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Abstract. This paper describes GCAM v5.1, an open source
model that represents the linkages between energy, water,
land, climate, and economic systems. GCAM is a market
equilibrium model, is global in scope, and operates from
1990 to 2100 in 5-year time steps. It can be used to examine,
for example, how changes in population, income, or tech-
nology cost might alter crop production, energy demand, or
water withdrawals, or how changes in one region’s demand
for energy affect energy, water, and land in other regions.
This paper describes the model, including its assumptions,
inputs, and outputs. We then use 11 scenarios, varying the
socioeconomic and climate policy assumptions, to illustrate
the results from the model. The resulting scenarios demon-
strate a wide range of potential future energy, water, and land
uses. We compare the results from GCAM v5.1 to historical
data and to future scenario simulations from earlier versions
of GCAM and from other models. Finally, we provide infor-
mation on how to obtain the model.

1 Introduction

Researchers and decision makers are increasingly interested
in understanding the many ways in which human and Earth
systems interact with one another, at scales from local (e.g., a
city) to regional to global (Palmer and Smith, 2014). For ex-
ample, how might new emerging technologies such as pho-
tovoltaic cells or new batteries influence the way that en-

ergy is consumed and used, and what might this mean for
greenhouse gas (GHG) emissions, air pollution, international
markets for fossil fuels, and access to energy? How might
changes in population, income, or technology cost alter crop
production, energy demand, or water withdrawals? How do
changes in one region’s demand for energy affect energy, wa-
ter, and land in other regions?

A number of modeling tools and frameworks have been
established to explore questions such as these, representing
the multiple interactions among human and Earth systems
(Calvin and Bond-Lamberty, 2018; Weyant, 2017). This pa-
per introduces the most recent version of one such model,
GCAM v5.1. GCAM represents the behavior of and com-
plex interactions between five major systems – energy, wa-
ter, land, climate, and the economy – at global and regional
scales. The model simulates changes in these systems for
decades into the future. GCAM has its roots in the Edmonds–
Reilly model (Edmonds and Reilly, 1983a–c) which was de-
veloped in the late 1970s and early 1980s and has been con-
tinuously updated since then (Kim et al., 2006; Wise et al.,
2009, 2014a). Over time, as scientific questions have become
more complex, GCAM has also evolved in complexity, tran-
sitioning from a focus solely on energy and CO2 emissions
to an examination of questions at the intersection of energy,
water, land, socioeconomics, and climate.

The model represents all of these systems in a single, in-
tegrated computational platform rather than linking among
models operating in different platforms, although some com-
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ponents (e.g., the climate system) can also be run individu-
ally. This allows insights that are not possible in single sec-
tor or single system models. Models such as GCAM are de-
signed to answer “what if” questions about the future; that is,
they help us understand how the future will evolve under a
particular set of conditions and how the system will change
under the influence of external factors. For example, users
can examine the influence of changes in socioeconomics or
policy on energy, water, and land in GCAM (as shown in
Sect. 4). The model can also be used to explore the implica-
tions of changes in one region on other regions (e.g., Wise et
al., 2014b).

GCAM is computationally inexpensive1 enabling the ex-
ploration of multiple scenarios (Calvin et al., 2014, 2017;
Graham et al., 2018) and large ensembles (Lamontagne et
al., 2018) to develop robust insights given the significant un-
certainty in future conditions. Individual component modules
in GCAM are designed to capture key characteristics of the
underlying systems; however, because its focus is on the in-
teractions among systems, it does not include the level of
detail found in sector- or process-specific models.

There are a number of models in the community with simi-
lar overall scope to GCAM, although each has a unique struc-
ture and focus. The IMAGE (Stehfest et al., 2014) model
also contains a dynamic-recursive energy system module,
which is soft-linked with a detailed land-use module, rep-
resenting a different trade-off between integration and phys-
ical detail. There are a number of models with some form
of inter-temporal optimization such as DNE21 (Akimoto et
al., 2010), REMIND (Kriegler et al., 2017), MESSAGE-
GLOBIOM (Fricko et al., 2017), and WITCH (Bosetti et
al., 2007). Economic structures also vary, from partial-
equilibrium for MESSAGE-GLOBIOM and IMAGE to com-
putable general equilibrium for AIM/CGE (Fujimori et al.,
2017) and ENV-Linkages (Chateau et al., 2014). Several re-
cent papers provide comparisons of GCAM to these models
and many others, including discussions of model structure,
input data, and results (Bauer et al., 2018; Popp et al., 2017;
Rao et al., 2017).

In the remainder of this paper, we provide an introduction
to and an overview of GCAM v5.1, released on 9 July 2018.
Section 2 describes the model, including each of its com-
ponent parts. Section 3 describes some simulations to illus-
trate the capabilities of the model. Model results are high-
lighted in Sect. 4. Section 5 is focused on discussion and
conclusions. Finally, Sect. 6 provides information on how
to obtain the model. This paper provides a general overview
of the model; more detailed documentation is available on-
line at http://jgcri.github.io/gcam-doc (last access: 6 Febru-
ary 2019).

1A single 100-year simulation using GCAM runs in 10–15 min
on a laptop. More complex options, e.g., limiting radiative forcing
to a particular level, requires numerous sequential 100-year simula-
tions increasing the runtime.

Figure 1. Linkages between the five major systems (energy, water,
land, socioeconomics, and climate) in GCAM v5.1.

2 Model description

2.1 Overview of GCAM

GCAM represents five different interacting and intercon-
nected systems: energy, water, land, socioeconomics, and
climate (Fig. 1). These systems are represented at a vari-
ety of spatial scales (Fig. 2). For example, economic and
energy systems are represented by 32 geopolitical regions,
which is sufficient to gain many insights about broad inter-
national socioeconomic and energy dynamics. However, the
land and water system is subdivided into water basins (result-
ing in 384 land–water regions), due to the need to link water
and agriculture in order to effectively represent the interac-
tions between these systems (e.g., the implications of future
droughts, or the hydrological implications of agriculture pro-
duction).

2.2 The GCAM core

The GCAM core is the model component where the eco-
nomic decisions and dynamic interactions between the var-
ious systems are represented (Fig. 3). It is written in C++,
uses XML input files, and generates a hierarchical output
database.

The operating principle for GCAM is that of market equi-
librium. Representative agents in GCAM use information on
prices, costs, and other relevant factors to make decisions
about the allocation of resources. These representative agents
exist throughout the model, for example for regional elec-
tricity sectors, regional refining sectors, regional energy de-
mand sectors (e.g., a representative residential building), and
agents who allocate land among competing uses within any
given region. Markets are the means by which these repre-
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Figure 2. GCAM regional mapping for energy and economy (a), land (b), water (c), and climate (d). Regions are based on geopolitical
boundaries for energy and economy, on water basins for water, and on a combination of geopolitical boundaries and water basins for land.

Figure 3. Conceptual schematic of the operation of the GCAM
core.

sentative agents interact with one another. Agents pass sup-
ply and demand for goods and services into the markets.
Markets exist for physical flows such as electricity or agri-
cultural commodities, but they can also exist for other types
of goods and services, such as tradable emissions permits.
GCAM solves for a set of market prices such that supplies
and demands are equal for all markets in the model. The
GCAM solution process involves iterating on market prices
until this equilibrium is reached within a user-specified toler-
ance level.

As an example of this process, in any single model period,
GCAM derives a demand for natural gas starting with all of
the uses to which natural gas might be put, such as passen-

ger and freight transport, power generation, hydrogen pro-
duction, heating, cooling and cooking, fertilizer production,
and other industrial energy uses. Those demands depend on
the external assumptions about, for example, electricity gen-
erating technology efficiencies, but also on the price of all of
the commodities in the model. GCAM computes the supplies
of all of the goods and services in the model. For example,
it calculates the amount of natural gas that suppliers would
likely supply given their available technology for extracting
resources, and the market price. The model sums all of the
supplies and demands for commodities and adjusts prices, so
that in every market during that period supplies of everything
from rice to solar power match demands.

GCAM is a dynamic recursive model, i.e., decision-
makers base their decisions only on currently available infor-
mation rather than optimizing over the full future, as is the
case in inter-temporal optimization models. For long-lived
capital stocks, decision-makers in GCAM factor in potential
future costs and revenues but do this assuming today’s mar-
ket prices. After it solves each period, the model uses the
resulting state of the world, including the consequences of
decisions made in that period (e.g., resource depletion, cap-
ital stock retirements and installations, changes to the land-
scape, and emissions into the atmosphere), as a starting point
for the next time step.

Decision-making throughout GCAM uses a logit formu-
lation (Clarke and Edmonds, 1993; McFadden, 1973). In
such a formulation, options are ordered based on preference,
with either cost (as in the energy system) or profit (as in the
land system) determining the order. However, the single best
choice does not capture the entire market. A variety of factors
not captured in the model, such as individual preferences, lo-
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cal variations in cost/profit, and simple happenstance, cause
some of the market to go to alternatives that, based on their
cost or profit alone, are theoretically inferior choices. The ex-
act share a given option receives in GCAM depends on the
logit exponent and the share weight:

si =
αic

γ

i∑N
j=1αj c

γ

j

,

where si , ci , αi are the share, cost, and share weight of tech-
nology i, respectively, and γ is the logit exponent.2 Logit
exponents are exogenously specified and dictate the degree
to which cost or profit determines share; exponents that are
larger in absolute magnitude result in a more “winner takes
all” behavior. Share weights are mostly calculated in the his-
torical period to ensure that GCAM replicates historical data;
however, these are on occasion overwritten in future periods,
for example, to represent a scenario where a now relatively
new technology becomes widely available. The general phi-
losophy in GCAM is to maintain share weights at their cal-
ibrated values (which ensures that the model replicates his-
tory) unless (1) we consider that the past is not a good analog
for the future, as with emerging technologies (e.g., solar and
wind) where information barriers or lack of infrastructure
may prevent their adoption today, but those factors will likely
be ameliorated with time, or (2) the specific scenario being
produced necessitates changes to the share weights (e.g., so-
lar and wind in the SSP1).

2.3 The GCAM data system

The GCAM data system produces inputs for the dynamical
core. The data system is written as an easily installable R
package, uses CSV input files, and generates XML files used
as inputs to the GCAM core. These files contain both histor-
ical information used to initialize GCAM, as well as param-
eters that govern changes in the future. GCAM is an input-
driven model (Kim et al., 2006) where the specific model
regions, sectors, and technologies are dynamically created as
their data specifications are parsed. As a result, many user
changes are implemented via changes to the data system and
do not require changes in the dynamical core.

For historical information, the GCAM data system starts
with country-level inventory data on energy production and
consumption, agricultural production and consumption, land
use and land cover, water demand, and emissions of 24
species. These data are aggregated to GCAM regions, com-
modities, and sectors. Adjustments are made to the data
as needed to fill in missing information and to ensure that
supplies and demands balance during the historical period
(1990–2010). For the future parameters, the GCAM data sys-
tem uses information about population and labor produc-

2For some sectors, GCAM uses a slight variation on this for-
mula (see http://jgcri.github.io/gcam-doc/choice.html, last access:
6 February 2019).

tivity, information about technology cost and performance,
information about resource bases, and information on non-
CO2 mitigation potential. These data are also aggregated and
mapped to GCAM regions, technologies, and sectors.

Additional information on the data used in each module
is described in the sections below. Additional information on
the data system’s code and processing steps is given in Bond-
Lamberty et al. (2018).

2.4 Major changes from previous versions

Over time, GCAM has evolved to incorporate new features
and more detail, such as more detailed land use (starting
with GCAM v3), increased regional resolution (starting with
GCAM v4), and incorporating water demand (starting with
v5). The most recent updates (relative to GCAM v4) include
the following:

– incorporating water demands,

– changing the land regions to be based on water basins,
instead of agro-ecological zones,

– including multiple agricultural management practices,
which enables intensification,

– including five alternative socioeconomic pathways,

– updating to a newer version of the climate model, and

– including a new data processing system.

2.5 Socioeconomics

The scale of human systems in GCAM is set by two vari-
ables, population and the gross domestic product (GDP).
Population is an externally prescribed input to the model.
GCAM requires values for population for each of the
32 geopolitical regions in each simulation period, both histor-
ical and future. GDP in each region and each period is a func-
tion of the previous period’s GDP, the size of the labor force,
and the labor productivity growth rate for that period. The
size of the labor force is determined by the population size
and the exogenously specified labor force participation rate.
The labor productivity growth rate is an externally prescribed
value, which measures inflation-adjusted growth in the value
of goods and services produced, and was originally used by
Edmonds and Reilly (1983a). The initial, historical year GDP
value is a model input. At present, the socioeconomic vari-
ables, population and GDP, are independent of other GCAM
components. That is, while population and GDP are deter-
minants of activity levels in energy, water, land, and climate
modules, activities in those sectors do not influence either
population or GDP in GCAM v5.1.

Population data are from the Shared Socioeconomic Path-
way 2 (SSP2), “Middle-of-the-Road” scenario, as developed
by KC and Lutz (2017). Initial year GDP, labor productivity
growth rates, and labor force participation rates are derived
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to match external GDP data and forecasts from three sources:
(1) the U.S. Department of Agriculture (2015) for 1990,
2005, and 2010; (2) the International Monetary Fund (2014)
for 2011 to 2020; and (3) Delink et al. (2017), using SSP2,
for 2021 through 2100.

The two primary outputs are population and GDP by re-
gion and time period. GDP is provided in constant US dol-
lars for all regions. For non-US regions, GDP is available
at either market exchange rates (MER) or purchasing power
parity (PPP).

2.6 Energy

The energy system of GCAM includes a comprehensive rep-
resentation of energy production, transformation, distribu-
tion, and use, in each of 32 geopolitical regions. It starts with
the resource bases of nine primary fuels in each region, the
outputs of which pass through a series of energy handling,
transformation, and distribution processes, finishing with the
consumption of primary and final energy commodities by
end-use sectors. The fundamental drivers of the energy sys-
tem in each region are the population and GDP, which set the
scale of the demands in the end-use sectors. Along any en-
ergy supply chain, the outputs of each modeled process are
the inputs to the next.

For most primary fuels, resource production is modeled
with exogenous supply curves, which prescribe the availabil-
ity of energy production as a function of the energy price.
Resources may be renewable (e.g., wind and solar), or de-
pletable (e.g., fossil fuels and uranium). Renewable resource
supply curves are indicated in EJ yr−1, whereas depletable
resources are indicated as cumulative resource quantities (in
EJ), which are drawn down in each time period as each
resource is consumed. Resource costs, including depletion-
related increases in fossil resource prices, may be counter-
acted by exogenous technical change, which lowers extrac-
tion costs.

Aside from primary resource production, each sector, or
process, in the energy system is represented with explicit
technologies that consume inputs and produce outputs that
then serve as inputs to other sectors. For example, the en-
ergy transformation sectors include a variety of technologies
representing different electricity generation facilities (includ-
ing different fuel sources and different technologies), differ-
ent refineries (e.g., petroleum, bioliquids, coal-to-liquids and
gas-to-liquids), different gas processing facilities, and differ-
ent hydrogen production facilities. Each technology is spec-
ified with a different set of inputs, costs, and performance
characteristics. End-use demands form the end point of the
modeled energy supply chains. Structurally, each sector con-
sists of at least one subsector, each of which has at least
one technology. At both the subsector and technology lev-
els, multiple options may compete for share on the basis of
the relative costs, as well as preferences which are calibrated
from historical choices. The market share of each technol-

ogy within a subsector, or for each subsector within a sector,
is endogenous based on the logit choice formulation.

Subsector costs are computed as the output-weighted aver-
age of technology costs, and sector costs are computed as the
weighted average of subsector costs. As such, the fundamen-
tal determinant of the cost of each modeled sector (i.e., com-
modity or market good) is the weighted average cost of its
production technologies. These are computed as the sum of
three explicitly represented cost components, each of which
is indicated in dollars per unit of output: energy-input costs
(i.e., the sum of the costs of all modeled inputs to the technol-
ogy), exogenous “non-energy-input” costs (e.g., amortized
capital costs and operations and maintenance costs), and an-
cillary costs such as emissions penalties. The costs of each
energy-input are equal to the price of the relevant commodity
multiplied by its exogenous input–output coefficient. Ancil-
lary costs are specific to the policy type; for policies with an
emissions price, the additional cost is equal to the emissions
price multiplied by the amount of emissions of the specified
species released per unit of output. Emissions prices can be
exogenously specified or generated by the model if a con-
straint or target is imposed; these prices can vary across time,
region, and gas.

Technologies in the energy system may produce emissions
of a variety of species. The CO2 emissions are computed
as the sum of each energy-input times its exogenous car-
bon content, minus the fuel carbon content of the output fuel
(if non-zero). For technologies with carbon capture and stor-
age (CCS), or technologies that are otherwise assumed to se-
quester carbon for a long time (e.g., industrial feedstocks),
the amount sequestered is also deducted from the reported
emissions.

Non-CO2 emissions from any modeled technology may
include greenhouse gases (e.g., CH4, fluorinated gases) and
air pollutants (e.g., CO, NOx , and black carbon). The emis-
sions of each species in each region, technology, and time
period are computed as the technology’s output multiplied
by an emissions factor, which is generally derived from his-
torical data in the model calibration years. In future years
the emission factor may evolve as control rates change in
response to growth in per-capita GDP and/or carbon pric-
ing. This allows, for instance, for a reduction in the emis-
sions factors of pollutants as countries become more wealthy
(e.g., Smith, 2005), and a reduction in emissions factors of
greenhouse gases in response to climate policies (e.g., EPA,
2013). This approach is designed to capture general trends in
emissions factors, but does not explicitly represent individual
technologies or policies that may be adopted.

The primary data source for all energy flow volumes in
the historical years is the IEA Energy Balances (IEA, 2012),
which is used for calibration of energy production, trans-
formation, energy losses in distribution, and consumption.
Global production and consumption volumes of coal, gas,
and oil are scaled to remove any statistical differences and
net stock changes, and electricity demand volumes are simi-
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larly scaled within each region so as to remove any net trade
and statistical differences.

Primary resource supply curves for coal, gas, and oil
are from Rogner (1997). Wind and distributed solar pho-
tovoltaic (PV) supply curves are from Zhou et al. (2012)
and Denholm (2008), respectively. Supply curves for mu-
nicipal waste-derived biomass energy are from Gregg and
Smith (2010); other sources of biomass energy are supplied
by the land component and discussed later. Hydropower is
modeled as an exogenous output in all future years; the quan-
tities are based generally on economic and technical po-
tentials estimated by the International Hydropower Associa-
tion (2000). Almost all technologies in the energy system are
assigned exogenous costs and efficiencies (or, input–output
coefficients); electric power plant costs and efficiencies are
from the inputs to the 2016 Annual Energy Outlook (EIA,
2016), although historical efficiencies are calibrated based on
the energy balance data. A similar approach is taken for other
technologies.

Final demand sectors include buildings (residential and
commercial), transportation (passenger and freight, includ-
ing road, rail, air, and shipping), and industrial (fertilizer,
cement, and general industry) sectors. The input data to the
transportation sector are documented in Mishra et al. (2013),
and the input data to the buildings sector are documented in
Clarke et al. (2018). Fertilizer production assumptions come
mostly from IEA (2007), and cement production assump-
tions are from Worrell et al. (2001) and IEA (2007). The en-
ergy module also includes simple representations of a num-
ber of urban processes, such as wastewater treatment, land-
fills, and industrial processes that generate emissions.

In GCAM v5.1 equipment vintages are explicitly ac-
counted for in several sectors: electric generation, passenger
cars and trucks, freight trucks, liquid refining plants, and fer-
tilizer production. Older technologies operate as long as the
price of the good produced exceeds the variable cost of oper-
ation. New technologies are always assumed to operate, but
the decision to construct these technologies depends on both
the variable cost and the investment cost.

The primary outputs of the energy system are energy con-
sumption by all sectors, energy production by the trans-
formation sectors, energy prices, and emissions of CO2
and other species. The final demands include passenger-
kilometers traveled, freight tonne-kilometers shipped, build-
ings sector floor-space levels and service outputs, cement
production and associated emissions and energy require-
ments, and fertilizer production volumes.

2.7 Land

The land component of GCAM calculates supply, demand,
and land use for food, feed, fiber, forestry, and bioenergy
products, as well as land cover for natural ecosystem types.
GCAM includes all commodities reported by the FAO, but
aggregates them into 15 commodity classes (e.g., corn, rice,

wheat, sugar crop, oil crop, forest, pasture, and so on ). De-
mands for food, fiber, and forestry are driven by the size of
the population, their income levels, and commodity prices.
Food demand is price responsive, but with relatively low
price elasticities (−0.08 for crops and −0.25 for meat and
dairy). Livestock can be pasture-fed or fed a mix of grains
and pasture; future shares of each type depend on initial
shares, the logit exponent, and the costs of inputs. Feed de-
mand is determined by the size of the livestock herd, the
share of grain-fed animals, and the feed mix. Demand for
commercial bioenergy is determined by the energy system,
as described above, and includes primary (solid) biomass and
secondary gases and liquids derived from biomass. Agricul-
tural demands are modeled at the economic region level, with
32 regions globally represented in GCAM v5.1.

Supply for these products depends on the land allocated
to that use and its yield. Land is allocated among a num-
ber of uses assuming that land owners maximize expected
profit. However, GCAM uses a logit formulation, assuming
that the cost of production is not identical across all produc-
ers. As a result, an increase in the profit rate for one type
of land will result in an increase in the share of that land;
however, all land is not typically allocated to the type with
the highest profit rate (for more information refer to Wise et
al., 2014a). GCAM includes a comprehensive set of land use
(e.g., crops, pasture, commercial forest, and urban) and land
cover types (e.g., grass, shrub, tundra, non-commercial for-
est, and other arable land). Land allocation and agricultural
supply are determined within each land-use region, which
is specified by a combination of economic region and water
basin, i.e., GCAM v5.1 has 384 land-use regions (see Fig. 2).

GCAM v5.1 includes endogenous future agricultural yield
changes, including the potential for price-induced intensifi-
cation. The model includes four different technologies for
each commodity within each region: irrigated/high fertil-
izer, irrigated/low fertilizer, rain-fed/high fertilizer, and rain-
fed/low fertilizer, each with a different yield and cost of pro-
duction. The share that each technology receives depends on
the profitability of that technology. In general, increases in
water costs will lead to higher shares of rain-fed crops; in-
creases in fertilizer costs will lead to higher shares of low-
fertilizer technologies; and increases in land competition will
result in movement toward higher yielding technologies.

Most agricultural products are traded on the global market
using a net trade approach, in which global supply matches
global demand at each time step. Bioenergy is modeled as
a regional market, with the potential for trade. GCAM v5.1
uses a logit formulation to determine the share of domestic
versus imported bioenergy consumed in each region, as well
as the regions’ contribution to the traded bioenergy market.

Agriculture and land-use emissions are calculated at each
time step. GCAM calculates land-use change CO2 emis-
sions using an accounting-style approach, similar to that of
Houghton (1995). GCAM estimates the equilibrium change
in carbon due to a change in land use/land cover and then
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allocates that change across time. The profile of emissions
across time varies depending on whether the carbon is above
or below ground, whether there is an increase in carbon or a
decrease, and the user-specified time to maturity (i.e., peak
standing carbon stock; slow-growing higher latitudes having
longer times to maturity). For example, a decrease in for-
est cover will result in an immediate pulse of aboveground
carbon to the atmosphere, while the carbon sequestered as a
result of an increase in forest will be spread over time. Non-
CO2 emissions depend on the level of activity, the initial
emissions coefficient, and any emissions controls applied.
For example, CH4 emissions from livestock will increase as
livestock production increases but decline with a carbon price
due to the imposition of a marginal abatement cost (MAC)
curve.

GCAM includes the ability to represent multiple differ-
ent types of land-related policies, including afforestation,
protected lands, bioenergy constraints (e.g., lower or up-
per bounds on total bioenergy consumption or the share of
bioenergy in liquid fuels), and bioenergy taxes (Calvin et al.,
2014). These options can be specified by region and time pe-
riod. The default policy assumption is that 90 % of natural
ecosystems are protected.

There are three primary types of input data for the land
component: historical data used for calibration, information
related to competition, and future driver data. The historical
data include the following: supply, demand, prices, and vari-
able costs of production for agriculture and forestry products;
land use and land cover; the value of unmanaged land; carbon
cycle parameters; and emissions and/or emissions factors
for non-CO2s. Supply, demand, and prices are derived from
Food and Agriculture Organization statistics (FAO, 2018).
Production costs are obtained from the U.S. Department of
Agriculture (USDA, 2018). Land use and land cover are de-
rived from a variety of sources, as documented in Di Vittorio
et al. (2016). The carbon cycle parameters include carbon
densities for above- and below-ground stocks, and the num-
ber of years to maturity. Emissions and emissions factors for
non-CO2 gases are derived from EDGAR (JRC, 2011) for
most gases and Bond et al. (2007) and Lamarque et al. (2011)
for black carbon and organic carbon. The competition infor-
mation includes the logit exponents dictating the competition
between various land types.

The future driver data include income and price elastici-
ties for demand, agricultural productivity growth rates, and
MAC curves. Additionally, demand is driven by the income
and population as described earlier. Income elasticities are
derived from FAO estimates of future agricultural demand or
are estimated to ensure that demand is consistent with his-
torical relationships between income and caloric intake, de-
pending on the scenario.

The primary outputs of the land component of GCAM are
as follows: supply of agriculture and forestry products; de-
mand for agriculture and forestry products; prices for agricul-
ture and forestry products; land use and land cover by type;

and agriculture, land use, and land-use change emissions for
all greenhouse gases, short-lived species, and ozone precur-
sors.

2.8 Water

The water component of GCAM calculates water supply
and demand for each region and sector within the model.
In GCAM v5.1, water supply is an unlimited resource, in-
cluding all sources of water (e.g., freshwater, groundwater,
and seawater). The price for this resource can be specified
by the user. GCAM tracks water demand for irrigation (Kim
et al., 2016), electricity generation (Davies et al., 2013; Kyle
et al., 2013; Liu et al., 2014), municipal uses (Hejazi et al.,
2013), industrial manufacturing, primary energy production,
and livestock (Hejazi et al., 2014a). For each type of wa-
ter, GCAM tracks both withdrawals and consumption. In
general, water withdrawal indicates the total water extracted
from a water supply system, while water consumption indi-
cates that the water is used by consumers in a way that it
cannot be returned and reused immediately. Municipal wa-
ter demands are driven by changes in population, per capita
GDP, and technological change (Hejazi et al., 2013); all other
water demands are modeled as inputs to otherwise existing
technologies in the energy and land systems.

Water demand for irrigation depends on the share of ir-
rigated land (see Sect. 2.6), other available water, and the
water coefficient (water demand per unit output). Water co-
efficients vary by crop and region. In term of irrigation,
water withdrawals refer to irrigation water applied to agri-
cultural fields, including evapotranspiration requirements of
crops that are met by irrigation water plus any field losses
of water. Water consumption refers to the evapotranspiration
requirements of the crops that are met by irrigation water. In
addition to tracking withdrawals and consumption, GCAM
also tracks biophysical water consumption for crops, which
applies to both rain-fed and irrigated technologies within any
basin and crop type, and is the sum of water consumption (as
described above) and soil moisture from precipitation, used
by plants via transpiration. Livestock water demand depends
on a region-specific coefficient which represents both ani-
mal drinking water, and any other water used by the animal
production operations. The coefficients are in units of cubic
meters of water per kilogram of animal commodity produced
(e.g., beef and dairy).

For electricity water demands (Davies et al., 2013; Kyle
et al., 2013; Liu et al., 2014), GCAM has exogenously as-
signed water withdrawal and consumption coefficients for
each region and generation technology based on Macknick
et al. (2011). Cooling system options compete using the logit
formulation described above. While the competition between
cooling system options is endogenous and cost-based, be-
cause water prices are constant in GCAM v5.1, the model
output tends to largely reflect the exogenous share-weight
assumptions, which follow Davies et al. (2013). Specifically,
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most regions are assumed to shift from once-through to re-
circulating systems over time, but regions that primarily use
seawater at present are assumed to continue to do so in all
future time periods.

The industrial manufacturing sector’s water demands scale
with industrial output. Water demands for primary energy
production depend on fuel production and the bottom-up es-
timates of water demand per unit energy produced for the
following fuels: coal, oil (conventional and unconventional),
natural gas, and uranium (Hejazi et al., 2014a).

Historical water withdrawal and consumption data are
from multiple sources including FAO AQUASTAT (FAO,
2016) and the USGS (USGS, 2016). The irrigation water de-
mand estimates are derived from the gridded and nation-level
estimates of Mekonnen and Hoekstra (2011). The loss coef-
ficients for conveyance and other field losses are from the
country-level estimates according to Rohwer et al. (2007).
The livestock coefficients are calculated from Mekonnen and
Hoekstra (2010), which provide total water demands in liters
of water per animal per day, by country, for a base year of
2000. The water withdrawal and consumption coefficients
for each region and electricity generation technology are
from Macknick et al. (2011). The capital costs of different
cooling technologies are obtained from the National Energy
Technology Lab (2008). Water consumption data for man-
ufacturing are obtained from the Vassolo and Döll (2005)
global inventory of manufacturing and electric power wa-
ter demands for a base year of 1995, augmented with some
additional data from Kenny et al. (2009). Municipal water
prices obtained from the International Benchmarking Net-
work for Water and Sanitation Utilities (IBNET, 2016), and
overall municipal water supply efficiency are based on Shik-
lomanov (2000). Water demand for primary energy produc-
tion is from Maheu (2009), augmented with some additional
data from Kenny et al. (2009) and Solley et al. (1998).

The primary outputs of the water component of GCAM are
water withdrawals and consumption for each region, sector,
and technology. Additionally, GCAM computes biophysical
water consumption for crop production.

2.9 Climate

GCAM v5.1 includes Hector v2.0, an open-source, ob-
ject oriented, reduced form climate carbon-cycle model.
Reduced-complexity or simple climate models represent the
most critical global-scale Earth system processes with low
spatial and temporal resolution. Hector v2.0, like other sim-
ple climate models, calculates future concentrations of green-
house gases from a given emissions pathway while modeling
carbon and other gas cycles, calculates global mean radiative
forcing from greenhouse gas concentrations and short-lived
climate forcers, and converts the radiative forcing to global
mean temperature and other Earth system variables (Hartin
et al., 2015; Meinshausen et al., 2011).

Hector v2.0 has a three-part carbon cycle: atmosphere,
land, and ocean. The atmosphere is treated as a single well-
mixed box, where a change in atmospheric carbon is a func-
tion of anthropogenic fossil fuel and industrial emissions,
land-use change emissions, the atmosphere–ocean and the
atmosphere–land carbon fluxes. In Hector’s default terres-
trial carbon cycle, vegetation, detritus, and soil are linked
with one another and to the atmosphere by first-order dif-
ferential equations. Net primary production is a function of
atmospheric CO2 and temperature. Carbon flows from vege-
tation to the detritus and then down to soil, where some frac-
tion is lost due to heterotrophic respiration. The terrestrial
carbon balance at any time is the difference between net pri-
mary production (NPP) and heterotrophic respiration (RH)
summed over the user-specified geographical regions (global
in GCAM 5.1). NPP is modified by a user-defined carbon
fertilization parameter. Changes in RH are controlled by a
user-defined temperature sensitivity.

The surface ocean carbon flux is dependent upon the sol-
ubility of CO2 within high and low latitude surface boxes
which are calculated from an inorganic chemistry submod-
ule (Hartin et al., 2016). Hector v2.0 calculates pCO2, pH,
and carbonate saturations in the surface boxes; once carbon
enters the surface boxes, it is circulated through the interme-
diate and deep ocean layers via water mass advection and
exchanges, simulating a simple thermohaline circulation.

Radiative forcing is calculated from each individual atmo-
spheric constituent; CO2, halocarbons, non-methane volatile
organic carbons (NMVOCs), black carbon, organic carbon,
sulfate aerosols, CH4, and N2O, along with forcing from tro-
pospheric ozone and stratospheric water vapor. CO2, CH4,
N2O, and halocarbons are converted to concentrations, while
NMVOC, and aerosols are left as emissions (Hartin et al.,
2015).

Global atmospheric temperature is a function of a user-
specified climate feedback parameter, which indicates the
equilibrium climate sensitivity for a doubling of CO2, to-
tal radiative forcing, and oceanic heat flux. Atmosphere–
ocean heat exchange in Hector v2.0 consists of a one-
dimensional diffusive heat and energy-balance model, DOE-
CLIM (Kriegler, 2005). This is a significant improvement
over Hector v1.1, better representing the ocean’s mixed layer
and deep ocean heat uptake, and resulting in an improved
simulation of global mean temperature.

At every simulation time step, beginning in 2005 GCAM
supplies Hector v2.0 with global emissions of fossil fuel
and industrial CO2, land-use change CO2, CH4, N2O, BC,
OC, CO, NMVOC, and halocarbons (C2F6, CF4, SF6,
HFC134a, HFC32, HFC125, HFC227ea, HFC23, HFC134a,
and HFC245fa). The parameter values used in Hector v2.0
are documented in Hartin et al. (2015).

The primary outputs of the climate component of GCAM
v5.1 are global mean temperature, ocean heat uptake (both
mixed layer and deep ocean), CO2, CH4, N2O and halocar-
bon concentrations, radiative forcing (both total and individ-
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Table 1. Scenarios included in this paper. Scenarios are categorized by their socioeconomic pathway (columns) and their mitigation policy
(rows). Cell values are the names of the scenarios used in the rest of the paper. Note that the SSP3-2.6 is infeasible and thus omitted from the
table and the rest of the paper.

Socioeconomic pathway

Climate policy CORE SSP1 SSP2 SSP3 SSP4 SSP5

No climate policy CORE SSP1 SSP2 SSP3 SSP4 SSP5
Radiative forcing limited CORE-26 SSP1-26 SSP2-26 – SSP4-26 SSP5-26
to 2.6 W m−2 in 2100

ual components), carbon fluxes both on land and ocean, and
carbon cycle output (e.g., NPP, RH, ocean pH, and carbonate
saturations).

2.10 Example of a coupled system: bioenergy

The five GCAM components are linked in code, with differ-
ent types of information exchanged among them depending
on the component and the variable of interest. As an exam-
ple, we describe GCAM v5.1’s representation of bioenergy.
Bioenergy demand is determined by the energy system and
depends on the scale of the economy (determined by the so-
cioeconomic system), the price of bioenergy, the capital and
O&M costs of bioenergy technologies, as well as the cost and
prices of competing energy technologies. Supply of bioen-
ergy is determined largely by the land system and depends
on the price and cost of bioenergy, as well as the price and
cost of competing land types. The cost of bioenergy includes
costs of fertilizer (produced by the energy system) and irri-
gation (supplied by the water system) if these management
practices are used. The price of bioenergy is adjusted by the
solution mechanism until supply and demand equilibrate to
within the user-specified solution tolerance.

In the land system, the production of bioenergy can result
in emissions of CO2 due to land-use change and non-CO2
emissions (e.g., N2O emissions from fertilizer application).
In the energy system, GCAM accounts for the uptake of car-
bon during the growth of bioenergy, as well as the release of
carbon during combustion. Without the use of CO2 capture
and storage (CCS), this combination of uptake and release re-
sults in net zero emissions. If a technology with CCS is used
in combination with bioenergy, net negative emissions result.
These emissions are passed to the climate system (summed
with all other global CO2 emissions), which calculates the
effect of bioenergy on the atmospheric CO2 concentration,
radiative forcing, and temperature rise.

GCAM v5.1 includes a limit on the amount of net negative
emissions in any period that is linked to GDP (from the so-
cioeconomic system). This limit is to reflect that once emis-
sions are net negative a carbon tax generates an expense to
the economy and not a revenue. Currently, GCAM assumes
that each region will allocate no more than 1 % of GDP to

negative emissions. The cost (and thus deployment) of bioen-
ergy is adjusted to ensure this limit is not exceeded.

Fertilizer is another example of a tightly coupled system,
with its production determined by the energy system and
consumption determined by the land system. Additionally,
many other aspects of GCAM create direct or indirect link-
ages among sectors (e.g., water demand is linked to the en-
ergy and agricultural production, and climate is linked to
emissions produced by the energy and land systems).

3 Description of the scenarios

The results presented in the following sections include six
different socioeconomic pathways: a core scenario (CORE,
described in Sect. 2.4) and the five SSPs, as described in
Calvin et al. (2017).3 We combine each socioeconomic path-
way with two different climate policy assumptions, resulting
in 12 possible scenarios (Table 1). However, GCAM cannot
limit radiative forcing to 2.6 W m−2 in the SSP3 pathway due
to limited technology and incomplete control of agriculture
and land-use emissions (Calvin et al., 2017; Fujimori et al.,
2017). Thus, we include 11 scenarios in this paper.

4 Results

The output file produced by GCAM v5.1 is approximately
2 GB per scenario, with more than 38 000 output variables
per region and time period. In this section, we show high-
lights of these results for each major area. We begin by ex-
amining results for the CORE and CORE-26 (Sect. 4.1–4.5)
scenarios, before looking at results from the alternative so-
cioeconomic pathways (Sect. 4.6).

4.1 Socioeconomics

In the CORE scenario, global population grows through
2070, peaking at 9.5 billion, before declining (Fig. 4a).

3Note that the CORE scenario is similar to SSP2. However, these
two scenarios differ slightly with respect to near-term GDP as de-
scribed in Sect. 2.4; there are also small differences in non-CO2
emissions factors and CCS assumptions as described in Calvin et
al. (2017).

www.geosci-model-dev.net/12/677/2019/ Geosci. Model Dev., 12, 677–698, 2019



686 K. Calvin et al.: GCAM v5.1

Figure 4. Global population (a) and gross domestic product (GDP) (b) for the CORE and CORE-26 scenarios. GDP is reported in constant
US dollars (USD 2005), using market exchange rates. Note that both population and GDP are exogenous in GCAM v5.1; thus, they do not
change with mitigation policy or any other factor.

Figure 5. Global electricity generation (a, b) and global primary energy consumption (c, d) for the CORE (a, c) and CORE-26 (b, d)
scenarios. Primary energy is reported using a direct equivalent; that is, 1 EJ of nuclear or renewable electricity is reported as 1 EJ of primary
energy consumption.

Global GDP increases by a factor of 6 between 2010 and
2100, an average growth of 2 % yr−1 (Fig. 4b). In GCAM
v5.1, GDP and population are unaffected by other model
components; thus, these variables are identical in the CORE
and CORE-26 scenarios.

4.2 Energy

In the CORE scenario, electricity generation (Fig. 5a, b) and
primary energy use (Fig. 5c, d) continue to rise over the
rest of this century, as increases in income and population
drive increased demand for energy services (e.g., passenger

kilometers traveled and building energy). Fossil fuels remain
the dominant source of energy, accounting for 86 % of total
primary energy consumption (60 % of electricity) in 2100.
However, the use of non-biomass renewables for electricity
generation continues to rise, growing from 20 % in 2010 to
27 % in 2100. Despite this increase, non-biomass renewables
remain a very small fraction of global primary energy con-
sumption throughout the century. The continued dependence
on fossil fuels in the CORE scenario results in an increase
in fossil fuel and industrial CO2 emissions, which increase
from 8.9 Gt C yr−1 in 2010 to 19.7 Gt C yr−1 in 2100.
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Figure 6. Regional primary energy consumption (a–c) and percentage (%) of primary energy from fossil fuels (d–f) in 2010 (a, d) and 2100
in the CORE (b, e) and CORE-26 (c, f) scenarios. Primary energy is reported using a direct equivalent; that is, 1 EJ of nuclear or renewable
electricity is reported as 1 EJ of primary energy consumption.

Imposing a carbon price, as in the CORE-26 scenario, in-
creases the cost of fossil fuel use, incentivizing substitution
by lower carbon fuels. The result is an increase in electric-
ity generation in total, as end users shift from direct con-
sumption of oil and gas to electricity use. Additionally, the
electricity generation mix shifts dramatically, with 11 % of
generation met by bioenergy with CCS, 26 % from nuclear,
and 43 % by non-biomass renewables in 2100. Bioenergy’s
contribution to refined liquids also increases substantially in
the CORE-26 scenario. As a result, bioenergy with CCS ac-
counts for 40 % of total primary energy consumption in 2100
(Fig. 5d). The transition to low carbon (e.g., natural gas), no
carbon (e.g., nuclear, renewables), and net negative carbon
(e.g., bioenergy with CCS) fuels results in a substantial de-
crease in fossil fuel and industrial CO2 emissions, with emis-
sions in 2100 reaching −3 Gt C yr−1.

Energy consumption varies across region, in terms of both
total consumption and fuel mix (Fig. 6). Furthermore, these
regional differences change over time due to differences in
socioeconomic growth across regions, so the largest con-
sumers today are not the largest consumers in the future. For
example, the US and China have the highest primary energy
consumption in 2010, with 86 and 102 EJ yr−1, respectively.
In 2100, however, India and western Africa have the highest
energy consumption in both the CORE (164 and 127 EJ yr−1,
respectively) and CORE-26 scenarios (75 and 86 EJ yr−1, re-
spectively). For fuel mix, there are regional differences in the
share of fossil fuels used in 2010, with much lower shares in
western Africa and eastern Africa than the rest of the world.
However, in 2100, the biggest differences are across scenar-
ios and not across regions, with fossil fuel consumption rang-
ing from 70 % to 95 % of total primary energy in the CORE
scenario and much lower use in the CORE-26 scenario.

4.3 Land

In the CORE scenario, income and population growth in the
first half of the century result in increasing demand for agri-

cultural products through 2050 (Fig. 7a). Increases in agri-
cultural productivity throughout the century balance these
increases in production, resulting in nearly constant crop-
land area through 2050 (Fig. 7c). Post-2050 the projected
population declines and continued yield improvements re-
sult in decreases in total agricultural production and cropland
area. The CORE scenario has modest demand for bioenergy
(Fig. 5), resulting in a small amount of land devoted to its
production. Total agricultural area (crops, biomass, and pas-
ture) increases slightly throughout the century at the expense
of natural ecosystems (forest, grass, and shrub).

In the CORE-26 scenario, the imposition of a carbon price
incentivizes low carbon fuels in the energy system, resulting
in substantial increases in bioenergy demand. This results in
a large expansion of bioenergy land, with ∼ 7 % of land de-
voted to bioenergy production in 2100 (Fig. 7d). Increased
competition for land with bioenergy results in increased food
prices and consequently reduced demand (Fig. 7b). Total
agricultural area (crops, biomass, and pasture) increases by
7.5 % between 2010 and 2100 in the CORE-26 scenario, re-
sulting in a decline in the extent of natural ecosystems. For
example, forest cover decreases by 0.9 million km2 (3 %) be-
tween 2010 and 2100.

There are significant differences in land use across regions
(Fig. 8). However, regions that have large shares of cropland
today (e.g., India, Europe, China, the US Midwest, and Ar-
gentina) also have large shares of cropland in the future in
both the CORE and CORE-26 scenarios. In the CORE sce-
nario, bioenergy land is spread throughout the world’s agri-
cultural production regions with only 16 of the 384 regions
in GCAM devoting more than 10 % of their land to bioen-
ergy and only 1 very small region in Southeast Asia devoting
more than 20 %. In the CORE-26 scenario, higher amounts
of bioenergy land are required, resulting in shares of bioen-
ergy land ranging from 0 % to 58 %. Note that some of the
regions with large shares of bioenergy land are small in size.
The largest amounts of bioenergy land in absolute value are
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Figure 7. Global agricultural production (a, b) and global land allocation (c, d) for the CORE (a, c) and CORE-26 (b, d) scenarios. Note
bioenergy and forest are excluded from agricultural production (a, b) as they are modeled in different units, EJ yr−1 and m3 yr−1, respec-
tively. Land cover data (c, d) are aggregated from the more detailed categories included in GCAM v5.1 for plotting purposes.

Figure 8. Percentage of regional land area devoted to cropland (a–c) and bioenergy (d–f) in 2010 (a, d) and 2100 in the CORE (b, e) and
CORE-26 (c, f) scenarios. Note that there is no dedicated bioenergy cropland in 2010 in GCAM; hence, map (d) has zero values everywhere.
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Figure 9. Global water consumption (a, b) and global water withdrawals (c, d) by sector for the CORE (a, c) and CORE-26 (b, d) scenarios.
Data are aggregated from technology to sector for plotting purposes.

in the Nile River basin in eastern Africa and the Niger River
basin in western Africa, with 470 000 and 459 000 km2 of
bioenergy land in 2100 in the CORE-26 scenario, respec-
tively. Only 10 region/basin combinations have more than
150 000 km2 of bioenergy; these region/basins are found in
eastern Africa, western Africa, India, Canada, and Russia.

For non-bioenergy crops, irrigation shares remain rela-
tively constant over time, with approximately 20 % of crops
irrigated globally in both the CORE and CORE-26 scenar-
ios. Bioenergy crops are predominantly rain-fed, with only
3 %–6 % of these crops using irrigation. The use of the high-
fertilizer technology increases over the century, particularly
in the CORE-26 scenario, rising from 50 % to 56 % between
2010 and 2100. As a result of both exogenous and endoge-
nous yield growth, global average yields increase by 58 %
in the CORE scenario and double in the CORE-26 scenario
between 2010 and 2100.

4.4 Water

In the CORE scenario, increases in the demand for en-
ergy and agriculture result in increasing water consumption
(Fig. 9a) and withdrawal (Fig. 9c) across all water sectors,
with both consumption and withdrawal roughly doubling by
the end of this century. The irrigation sector dominates water
withdrawals and consumption throughout the century, with a
much larger share of consumptive use. Industrial (manufac-
turing and electricity) and municipal water use are the next
largest users of water, while livestock and primary energy
production account for only 1 %–2 % of total water use.

In the CORE-26 scenario, the imposition of a carbon price
incentivizes low carbon fuels in the energy system. As a
result, water use for electricity generation increases signifi-
cantly under the CORE-26 scenario, mainly due to the large
increase in water intensive technologies such as CCS (see
Fig. 5) and increased demand for electricity (Fig. 5a–c). The

CORE-26 scenario also leads to large increases in bioenergy
use; however, water use for bioenergy remains a small part of
the overall total due to the dependence on rain-fed bioenergy
as described previously. Overall, climate policy results in a
14 % increase in water consumption and a 17 % increase in
water withdrawal relative to the CORE scenario in 2100.

Water withdrawals differ significantly across region
(Fig. 10). The basins with the largest irrigation water with-
drawals in 2010 are the Ganges, the Indus, and the Sabarmati.
In 2100, the largest irrigation water withdrawals come from
these three basins in addition to the Nile River basin (in both
CORE and CORE-26) and the Arabian Peninsula (in CORE-
26 only). The two largest regions in terms of non-irrigation
water withdrawals are the US and China in 2010 and India
and China in 2100 in both the CORE and CORE-26 scenar-
ios.

4.5 Climate

Absent any effort to mitigate (i.e., the CORE scenario), emis-
sions of GHGs continue to rise throughout the century. Ad-
ditionally, increases in pollution controls induced by ris-
ing incomes result in reduced emissions of sulfur and other
aerosols. These increases lead to a rise in GHG concentra-
tions, total radiative forcing, and global mean temperature.
In particular, the CO2 concentration exceeds 700 ppmv and
total radiative forcing exceeds 6 W m−2 in 2100 (Fig. 11).

In the CORE-26 scenario, a carbon price is applied to
constrain the radiative forcing limit to 2.6 W m−2 in 2100.
This results in substantial reductions in GHG emissions. In
this scenario, the CO2 concentration peaks around 450 ppmv
mid-century, before declining to 400 ppmv (Fig. 11a). To-
tal radiative forcing peaks around the same time at approxi-
mately 3.5 W m−2 before declining to 2.6 W m−2 (Fig. 11b)
by the end of this century.
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Figure 10. Regional water withdrawals for irrigation in 2010 (a) and 2100 for the CORE (b) and CORE-26 (c) scenarios. Figure shows total
irrigation, including both bioenergy and crops.

Figure 11. CO2 concentrations (a) and total radiative forcing (b) for the CORE (solid) and CORE-26 (dashed) scenarios.

4.6 Alternative socioeconomic pathways

In addition to the default socioeconomic scenario (CORE),
GCAM v5.1 includes five alternative scenarios, based on the
SSPs (Riahi et al., 2017a). These scenarios span a range of
challenges to mitigation and challenges to adaptation, with
SSP1 having the least challenges, SSP2 having intermediate
challenges, and SSP3 having the most challenges. SSP4 has
low challenges to mitigation, but high challenges to adapta-
tion. SSP5 has high challenges to mitigation, but low chal-
lenges to adaptation. Storylines for all five SSPs are articu-
lated in O’Neill et al. (2017).

The quantifications of population (Fig. 12a) and GDP
(Fig. 12b) were developed by KC and Lutz (2017) and
Dellink et al. (2017). Global population in 2100 varies across
the five SSPs, with SSP1 and SSP5 having relatively low
population (< 7 billion) and SSP3 having high population (>
12 billion). GDP, and GDP per capita, are highest in SSP5,
with total global GDP exceeding USD 700 trillion 2005 per
year. Despite its high population, SSP3 has the lowest GDP
due to stagnant growth in income.

In addition to population and GDP, the GCAM implemen-
tation of the SSPs includes changes in the cost and perfor-
mance of different technologies, as well as differences in the
effectiveness of air pollution policy and in the implementa-

tion of climate policy. These assumptions are documented in
detail in Calvin et al. (2017). These changes result in a wide
range of potential future pathways for energy (Fig. 13), land
(Fig. 14), water, and climate. For example, primary energy
use is highest in SSP5, which has a high GDP. In addition,
inexpensive fossil fuels in this scenario result in a continued
dependence on coal, gas, and oil, which account for more
than 90 % of energy consumption in SSP5 in 2100. In con-
trast, SSP1 has low energy consumption and an increased
dependence on renewables, due to its focus on sustainabil-
ity (including both energy efficiency gains and low carbon
fuel preferences).

If radiative forcing is limited to 2.6 W m−2 by 2100, all
scenarios transition towards low carbon fuels, with increased
use of bioenergy with CCS (BECCS) in all cases. However,
deployment of BECCS varies across scenarios, ranging from
200 EJ yr−1 in SSP2-26 to 323 EJ yr−1 in SSP5-26. Fossil
fuel use in 2100 in these scenarios ranges from 35 % in SSP1-
26 to 53 % in SSP5-26, as SSP5-26 has significant use of
CCS. SSP1-26 has the highest deployment of non-biomass
renewables, with 11 % of total primary energy in 2100.

Land use and land cover also differ significantly across
SSPs. The combination of high population and low agricul-
tural productivity growth results in a large expansion of crop-
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Figure 12. Global population and GDP for all scenarios. The CORE scenario is virtually identical to SSP2, but does differ with respect to
near-term GDP. Note that GCAM v5.1 does not model the effects of climate policy on either GDP or population.

Figure 13. Global primary energy by fuel for all scenarios. Without climate policy (a), and the 2.6 W m−2 scenarios (b). Columns indicate
the underlying socioeconomic assumptions.

land area in SSP3 (Fig. 14). In contrast, SSP1 has a small
population, with lower preferences for ruminant meat, and
high agricultural productivity. As a result, cropland contracts
in this scenario. Under the 2.6 W m−2 policy, all scenarios
show increases in land area devoted to bioenergy, but this
trend is most prominent in SSP4-26 and SSP5-26 due to the
high demand for bioenergy with CCS described above. The
SSPs also show increases in forest cover in the 2.6 W m−2

scenarios due to the imposition of an afforestation incen-
tive as part of the policy environment (Calvin et al., 2017;
Kriegler et al., 2014). In SSP1, SSP2, and SSP5, this pol-
icy is globally applied, resulting in increased forest cover in
all regions. In SSP4, afforestation is concentrated in middle

and high income regions. This incentive is not included in
the CORE-26 scenario; as a result, forest cover in the this
scenario declines.

4.7 Comparison to historical data and other future
scenarios

This section compares GCAM results to both historical in-
ventory data and other future projections. We include inven-
tory data for energy, land, and CO2 emissions. Energy data
are from the International Energy Agency (IEA); in particu-
lar, we use total production of coal, gas, and oil from the IEA
energy balances. Land data are from the Food and Agricul-
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Figure 14. Global land cover by type for all scenarios. Without climate policy (a), and the 2.6 W m−2 scenarios (b). Columns indicate the
underlying socioeconomic assumptions.

Figure 15. GCAM results versus historical inventory data. Primary energy consumption for fossil fuels, compared to IEA (a). Global land
cover by type, compared to FAO (b). Global fossil fuel and industrial CO2 emissions, compared to CDIAC (c). Data are from the CORE
scenario, but all GCAM scenarios are identical in the historical period.

tural Organization (FAO); in particular, we use cropland, pas-
ture land, and forest land from FAOSTAT (FAO, 2018). CO2
emissions are from the Carbon Dioxide Information Anal-
ysis Center (CDIAC; https://cdiac.ess-dive.lbl.gov/, last ac-
cess: 6 February 2019); in particular, we use total fossil fuel
and industrial CO2 emissions. GCAM uses IEA energy con-
sumption and CDIAC CO2 emission as inputs to the model;
however, in the comparison presented, we use raw data from
the various sources for comparison. For land cover, GCAM
does not currently use FAOSTAT land cover variables.

For future projections, we compare GCAM results to
the IPCC AR5 scenario database, described in Clarke et
al. (2014), and the SSP scenario database, described in Ri-
ahi et al. (2017b). These databases have a large number of
outputs from numerous scenarios and models (e.g., the AR5
database has ∼ 1000 scenarios). We use all scenarios that in-

clude outputs for the full time period of interest (2010–2100),
but focus on a small number of variables.

4.7.1 Historical data

GCAM is initialized in the historical period to a variety
of different datasets, depending on the variable of interest
(see Sect. 2). Most of these variables are calibrated; that
is, GCAM ensures that its model outputs exactly match the
read-in observations. For example, GCAM reads in elec-
tricity generation by region, fuel types, and technology op-
tions. The calibration routines estimate the unobserved pa-
rameters (share weights) to ensure that the calculated values
match the read-in values. To test the validity of the calibra-
tion routine, Fig. 15 compares GCAM outputs (x axis) to
observational data (y axis) for global fossil fuel consump-
tion (Fig. 15a), global land cover (Fig. 15b), and global
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Figure 16. Global primary energy (a), global cropland (b), global fossil fuel and industrial CO2 emissions (c), and total radiative forcing (d).
Solid gray lines are no climate policy scenarios from the AR5 database (Clarke et al., 2014), i.e., scenarios with a carbon price of USD 0
in 2100. Dashed gray lines are scenarios in the AR5 database that are roughly consistent with 2.6 W m−2; specifically, we include any
scenario with 2100 radiative forcing below 2.9 W m−2. Black and colored lines are the GCAM v5.1 scenarios, with the color indicating the
socioeconomic scenario and the line type indicating the climate policy (no policy is represented by solid lines, and 2.6 W m−2 is represented
by dashed lines).

CO2 emission (Fig. 15c). As presented in this figure, GCAM
matches these data sources almost exactly, for the calibra-
tion period. Note that the biggest differences between GCAM
and observational data are for forest area. GCAM uses infor-
mation from Meiyappan and Jain (2012), while the observa-
tional data shown in Fig. 15 are from FAOSTAT.

4.7.2 Other future scenarios

In addition to comparing GCAM results to historical data, we
also compare GCAM results to other scenarios in the litera-
ture, including both the database generated for the IPCC’s 5th
Assessment Report (Fig. 16) and the SSP database (Fig. 17).

In general, the 11 GCAM scenarios span the range of
results presented in the literature, with the CORE scenario
falling near the median. For example, primary energy con-
sumption in 2100 in the GCAM v5.1 scenarios ranges from
735 to 1500 EJ yr−1 without climate policy and from 480 to
900 EJ yr−1 in the 2.6 W m−2 scenarios, depending on the
socioeconomic pathway (Fig. 16a). In contrast, primary en-
ergy in the AR5 database ranges from 750 to 1850 EJ yr−1

for the no climate policy scenarios and between 260 and
1000 EJ yr−1 for the 2.6 W m−2 scenarios. For fossil fuel and
industrial CO2 emissions (Fig. 16c), the GCAM v5.1 no cli-
mate policy scenarios span a smaller range than those in
the AR5, with 2100 emissions in GCAM v5.1 ranging from
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Figure 17. Global primary energy (a), global cropland (b), global
fossil fuel and industrial CO2 emissions (c), and total radiative forc-
ing (d) in 2100. GCAM v5.1 results are shown using “X”. Data
from the SSP database (Riahi et al., 2017a) are shown as lowercase
letters. Colors indicate SSP. The left panels are the no climate pol-
icy results; the right panels show scenarios that limit 2100 radiative
forcing to 2.6 W m−2.

10 600 to 25 700 Mt C yr−1. The AR5 database, in contrast,
had a range of −2000 to 47 000 Mt C yr−1. There is a simi-
lar difference in the range of total radiative forcing between
GCAM v5.1 and AR5 (Fig. 16d). For the 2.6 W m−2 scenar-
ios, GCAM v5.1 tends to overshoot more in the near-term

(see Fig. 16c, d) than the AR5 scenarios. Some of these
differences have to do with the timing of the climate pol-
icy; some of the AR5 scenarios, e.g., those from Clarke et
al. (2009), had climate policy beginning in 2010. Other dif-
ferences have to do with the availability and deployment of
net negative emissions technologies, like BECCS.

Since the GCAM v5.1 scenarios include replications of the
SSPs, we also compare our results to the SSPs presented in
Riahi et al. (2017a). In this comparison, we can match spe-
cific socioeconomic scenarios and climate policies (Fig. 17).
The largest difference between GCAM v5.1 and the origi-
nally published GCAM SSP scenarios is for SSP3 and SSP5.
In each of these scenarios, GCAM v5.1 uses less total pri-
mary energy (Fig. 17a), leading to lower fossil fuel and in-
dustrial CO2 emissions (Fig. 17c), and lower radiative forc-
ing in the no climate policy scenarios (Fig. 17d). In each case,
the GCAM v5.1 results are 20 %–25 % below the median
value from the SSPs. The difference in energy use and fuel
mix between the GCAM4 results from the originally pub-
lished GCAM SSPs and those presented in this paper are pri-
marily due to updates in technology cost, as documented in
Muratori et al. (2017).

5 Discussion and conclusions

GCAM and similar models attempt to integrate a large set
of human and Earth system dynamics and interactions taking
place over many decades in the future into flexible and com-
putationally tractable platforms. To date, the scientific capa-
bilities embodied in GCAM and similar models have been
important for informing both our scientific understanding
of these interactions and the decisions made to better man-
age these systems. GCAM v5.1 describes a new version of
GCAM, including several major enhancements from previ-
ous versions (e.g., water demand, multiple agricultural man-
agement practices, new land regions, new data system, newer
climate model, and alternative socioeconomic pathways).

At the same time, there is also a large set of dynamics and
interactions that are not included in GCAM. For example, the
version of GCAM presented in this paper does not include
feedbacks from the global or regional climate to key systems
such as energy (e.g., altering wind and solar power, and air
conditioning), water (altering water supplies and droughts),
agriculture (altering crop yields through changes in temper-
ature, precipitation, and growing seasons), among others.
Similarly, GCAM v5.1 does not include dynamics at subre-
gional scales such as counties or cities, although versions of
GCAM with subregional detail have been produced. Across
the modeling community, groups are attempting to address
these issues, adding more and more scope and complexity to
their models. Of particular importance in GCAM develop-
ment is the effect of a changing Earth system, and climate
in particular, on energy, water, land, and economic systems.
Research versions of GCAM already include new dynamics
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such as the effects of climate on water supplies (Hejazi et
al., 2014b), energy demands (Clarke et al., 2018), and crop
yields (Calvin and Fisher-Vanden, 2017; Kyle et al., 2014).

However, these increases in scope and complexity raise
challenges. With finer resolution and greater scope has come
an increase in the computational demands of models like
GCAM, including data storage needs. GCAM is increasingly
being used on high-end computing clusters or other platforms
with greater computational power and storage capabilities,
which risks making it less useful to users without access to
such high-end computational platforms. This is pushing to-
wards a great focus in GCAM on computational efficiency
and data management.

Finally, whereas all dynamics were previously included
in the GCAM core, GCAM development is increasingly fo-
cused on creating an ecosystem of submodels that are de-
signed to operate with GCAM and can be coupled in code.
This includes, for example, a range of tools for providing
information at spatial scales finer than those in the GCAM
core. These options can be included or not included depend-
ing on scientific questions, the modeling needs, and the com-
putational capabilities.

Code availability. GCAM is an open source model. The version
of GCAM described in this paper is archived on both GitHub and
Zenodo (https://doi.org/10.5281/zenodo.1308172, JGCRI, 2018).
All code and inputs are available at https://github.com/JGCRI/
gcam-core (last access: 7 February 2019, JGCRI, 2019). A user
guide for GCAM is available at http://jgcri.github.io/gcam-doc/
user-guide.html (last access: 6 February 2019). The GCAM devel-
opment team hosts annual training courses for GCAM (see http:
//www.globalchange.umd.edu/, last access: 6 February 2019, for
more information).
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