sciences.
Yuming Jin, Britton B. Stephens, Matthew C. Long, Naveen Chandra, Frédéric Chevallier, Joram J. D. Hooghiem, Ingrid T. Luijkx, Shamil Maksyutov, Eric J. Morgan, Yosuke Niwa, Prabir K. Patra, Christian Rödenbeck, and Jesse Vance
EGUsphere, https://doi.org/10.5194/egusphere-2025-1736, https://doi.org/10.5194/egusphere-2025-1736, 2025
Short summary
Short summary
We carry out a comprehensive atmospheric transport model (ATM) intercomparison project. This project aims to evaluate errors in ATMs and three air-sea O2 exchange products by comparing model simulations with observations collected from surface stations, ships, and aircraft. We also present a model evaluation framework to independently quantify transport-related and flux-related biases that contribute to model-observation discrepancies in atmospheric tracer distributions.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Joseph Mouallem, Kun Gao, Brandon G. Reichl, Lauren Chilutti, Lucas Harris, Rusty Benson, Niki Zadeh, Jing Chen, Jan-Huey Chen, and Cheng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1690, https://doi.org/10.5194/egusphere-2025-1690, 2025
Short summary
Short summary
We introduce a new high-resolution model that couple the atmosphere and ocean to better simulate extreme weather events. It combines GFDL’s advanced atmospheric and ocean models with a powerful coupling system that allows robust and efficient two-way interactions. Simulations show the model accurately captures hurricane behavior and its impact on the ocean. It also runs efficiently on supercomputers. This model is a key step toward improving extreme weather forecast.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Andrin Jörimann, Timofei Sukhodolov, Beiping Luo, Gabriel Chiodo, Graham Mann, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2025-145, https://doi.org/10.5194/egusphere-2025-145, 2025
Short summary
Short summary
Aerosol particles in the stratosphere affect our climate. Climate models therefore need an accurate description of their properties and evolution. Satellites measure how strongly aerosol particles extinguish light passing through the stratosphere. We describe a method to use such aerosol extinction data to retrieve the number and sizes of the aerosol particles and calculate their optical effects. The resulting data sets for models are validated against ground-based and balloon observations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Cited articles
Almazrouia, M., NazrulIslama, M., Jonesa, P. D., Athara, H., and
AshfaqurRahmana, M.: Recent climate change in the Arabian Peninsula: Seasonal
rainfall and temperature climatology of Saudi Arabia for 1979–2009, Atmos.
Res., 111, 29–45, 2012.
Anderson, J., Hardy, E., Roach, J., and Witmer, R.: A land use and land cover
classification system for use with remote sensing data, U.S. Geological
Survey, United States Government Printing Office, Washington, USGS
Professional Paper 964, 1976.
Anisimov, A., Tao, W., Stenchikov, G., Kalenderski, S., Prakash, P. J., Yang,
Z.-L., and Shi, M.: Quantifying local-scale dust emission from the Arabian
Red Sea coastal plain, Atmos. Chem. Phys., 17, 993–1015,
https://doi.org/10.5194/acp-17-993-2017, 2017.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models, Atmos.
Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006.
Brown, M. E., Pinzon, J. E., Didan, K., Morisette, J. T., and Tucker, C. J.:
Evaluation of the consistency of long-term NDVI time series derived from
AVHRR, SPOT-Vegetation, SeaWIFS, MODIS and Land-SAT ETM+, IEEE T. Geosci.
Remote, 44, 1787–1793, 2006.
Chakraborty, A., Behera, S. K., Mujumdar, M., Ohba, R., and Yamagata, T.:
Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD
and ENSO, Mon. Weather Rev., 134, 598–617, 2006.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
DeFries, R. S. and Townshend, J. R. G.: NDVI-derived land cover
classifications at a global scale, Int. J. Remote Sens., 15, 3567–3586,
https://doi.org/10.1080/01431169408954345, 1994.
Didan, K. : MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN
Grid V006 [Data set], NASA EOSDIS LP DAAC, https://doi.org/10.5067/MODIS/MOD13A1.006,
2015.
Didan, K., Munoz, A. B., Solano, R., and Huete, A.: MODIS Vegetation Index
User's Guide (MOD13 Series); Version3.0; University of Arizona, Tucson, AZ,
USA, 2015.
Esmaeil, N., Gharagozloo, M., Rezaei, A., and Grunig, G.: Dust events,
pulmonary diseases and immune system, American Journal of Clinical and
Experimental Immunology, 3, 20–29, 2014.
Georgi, F.: A particle dry-deposition parameterization scheme for in tracer
transport models, J. Geophys. Res., 91, 9794–9806, 1986.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A.,
Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R.,
Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the
Aerosol Robotic Network (AERONET) Version 3 database – automated
near-real-time quality control algorithm with improved cloud screening for
Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech.,
12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated with the
GOCART model, J. Geophys. Res., 106, 20255–20273.
https://doi.org/10.1029/2000JD000053, 2001.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012RG000388, 2012.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – a federated instrument network and data
archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998.
Huete, A. R., Justice, C., and van Leeuwen, W., MODIS Vegetation index (MOD
13): Algorithm Theoretical Basis Document, NASA Goddard Space Flight Center,
Greenbelt, Maryland 20771, 1999.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Janjic, Z. I., Gerrity Jr., J. P., and Nickovic, S.: An Alternative Approach
to Nonhydrostatic Modeling, Mon. Weather Rev., 129, 1164–1178, 2001.
Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M. E., Zheng, T., You, R.,
Diehl, T., Ginoux, P., and Kucsera, T.: The effect of the dynamic surface
bareness on dust source function, emission, and distribution, J. Geophys.
Res.-Atmos., 118, 871–886, https://doi.org/10.1029/2012JD017907, 2013.
Kumar, P., Sokolik, I. N., and Nenes, A.: Measurements of cloud condensation
nuclei activity and droplet activation kinetics of fresh unprocessed regional
dust samples and minerals, Atmos. Chem. Phys., 11, 3527–3541,
https://doi.org/10.5194/acp-11-3527-2011, 2011.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D.
S., and Flanner, M. G.: The size distribution of desert dust aerosols and its
impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014
Mamouri, R.-E., Ansmann, A., Nisantzi, A., Solomos, S., Kallos, G., and
Hadjimitsis, D. G.: Extreme dust storm over the eastern Mediterranean in
September 2015: satellite, lidar, and surface observations in the Cyprus
region, Atmos. Chem. Phys., 16, 13711–13724,
https://doi.org/10.5194/acp-16-13711-2016, 2016.
Mitsakou, C., Kallos, G., Papantoniou, N., Spyrou, C., Solomos, S., Astitha,
M., and Housiadas, C.: Saharan dust levels in Greece and received inhalation
doses, Atmos. Chem. Phys., 8, 7181–7192, https://doi.org/10.5194/acp-8-7181-2008,
2008.
Nickovic, S., Kallos, G., Papadopoulos, A., and Kakaliagou, O.: A model for
prediction of desert dust cycle in the atmosphere, J. Geophys. Res., 106,
18113–18129, 2001.
Nickovic, S., Cvetkovic, B., Madonna, F., Rosoldi, M., Pejanovic, G.,
Petkovic, S., and Nikolic, J.: Cloud ice caused by atmospheric mineral dust
– Part 1: Parameterization of ice nuclei concentration in the NMME-DREAM
model, Atmos. Chem. Phys., 16, 11367–11378, https://doi.org/10.5194/acp-16-11367-2016,
2016.
Olson, J. S., Watts, J. A., and Allison, L. J.: Carbon in Live Vegetation of
Major World Ecosystems, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
USA, Report ORNL-5862, 1983.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V.,
Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona,
L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and
Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar
network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014,
2014.
Parajuli, S. P. and Zender, C. S.: Connecting geomorphology to dust emission
through high-resolution mapping of global land cover and sediment supply,
Aeolian Res., 27, 47–65, https://doi.org/10.1016/j.aeolia.2017.06.002, 2017.
Pejanovic, G., Nickovic, S., Vujadinovic, M., Vukovic, A., Djurdjevic, V.,
and Dacic, M.: Atmospheric deposition of minerals in dust over the open ocean
and possible consequences on climate, WCRP OSC Climate Research in Service to
Society, 24–28 October 2011, Denver, CO, USA, 2011.
Pérez, C., Nickovic, S., Baldasano, J. M., Sicard, M., Rocadenbosch, F.,
and Cachorro, V. E.: A long Saharan dust event over the western
Mediterranean: Lidar, Sun photometer observations, and regional dust
modeling, J. Geophys. Res., 111, D15214, https://doi.org/10.1029/2005JD006579, 2006.
Platnick, S., King, M. D., Meyer, K. G., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Ridgway, B., and Riedi, J. :
MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System,
Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MOD08_M3.061, 2017.
Prospero J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental characterization of global sou7rces of atmospheric soil dust
identified with the nimbus 7 total ozone mapping spectrometer (TOMS)
absorbing aerosol product, Rev. Geophys., 40, 1002,
https://doi.org/10.1029/2000RG000095, 2002.
Rouse Jr., R. H., Haas, J. A., Schell, and Deering, D. W.: Monitoring
vegetation systems in the Great Plains with ERTS, NASA. Goddard Space Flight
Center 3d ERTS-1 Symp., Vol. 1, Sect. A, 309–317, 1974.
Solano, R., Didan, K., Jacobson, A., and Huete, A.: MODIS Vegetation Index
User's Guide, ver. 2.0, Vegetation Index and Phenology Lab, The University of
Arizona, available at: https://vip.arizona.edu/documents/MODIS/ (last
access: 27 February 2019), 2010.
Solomos, S., Kallos, G., Kushta, J., Astitha, M., Tremback, C., Nenes, A.,
and Levin, Z.: An integrated modeling study on the effects of mineral dust
and sea salt particles on clouds and precipitation, Atmos. Chem. Phys., 11,
873–892, https://doi.org/10.5194/acp-11-873-2011, 2011.
Solomos, S., Ansmann, A., Mamouri, R.-E., Binietoglou, I., Patlakas, P.,
Marinou, E., and Amiridis, V.: Remote sensing and modelling analysis of the
extreme dust storm hitting the Middle East and eastern Mediterranean in
September 2015, Atmos. Chem. Phys., 17, 4063–4079,
https://doi.org/10.5194/acp-17-4063-2017, 2017.
Spyrou, C.: Direct radiative impacts of desert dust on atmospheric water
content, Aerosol Sci. Tech., 52, 693–701,
https://doi.org/10.1080/02786826.2018.1449940, 2018.
Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C., and
Iacono, M. J.: Modeling the radiative effects of desert dust on weather and
regional climate, Atmos. Chem. Phys., 13, 5489–5504,
https://doi.org/10.5194/acp-13-5489-2013, 2013.
Spyrou, C., Mitsakou, C., Kallos, G., Louka, P., and Vlastou, G.: An improved
limited area model for describing the dust cycle in the atmosphere,
J. Geophys. Res., 115, D17211, https://doi.org/10.1029/2009JD013682, 2010.
Torge, A., Macke, A., Heinold, B., and Wauer, J.: Solar radiative transfer
simulations in Saharan dust plumes: particle shapes and 3-D effect, Tellus B,
63, 770–780, https://doi.org/10.1111/j.1600-0889.2011.00560.x, 2011.
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D., Pak, E. W.,
Mahoney, R., Vermote, E., and El Saleous, N.: An extended AVHRR 8-km NDVI
data set compatible with MODIS and SPOT vegetation NDVI data, Int. J. Remote
Sens., 26, 4485–4498, 2005.
Vukovic, A., Vujadinovic, M., Pejanovic, G., Andric, J., Kumjian, M. R.,
Djurdjevic, V., Dacic, M., Prasad, A. K., El-Askary, H. M., Paris, B. C.,
Petkovic, S., Nickovic, S., and Sprigg, W. A.: Numerical simulation of “an
American haboob”, Atmos. Chem. Phys., 14, 3211–3230,
https://doi.org/10.5194/acp-14-3211-2014, 2014.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T.
J., Ojima, D., Pielke Sr., R. A., Taylor, C., Tague, C., Tremback, C. J., and
Vidale, P. J.: Coupled atmosphere-biophysicshydrology models for
environmental modeling, J. Appl. Meteorol., 39, 931–944, 2000.
Xue Y., Sellers P. J., Kinter J. L., and Shukla J.: A simplified biosphere
model for global climate studies, J. Climate, 4, 345–364, 1991.
Short summary
In this research we developed a time-dependent dust source map for NMME-DREAM v1.0 model based on the MODIS Normalized Digital Vegetation Index (NDVI). Areas with NDVI < 0.1 are classified as active dust sources. The new modeling system is tested for the analysis of dust particle dispersion over SW Asia using a mesoscale model grid increment of 0.1° × 0.1° km for a period of 1 year. Simulated AOD increased compared to the static dust source approach and there was an increase in dust loads.
In this research we developed a time-dependent dust source map for NMME-DREAM v1.0 model based...