Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4551–4570, 2019

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Geosci. Model Dev., 12, 4551–4570, 2019
Methods for assessment of models
30 Oct 2019
Methods for assessment of models | 30 Oct 2019

tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets

Max Heikenfeld et al.

Related authors

Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics
Max Heikenfeld, Bethan White, Laurent Labbouz, and Philip Stier
Atmos. Chem. Phys., 19, 2601–2627,,, 2019
Short summary
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546,,, 2016
Short summary
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521,,, 2015
Short summary
An improved representation of physical permafrost dynamics in the JULES land-surface model
S. Chadburn, E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox, and P. Friedlingstein
Geosci. Model Dev., 8, 1493–1508,,, 2015
Short summary

Related subject area

Atmospheric sciences
Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164,,, 2022
Short summary
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni
Geosci. Model Dev., 15, 6059–6083,,, 2022
Short summary
TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone
Vanessa Simone Rieger and Volker Grewe
Geosci. Model Dev., 15, 5883–5903,,, 2022
Short summary
A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model
Josué Bock, Jan Kaiser, Max Thomas, Andreas Bott, and Roland von Glasow
Geosci. Model Dev., 15, 5807–5828,,, 2022
Short summary
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805,,, 2022
Short summary

Cited articles

Allan, D., Caswell, T., Keim, N., and van der Wel, C.: Trackpy, Zenodo,, 2019. a, b
Autonès, F. and Moisselin, J. M.: Algorithm Theoretical Basis Document for “Rapid Development Thunderstorms” (RDT-PGE11 v3.0), Tech. rep., SAF/NWC/CDOP/MFT/SCI/ATBD/11, available at: (last access: 19 October 2019), 2013. a
Bacmeister, J. T. and Stephens, G. L.: Spatial Statistics of Likely Convective Clouds in CloudSat Data, J. Geophys. Res.-Atmos., 116, D04104,, 2011. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. JPN, Ser. II, 94, 151–183,, 2016. a, b
CEDA: JASMIN, the UK Collaborative Data Analysis Facility, available at: (last access: 19 October 2019), 2019. a, b
Short summary
We present tobac (Tracking and Object-Based Analysis of Clouds), a newly developed framework for tracking and analysing clouds in different types of datasets. It provides a flexible new way to include the evolution of individual clouds in a wide range of analyses. It is developed as a community project to provide a common basis for the inclusion of existing tracking algorithms and the development of new analyses that involve tracking clouds and other features in geoscientific research.