Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4551–4570, 2019
https://doi.org/10.5194/gmd-12-4551-2019

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Geosci. Model Dev., 12, 4551–4570, 2019
https://doi.org/10.5194/gmd-12-4551-2019

Methods for assessment of models 30 Oct 2019

Methods for assessment of models | 30 Oct 2019

tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets

Max Heikenfeld et al.

Related authors

Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics
Max Heikenfeld, Bethan White, Laurent Labbouz, and Philip Stier
Atmos. Chem. Phys., 19, 2601–2627, https://doi.org/10.5194/acp-19-2601-2019,https://doi.org/10.5194/acp-19-2601-2019, 2019
Short summary
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016,https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015,https://doi.org/10.5194/tc-9-1505-2015, 2015
Short summary
An improved representation of physical permafrost dynamics in the JULES land-surface model
S. Chadburn, E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox, and P. Friedlingstein
Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015,https://doi.org/10.5194/gmd-8-1493-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Parameterization of the collision–coalescence process using series of basis functions: COLNETv1.0.0 model development using a machine learning approach
Camilo Fernando Rodríguez Genó and Léster Alfonso
Geosci. Model Dev., 15, 493–507, https://doi.org/10.5194/gmd-15-493-2022,https://doi.org/10.5194/gmd-15-493-2022, 2022
Short summary
Inline coupling of simple and complex chemistry modules within the global weather forecast model FIM (FIM-Chem v1)
Li Zhang, Georg A. Grell, Stuart A. McKeen, Ravan Ahmadov, Karl D. Froyd, and Daniel Murphy
Geosci. Model Dev., 15, 467–491, https://doi.org/10.5194/gmd-15-467-2022,https://doi.org/10.5194/gmd-15-467-2022, 2022
Short summary
Downscaling of air pollutants in Europe using uEMEP_v6
Qing Mu, Bruce Rolstad Denby, Eivind Grøtting Wærsted, and Hilde Fagerli
Geosci. Model Dev., 15, 449–465, https://doi.org/10.5194/gmd-15-449-2022,https://doi.org/10.5194/gmd-15-449-2022, 2022
Short summary
WRF v.3.9 sensitivity to land surface model and horizontal resolution changes over North America
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022,https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Evaluation of the COSMO model (v5.1) in polarimetric radar space – impact of uncertainties in model microphysics, retrievals and forward operators
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022,https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary

Cited articles

Allan, D., Caswell, T., Keim, N., and van der Wel, C.: Trackpy, Zenodo, https://doi.org/10.5281/zenodo.1213240, 2019. a, b
Autonès, F. and Moisselin, J. M.: Algorithm Theoretical Basis Document for “Rapid Development Thunderstorms” (RDT-PGE11 v3.0), Tech. rep., SAF/NWC/CDOP/MFT/SCI/ATBD/11, available at: http://www.nwcsaf.org/AemetWebContents/ScientificDocumentation/Documentation/MSG/SAF-NWC-CDOP2-MFT-SCI-ATBD-11_v3.0.pdf (last access: 19 October 2019), 2013. a
Bacmeister, J. T. and Stephens, G. L.: Spatial Statistics of Likely Convective Clouds in CloudSat Data, J. Geophys. Res.-Atmos., 116, D04104, https://doi.org/10.1029/2010JD014444, 2011. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. JPN, Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a, b
CEDA: JASMIN, the UK Collaborative Data Analysis Facility, available at: http://jasmin.ac.uk/ (last access: 19 October 2019), 2019. a, b
Download
Short summary
We present tobac (Tracking and Object-Based Analysis of Clouds), a newly developed framework for tracking and analysing clouds in different types of datasets. It provides a flexible new way to include the evolution of individual clouds in a wide range of analyses. It is developed as a community project to provide a common basis for the inclusion of existing tracking algorithms and the development of new analyses that involve tracking clouds and other features in geoscientific research.