Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 677–698, 2019
https://doi.org/10.5194/gmd-12-677-2019
Geosci. Model Dev., 12, 677–698, 2019
https://doi.org/10.5194/gmd-12-677-2019

Model description paper 15 Feb 2019

Model description paper | 15 Feb 2019

GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems

Katherine Calvin et al.

Related authors

Modeling perennial bioenergy crops in the E3SM land model
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244,https://doi.org/10.5194/gmd-2021-244, 2021
Preprint under review for GMD
Short summary
GCAM-USA v5.3_water_dispatch: Integrated modeling of subnational U.S. energy, water, and land systems within a global framework
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-197,https://doi.org/10.5194/gmd-2021-197, 2021
Preprint under review for GMD
Short summary
Modeling Land Use and Land Cover Change: Using a Hindcast to Estimate Economic Parameters in gcamland v2.0
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-338,https://doi.org/10.5194/gmd-2020-338, 2020
Revised manuscript under review for GMD
Short summary
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020,https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Calibration and analysis of the uncertainty in downscaling global land use and land cover projections from GCAM using Demeter (v1.0.0)
Min Chen, Chris R. Vernon, Maoyi Huang, Katherine V. Calvin, and Ian P. Kraucunas
Geosci. Model Dev., 12, 1753–1764, https://doi.org/10.5194/gmd-12-1753-2019,https://doi.org/10.5194/gmd-12-1753-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021,https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Vertical grid refinement for stratocumulus clouds in the radiation scheme of the global climate model ECHAM6.3-HAM2.3-P3
Paolo Pelucchi, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 14, 5413–5434, https://doi.org/10.5194/gmd-14-5413-2021,https://doi.org/10.5194/gmd-14-5413-2021, 2021
Short summary
Cloud Feedbacks from CanESM2 to CanESM5.0 and their influence on climate sensitivity
John G. Virgin, Christopher G. Fletcher, Jason N. S. Cole, Knut von Salzen, and Toni Mitovski
Geosci. Model Dev., 14, 5355–5372, https://doi.org/10.5194/gmd-14-5355-2021,https://doi.org/10.5194/gmd-14-5355-2021, 2021
Short summary
ATTRICI v1.1 – counterfactual climate for impact attribution
Matthias Mengel, Simon Treu, Stefan Lange, and Katja Frieler
Geosci. Model Dev., 14, 5269–5284, https://doi.org/10.5194/gmd-14-5269-2021,https://doi.org/10.5194/gmd-14-5269-2021, 2021
Short summary
Mitigation of the double ITCZ syndrome in BCC-CSM2-MR through improving parameterizations of boundary-layer turbulence and shallow convection
Yixiong Lu, Tongwen Wu, Yubin Li, and Ben Yang
Geosci. Model Dev., 14, 5183–5204, https://doi.org/10.5194/gmd-14-5183-2021,https://doi.org/10.5194/gmd-14-5183-2021, 2021
Short summary

Cited articles

Akimoto, K., Sano, F., Homma, T., Oda, J., Nagashima, M., and Kii, M.: Estimates of GHG emission reduction potential by country, sector, and cost, Energ. Policy, 38, 3384–3393, 2010. 
Bauer, N., Rose, S. K., Fujimori, S., van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori, M.: Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison, Clim. Change, https://doi.org/10.1007/s10584-018-2226-y, online first, 2018. 
Bond-Lamberty, B., Dorheim, K. R., Cui, Y., Horowitz, R. L., Snyder, A. C., Calvin, K. V., and Feng, L.: The gcamdata package: preparation, synthesis, and tracking of input data for the GCAM integrated human-earth systems model, J. Open Res. Softw., accepted, 2018. 
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007. 
Bosetti, V., Massetti, E., and Tavoni, M.: The Witch Model: Structure, Baseline, Solutions, 12064, 1–56, 2007. 
Download
Short summary
This paper describes GCAM v5.1, an open source model that represents the linkages between energy, water, land, climate, and economic systems. GCAM examines the future evolution of these systems through the end of the 21st century. It can be used to examine, for example, how changes in population, income, or technology cost might alter crop production, energy demand, or water withdrawals, or how changes in one region’s demand for energy affect energy, water, and land in other regions.