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Abstract. We introduce tobac (Tracking and Object-Based
Analysis of Clouds), a newly developed framework for track-
ing and analysing individual clouds in different types of
datasets, such as cloud-resolving model simulations and geo-
stationary satellite retrievals. The software has been designed
to be used flexibly with any two- or three-dimensional time-
varying input. The application of high-level data formats,
such as Iris cubes or xarray arrays, for input and output
allows for convenient use of metadata in the tracking analysis
and visualisation. Comprehensive analysis routines are pro-
vided to derive properties like cloud lifetimes or statistics of
cloud properties along with tools to visualise the results in a
convenient way. The application of tobac is presented in two
examples. We first track and analyse scattered deep convec-
tive cells based on maximum vertical velocity and the three-
dimensional condensate mixing ratio field in cloud-resolving
model simulations. We also investigate the performance of
the tracking algorithm for different choices of time resolu-
tion of the model output. In the second application, we show
how the framework can be used to effectively combine in-
formation from two different types of datasets by simultane-
ously tracking convective clouds in model simulations and in
geostationary satellite images based on outgoing longwave
radiation. The tobac framework provides a flexible new way
to include the evolution of the characteristics of individual
clouds in a range of important analyses like model intercom-
parison studies or model assessment based on observational
data.

1 Introduction

Clouds are a major feature of the Earth’s atmosphere and
control many critical processes in the Earth’s energy and wa-
ter budgets (Trenberth et al., 2009). Different types of con-
vective clouds play important but distinct roles in many re-
gions of the globe. Shallow cumulus clouds are widespread
over the subtropical trade-wind latitudes and have a strong
impact on the radiative balance of the atmosphere, including
a potential for strong feedbacks from anthropogenic pertur-
bations of the climate system (Stevens and Feingold, 2009).
Deep convective clouds are a defining element of the atmo-
sphere over most of the tropics (Nesbitt et al., 2006), driv-
ing both local weather dynamics and large-scale circulation
patterns, which has impacts on the entire climate system
(Emanuel, 1994). Furthermore, deep convective clouds play
a major role in extreme weather events all over the globe
(Doswell, 2001; Gensini and Mote, 2014). Therefore, clouds
and their interactions with other aspects of the climate system
are an essential aspect of many important challenges in our
understanding of the Earth’s atmosphere and current changes
due to anthropogenic influences (IPCC, 2013). The nature
of convective clouds is highly localised. Individual convec-
tive cells undergo rapid dynamic development over relatively
short timescales of minutes to hours (Orlanski, 1975), while
organised convective features, such as mesoscale convective
systems (MCSs), can persist for many hours or even days
(Orlanski, 1975; Laing and Fritsch, 1997; Fritsch and Forbes,
2001; Feng et al., 2018). Further advances in understanding
the physical processes underlying the development of these
clouds require analysis techniques that go beyond the usual
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approaches, which are often based on bulk statistical prop-
erties over larger regions in space and time, such as entire
modelling or observational domains. Model intercompari-
son studies with cloud-resolving model (CRM) simulations
have mostly relied on the comparison of domain and time-
averaged quantities or similar statistics (Varble et al., 2011;
Varble et al., 2014a, b; Fan et al., 2017). This generally lim-
its the investigation of differences between the models on the
scale of individual convective cells or analyses that take the
temporal evolution of individual clouds into account.

Any analysis focused on the properties of individual
clouds in larger databases containing numerous cloud ele-
ments and aimed at including the time evolution over their
development cycle requires some form of cloud tracking
technique. A large body of work exists on tracking individual
clouds in different types of data, ranging from ground-based
radar and geostationary satellite retrievals to model simula-
tions at a range of different resolutions. We now present a
short but certainly not exhaustive overview of existing ap-
proaches. This will be used to show the capabilities of the
existing software and to discuss the drawbacks and limita-
tions which motivated the development of the more flexible
software framework tobac (Tracking and Object-Based Anal-
ysis of Clouds) presented here.

Tracking individual convective clouds in radar data has
been performed for decades (Crane, 1979; Rosenfeld, 1987).
These efforts were often motivated by their use in nowcast-
ing of severe weather warnings, e.g. for flooding due to con-
vective precipitation, damage from hail or impacts of high
wind speeds such as tornadoes (Dixon and Wiener, 1993;
Lakshmanan and Smith, 2009). The satellite-based track-
ing of convective clouds has been performed both with a
similar focus on nowcasting convection and for long-term
analysis in climate research (Menzel, 2001; Sieglaff et al.,
2012). Special tracking algorithms that combine information
from different wavelength bands of imagers on geostationary
satellites, such as Cb-TRAM (Zinner et al., 2008, 2013) and
RTD (Autonès and Moisselin, 2013), have been developed as
tools to identify and track deep convective clouds throughout
their development cycle, including the initial stage of rising
cumulus towers. However, both products have been devel-
oped for a specific application that strongly limits a more
general adaption of the software by the user. Several other
studies have used geostationary satellite data to investigate
the growing phase and glaciation of deep convective clouds
(Mecikalski and Bedka, 2006; Mecikalski et al., 2011; Senf
et al., 2015; Senf and Deneke, 2017). Other applications have
specifically focused on the analysis of long-lived MCSs over
different regions of the globe (Machado et al., 1998; Feng
et al., 2012, 2018; Hagos et al., 2013). The identification
of individual cloud objects in satellite data is one aspect of
cloud tracking and has been used to investigate the spatial
scaling of clouds on a global scale (Wilcox and Ramanathan,
2001; Wood and Field, 2011), including studies on the rep-
resentation of these distributions in global atmospheric mod-

els (Wilcox, 2003; O’Brien et al., 2013). The use of satellite
data from active sensors (Nesbitt et al., 2000; Bacmeister and
Stephens, 2011; Riley et al., 2011; Igel et al., 2014; Guil-
laume et al., 2018) allows for the inclusion of information
about the vertical extent of identified cloud objects, which
provides an improved classification of cloud types and un-
derstanding of important physical processes.

Tracking individual cloud objects in high-resolution CRM
simulations and large-eddy simulation (LES) models has
been developed alongside the evolution of these simulations
in recent decades. Earlier studies on tracking shallow convec-
tion in high-resolution model simulations (Zhao and Austin,
2005a, b; Heus et al., 2009) strongly relied on manual de-
tection techniques. Subsequently, Dawe and Austin (2012)
and Heus and Seifert (2013) presented automated methods of
tracking shallow convection that rely on a continuous release
of a decaying tracer from the model as described in Couvreux
et al. (2010). However, the functionality of the tracer re-
lease and advection must be specifically implemented in each
model and restricts the use of this technique to the output of
high-resolution models. Cloud tracking algorithms applied
online during the actual model simulations (Plant, 2009) have
the advantage of direct access to the relevant model fields at
the model time step and thus the highest possible time reso-
lution. However, these online algorithms must also be imple-
mented separately in a specific model.

Moseley et al. (2013, 2016) tracked precipitation patterns
for investigations of deep convective clouds and convective
invigoration. Davis et al. (2006, 2009) presented an object-
based analysis of rainfall patches, including tracking capabil-
ities, which was applied to precipitation on a relatively large
regional scale. Heiblum et al. (2016a, b) developed and ap-
plied a tracking algorithm for warm convective clouds that
determines cloud volumes from the condensate mixing ratio
field and then propagates the clouds based on the velocity
of the cloud centre of mass. This algorithm allows for cloud
splits and merges to form complex cloud entities possibly
involving numerous individual clouds. Only a few studies
have focused on tracking individual deep convective clouds
in model simulations in a way that takes into account the
actual cloud volumes (Chen et al., 2017). Terwey and Rozoff
(2014) developed a tracking algorithm for individual convec-
tive updrafts and applied it to CRM simulations of hurricane
cases with two different models. However, this effort has not
been provided to the community as a generalised software
package aimed at more widespread use cases. Several other
approaches that included the tracking of individual updrafts
in different types of cumulus clouds in a very detailed man-
ner (Sherwood et al., 2013; Hernandez-Deckers and Sher-
wood, 2016) would not be easily transferable to data with
a lower temporal and spatial resolution. Despite these ad-
vances in developing detailed cloud tracking approaches for
use in highly resolved model simulations, most current stud-
ies are performed with model grid spacings of several hun-
dred metres to a few kilometres, especially when using larger
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domains or simulations for longer time periods. Providing
adequate ways of performing tracking and object-based anal-
yses for different types of clouds, including deep convection,
in these kinds of simulations provides a key pathway to better
understanding the underlying physical processes.

This overview clearly shows the wide range of exten-
sive efforts that went into the development of elaborate soft-
ware and analysis tools to track clouds in different types of
datasets. The application of cloud identification and tracking
and related techniques has substantially increased our under-
standing of cloud size distributions, the time evolution of dif-
ferent types of clouds, and the underlying physical processes
governing cloud formation, development, and propagation.
However, the overview also highlights the problem of lim-
ited compatibility between the different existing approaches
and implementations, especially regarding the intended use
of tracking clouds based on different data sources using the
same algorithms and analysis tools.

To address some of these limitations of existing ap-
proaches and provide a more functional tool with increased
flexibility for different applications, we have developed tobac
as a new flexible software tool for the identification, tracking
and analysis of clouds. This approach certainly does not in-
tend to replace the existing tools in their specific applications,
but it rather aims to provide a flexible framework that can be
used for a wide range of different datasets and also allows
for the future integration of some of the existing approaches
discussed here.

We have designed tobac in a modular way that includes
the following basic steps, which are described in detail in
Sect. 2.1–2.5:

1. data input and output;

2. feature detection;

3. segmentation of cloud areas and volumes;

4. trajectory linking; and

5. object-based analysis and visualisation.

The tobac framework allows for a convenient application to
output from a wide range of model simulations and obser-
vational products, as long as it is provided with sufficient
temporal and spatial resolution and contains output variables
that can be used to identify individual clouds. Therefore, the
software package can be used for a range of important appli-
cations like model intercomparison studies, which generally
rely on simpler analysis methods that do not capture the evo-
lution of individual clouds. These capabilities also allow for
comparative studies between model simulations and obser-
vational datasets, e.g. from satellite retrievals, using the same
underlying statistical methods. Due to the modular structure,
tobac is set up for the integration of existing or newly devel-
oped algorithms for the different steps in the analysis chain.
The implementation in Python provides tobac with access

to numerous more specialised existing software libraries for
different aspects of the software, such as data input–output,
memory usage and the existing functionality from the field
of image processing. We also show how we can leverage an
existing Python library from an entirely different field of the
physical sciences to perform integral parts of the linking step
in our application. Furthermore, the choice of Python for to-
bac makes the package more easily accessible to users as it
allows for easier integration into existing analysis workflows
and also stimulates the integration of additional components
in the modular workflow of the package.

To show the advantages of tobac in practical applications,
we present two different examples of using the framework in
tracking and analysing deep convective clouds. In the first
application, the detection of features is performed on the
column-maximum vertical velocity at each output time in-
terval from a CRM simulation. A three-dimensional water-
shedding algorithm is applied to the updraft field and to the
total condensed water content field (mass mixing ratio of all
hydrometeors) at each step in time to infer both the volume
of the individual updrafts and the clouds associated with the
tracked updrafts. These features are then filtered and linked
into consistent trajectories. We use the tracking results to as-
sess the distribution of cloud lifetimes and the requirements
for the model output temporal resolution. In the second ap-
plication, we perform a simultaneous analysis for model and
satellite data. Similar vertically resolved data as used in the
other example are usually not available from satellite im-
agers. The information in most satellite retrievals of cloud
properties is limited to two dimensions. With a multi-spectral
selection of channels from the satellite instrument, cloud-top
height and radiative properties can be retrieved (McGarragh
et al., 2018). An analysis of model-simulated and satellite-
retrieved fields of outgoing longwave radiation (OLR) is pre-
sented to demonstrate the flexibility of the tobac approach.
By making use of the framework consistently across differ-
ent datasets like this, we can compare the tracked clouds in
both data sources by examining the statistical properties of
the resulting population of convective clouds, thereby facili-
tating model–observation comparisons.

2 Software description

In this section, we describe the general design and workflow
of the software package as illustrated in Fig. 1 for the two
example applications presented in Sects. 3 and 4. The im-
plementation of the individual analysis steps described here
reflects an example combination of analysis steps currently
implemented in tobac. Due to the modular setup of the pack-
age, different parts of the workflow can be combined in a
different way or replaced by future additions to the frame-
work.
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2.1 Data input and output

The input data for the framework are provided in a high-
level format of either Iris cubes (Met Office, 2018) or
xarray data arrays (Hoyer and Hamman, 2017), which in-
clude detailed metadata for each data variable, such as units
and coordinates. The algorithm can thus automatically use
these metadata, and the tracking setup can be controlled in-
dependently of the temporal resolution, spatial resolution or
dimensions of the input data. Tracking parameters represent-
ing physical properties like distances or time periods can be
set in physical units and are automatically converted to pixel-
based values needed for the underlying calculations. Scien-
tific data are provided in a vast variety of different file for-
mats and data structures. Implementing a way of loading the
data into the right format for an application often proves to
be a significant limitation to the use of new datasets and gen-
erally consumes an unjustifiable amount of time and effort,
apart from providing an important source of implementation
errors. The Python library Community Intercomparison Suite
(CIS) (Watson-Parris et al., 2016) overcomes this challenge
and provides a convenient way to automatically load a vast
array of observational datasets into Iris-compatible objects
for direct use in tobac.

Both Iris and xarray make use of so-called “lazy
loading” based on the dask package (Rocklin, 2015; Dask
Development Team, 2016) for efficient memory usage. The
initial loading of data from a file only creates a placeholder.
Then, individual operations on the data are combined and
evaluated once the final result is to be saved, printed or plot-
ted. Only at this stage are data actually loaded from a disk
into the physical memory of the computing machine and in-
dividual calculations performed. Based on these capabilities,
the entire tobac framework is written with a focus on limit-
ing instantaneous memory usage by splitting up calculations
into chunks, e.g. along the time dimension. Hence, even large
datasets with individual fields much larger than the memory
available on the computing system can be conveniently pro-
cessed without special adaptation by the user.

The output of the tracking analysis is given in commonly
used high-level Python data format as pandas data frames
(McKinney, 2010) for a table containing the tracked cell cen-
tres and trajectories and as Iris cubes or xarray data ar-
rays for the masks of cloud volumes or areas. This output is
automatically amended with the same metadata as the input
data like coordinates (e.g. time, longitude, latitude), along
with additional information from the tracking process, e.g. a
time coordinate relative to the initiation of an individual con-
vective cell. This allows for the convenient and direct use of
the output for visualisation and further analyses. The inter-
mediate results of each individual analysis step can be con-
veniently saved and examined in the form of pandas data
frames or Iris cubes.

2.2 Feature detection

The feature detection can work with any two-dimensional
field either present or derived from the input data. In the first
example, we use maxima in the maximum vertical velocity in
each column of the three-dimensional high-resolution model
output to identify individual updrafts (see Sect. 3). In the sec-
ond example, minima in outgoing longwave radiation from
satellite retrievals and model output are used in the feature
detection (see Sect. 4).

To identify the features, contiguous regions above or
below a threshold are determined and labelled individu-
ally. Smoothing the input data, e.g. with a Gaussian fil-
ter, can make this step more reliable. The detection of re-
gions above a specific threshold can lead to large intercon-
nected regions combining several features linked by narrow
ridges. To prevent this and identify these interconnected fea-
tures separately, the tobac feature detection allows for the
use of “erosion” techniques based on the implementation
in skimage.morphology.binary_erosion. These
techniques shrink the identified regions from the edges by
a specific length or number of pixels, thus removing the
connecting ridges between interconnected features. This has
been shown to lead to more robust detection of individual
features, as described in detail in Senf et al. (2018).

To describe the specific location of the feature at a specific
point in time, we have investigated the use of different spa-
tial properties describing the identified region. The geometric
centre can be strongly affected by changes in the shape of the
boundary, which is determined based on the selected thresh-
old value. Instead, we have found that a weighted mean

xmean =
∑

i
wixi, (1)

with weightswi given by the difference between the values of
the chosen field at the individual points Vi and the threshold
value Vfeature,

wi =
Vi −Vfeature∑

iVi−Vfeature
, (2)

has proven to perform best in determining a robust feature
position. We can interpret this position as the centre of mass
of the component of the field exceeding the chosen threshold
value.

Using a single threshold to identify features can lead to
problematic results in two different ways. A very restrictive
threshold can result in omitting clouds with weak vertical
velocities, or clouds during their initial and decaying stage
will not be captured. On the other hand, a weakly restric-
tive threshold can lead to spurious results as it might lead to
large unconfined regions around deep convection being se-
lected or to an unwanted merging of several distinct cloud
features into one. To resolve these conflicting requirements
arising in the case of a single threshold value, we have devel-
oped a step-wise approach with a range of threshold values
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Figure 1. Schematic overview of the general workflow of the tobac tracking analysis framework and of the two examples presented in this
paper.

(Fig. 2). These threshold values have to be chosen specifi-
cally for each application of tobac. The choice can be based
on a detailed analysis of the data used for tracking to deter-
mine where the features separate from the background, e.g.
based on histograms as shown in Sect. 4, or using empiri-
cal values from previous studies of the specific phenomena.
The feature identification starts with labelling the regions for
the least restrictive threshold. For each threshold value, fea-
tures are identified in the same way (Fig. 2b, d, f) and replace
existing features that were found based on a less restrictive
threshold value in the surrounding region (Fig. 2e, g).

This combination of different thresholds allows tobac to
detect lower-intensity features representing weaker convec-
tive clouds or clouds in their initial or decay stage but identify
localised features with stronger updrafts or colder cloud tops
within the weaker-threshold areas. In the first example ap-
plication (Sect. 3), consecutive maximum updraft threshold
values of 3, 5 and 10 ms−1 were used, while tracking based
on OLR in the second example (Sect. 4) was performed with
consecutively smaller threshold values (250, 225, 200, 175
and 150 Wm−2). While using multiple thresholds is usually
beneficial, feature detection using a single threshold value is
possible in tobac by only supplying a single threshold value
and can be appropriate in certain applications.

An iterative set of threshold values was used in other re-
cent approaches to cloud detection (Liang et al., 2017; Fu
et al., 2019) but with a specific focus on application to cer-
tain types of satellite images. Multiple-threshold methods are
also applied in other fields of science facing similar chal-
lenges in feature detection such as astronomy (Zheng et al.,
2015).

2.3 Segmentation

Once features and feature centres are identified, segmen-
tation techniques are used to associate areas or volumes
with each identified feature. In the current version of the
tobac framework, we have implemented segmentation us-
ing watershedding techniques from the field of image pro-
cessing (skimage.morphology.watershed from the
scikit-image library; Soille and Ansoult, 1990; van der
Walt et al., 2014) with a fixed threshold value Vsegmentation.
This value has to be set specifically for every type of in-
put data and application, as explained in more detail for the
two example applications in Sects. 3 and 4. Watershedding
segmentation treats the input field as a topographic map and
separates the input into individual regions similar to individ-
ual watersheds or catchment basins along a dividing ridge
in a geological context (Meyer, 1994). These techniques are
widely used in several existing cloud tracking and analy-
sis algorithms described in Sect. 1, such as Heiblum et al.
(2016a), Fiolleau and Roca (2013), and Senf et al. (2018).

This segmentation routine can be performed for both two-
dimensional and three-dimensional data. At each time step, a
marker is set at the position (weighted mean centre) of each
feature identified in the detection step in an array otherwise
filled with zeros. In the case of the three-dimensional water-
shedding, all cells in the column above the weighted mean
centre position of the identified features fulfilling the thresh-
old condition Vsegmentation are set to the respective marker.
The algorithm then fills the area (2-D) or volume (3-D) based
on the input field starting from these markers until reaching
the threshold Vsegmentation. If two or more cloud objects are
directly connected, the border runs along the watershed line
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Figure 2. Schematic illustration of the multi-threshold feature de-
tection approach using three different threshold values.

between the two regions. This procedure creates a mask of
the same shape as the input data, with zeros at all grid points
in which there is no cloud or updraft and the integer number
of the associated feature at all grid points belonging to that
specific cloud or updraft. This mask can be conveniently and
efficiently used to select the volume of each cloud object at a
specific time step for further analysis or visualisation.

The structure of tobac allows for the future implementa-
tion of other algorithms for the segmentation step, e.g. re-
placing the watershedding approach by random walk tech-
niques (Grady, 2006; Wang et al., 2019) or other image pro-
cessing tools. Similarities between the feature detection and
segmentation steps mean that these steps could be combined
in some implementations in future versions of tobac, e.g. for

Figure 3. Schematic illustration of the trajectory linking with the
predicted motion of the feature based on previous time steps and a
search range around the predicted position.

applications based on a single input dataset (OLR), as used
in Sect. 4. However, treating the two analysis steps separately
allows for the combination of different datasets (vertical ve-
locity and condensed water content), as shown in Sect. 3.

2.4 Trajectory linking

The individual features and associated areas and volumes
identified in each time step have to be linked into cloud tra-
jectories to analyse the time evolution of cloud properties for
a better understanding of the underlying physical processes.
For this step, we have implemented a linking method that
makes use of trackpy (Allan et al., 2016), a Python library
originally developed for tracking particles and cells in micro-
scopic images. The linking determines which of the features
detected in a specific time step (see Sect. 2.2) is identical to
an existing feature in the previous time step and is illustrated
in Fig. 3. For each existing feature, the movement within a
time step is predicted based on the velocities in a number
of previous time steps. The algorithm then breaks the search
process down to candidate features by restricting the search
to a circular search region centred around the predicted posi-
tion of the feature in the next time step. For newly initialised
trajectories, for which no velocity from previous time steps
is available, the algorithm resorts to the average velocity of
the nearest tracked objects. The parameter vmax restricts how
much the future position of a feature is allowed to deviate
from a linear extrapolation of the trajectory over time. It thus
has the units of a velocity and describes the dependency of
the circular search range d on the output time step 1t in the
data used for the tracking:

d = vmax1t. (3)

In the applications presented in Sects. 3 and 4, we set this
value to vmax=10 ms−1, which results in a search range of
600 m around the projected position for 1 min data input and
3 km for 5 min data input. Variations in the shape of the re-
gions used to determine the positions of the features can lead
to quasi-instantaneous shifts of the position of the feature by
one or two grid cells even for a very high temporal resolution
of the input data, potentially jeopardising the tracking pro-
cedure. To prevent this, tobac uses an additional minimum
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radius of the search range dmin (2 km, equivalent to 4 times
the grid spacing in Sect. 3) that specifies a lower limit for the
size of the search region. Both these parameters are given as
physical quantities and then converted into pixel-based val-
ues used in trackpy. This allows for cloud tracking that is
controlled by physically based parameters that are indepen-
dent of the temporal and spatial resolution of the input data.
We make use of this for cloud tracking with different model
output frequencies for the same simulations in the example
application in Sect. 3.

Features can be allowed to be missed for a certain number
of time steps (memory) and still get linked into a trajectory.
However, this option should be used with caution, as it can
lead to erroneous trajectory linking, especially for data with
low time resolution. For example, convective clouds can pro-
duce outflow boundaries that initiate new convective clouds
nearby, and the newly formed clouds are more likely to be
linked to the original clouds with this option.

The feature detection step can often omit the initial or fi-
nal stages of the evolution of a cloud due to the choice of
specific thresholds. Thus, trajectories can also be extrapo-
lated to additional output time steps at the start and at the
end of the tracked path. This allows for the inclusion of both
the initiation of the cell and the decaying later stages in the
analysis of the cloud life cycle. Furthermore, a threshold for
the minimum lifetime of the tracked objects can be used to
exclude the analysis of clouds that have only been tracked
for a very short period and are likely to be spurious features.
Such tracked objects can contaminate analyses focusing on
the cloud lifetime and associated quantities.

The trajectories are recorded in a pandas data frame.
This enables the filtering of the resulting trajectories, e.g.
to reject trajectories that are only partially captured at the
boundaries of the input field both in space and time.

The current implementation of the linking step does not
include an explicit treatment of the splitting and merging of
clouds, as implemented in several of the cloud tracking algo-
rithms reviewed earlier (Dawe and Austin, 2012; Heus and
Seifert, 2013; Heiblum et al., 2016a). Instead, the current ver-
sion of tobac will create a continuous track with only one of
the two separate cloud objects that combine in a merger or
evolve from the splitting of a tracked object, mostly based
on which of these has the more similar direction of travel to
the joint object. However, we have structured the implemen-
tation of tobac in a way that allows for the future addition
of more complex tracking methods that can record a more
complex network of relationships between cloud objects at
different points in time.

2.5 Object-based analysis and visualisation

To make use of the results of the previous steps, we pro-
vide detailed tools to analyse and visualise the tracked ob-
jects. We provide a set of routines that enable the perfor-
mance of analyses and the derivation of statistics for indi-

vidual clouds, such as the time series of integrated properties
and vertical profiles. We also provide routines to calculate
summary statistics of the entire population of tracked clouds
in the cloud field like histograms of cloud areas and volumes
or cloud mass and a detailed cell lifetime analysis (see Figs. 6
and 10).

These analysis routines are all built in a modular manner.
Thus, users can reuse the most basic methods for interacting
with the data structure of the package in their own analy-
sis procedures in Python. This includes functions performing
simple tasks like looping over all identified objects or cloud
trajectories and masking arrays for the analysis of individual
cloud objects. Plotting routines include both visualisations of
the entire cloud field and detailed visualisations for individ-
ual convective cells and their properties.

2.6 Advantages of the implementation in Python

While the majority of the existing tracking approaches re-
viewed in Sect. 1 are implemented either in Fortran, C and
C++, or in proprietary programming languages like MAT-
LAB, we have chosen to use Python for our tracking frame-
work for several practical reasons. Python has become the
go-to standard for data analysis in many fields of scien-
tific research, including the atmospheric sciences in recent
years (Lin, 2012; Perkel, 2015). This makes it possible to
develop software that is accessible and modular, which al-
lows for the successful addition of user-contributed algo-
rithms or the adoption or application of the workflow for
cases beyond those presented here. The use of libraries in
the scientific Python ecosystem including NumPy, SciPy,
and matplotlib (Hunter, 2007; van der Walt et al., 2011),
along with a large stack of existing and optimised libraries
providing image processing features (van der Walt et al.,
2014), means that the package is based on actively developed
open-source projects. This ensures an accurate, effective and
tested implementation of the individual calculations as well
as the continuous integration of new developments and im-
provements. Most of these Python libraries use Fortran or
C for the actual underlying calculations, which means that
many of the individual operations within tobac make use of
the increased computational speed of these languages. The
use of Python also means that even users without extensive
programming experience will be able to easily adapt existing
procedures into the workflow or contribute additional algo-
rithms to the modular structure of the tobac tracking frame-
work.

The implementation in Python also enables the use of
Jupyter notebooks (Perez and Granger, 2007; Kluyver et al.,
2016) as an innovative way of developing, visualising and
sharing scientific data analyses. We provide examples of the
analyses presented here as Jupyter notebooks in the software
package.

Memory limitations have been cited as a significant chal-
lenge for the application of many of the presented algorithms
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(Dawe and Austin, 2012; Heus and Seifert, 2013). The use of
modern memory management techniques such as “lazy data
loading” in the underlying Python libraries Iris (Met Of-
fice, 2018) and xarray (Hoyer and Hamman, 2017), which
both rely on dask data types (Rocklin, 2015), allows for
clear and concise source code while sparing users the experi-
ence of having to deal with most memory-related considera-
tions themselves. Memory usage and algorithm run time for
the two applications presented in this paper are included in
the following sections.

3 Example A: tracking convective cells in
high-resolution model simulations based on updraft
velocities and condensate mixing ratios

In the first example, we apply the tracking framework to
CRM simulations of scattered deep convection. Deep con-
vective clouds are characterised by regions of strong verti-
cal motions which are concentrated in relatively confined up-
draft cores that dominate the dynamics of the cloud evolution
(Cotton et al., 2010). Hence, the updraft cores are well suited
to be used for identifying and tracking individual convective
cells. We use the total condensate mixing ratio, i.e. the total
amount of liquid and frozen water per mass of dry air, to as-
sociate the identified updraft cores with the respective cloud
volume at each time.

We make use of simulations that were performed as part of
a larger model intercomparison case study in the deep con-
vection working group of the Aerosol, Clouds and Precipita-
tion (ACPC) initiative (van den Heever et al., 2017) aimed at
understanding the response of scattered convection over the
region around Houston, Texas, to changes in aerosol num-
ber concentrations. The tracking algorithm presented here
will be used as part of the analysis for the model inter-
comparison study using several different three-dimensional
CRMs. The simulations are performed in a nested setup
with three domains using grid spacings of 4.5 km, 1.5 km
and 500 m. Initial conditions for all domains and boundary
conditions for the outermost domain were provided by the
GDAS-FNL reanalysis (NCEP, 2015). The simulations have
been performed for 24 h from 12:00 UTC on 19 June 2013
to 12:00 UTC on 20 June 2013. The simulation setup is de-
scribed in more detail in van den Heever et al. (2017). The
model time stepping is 3 s for the outmost domain and 1.5 s
for the two inner domains. In this example, we use data
from the innermost domain with a 500 m grid spacing and
500 grid cells in each horizontal direction. The simulation
results are output at a frequency of 1 min for an extended
part of the simulation period (3 h, 21:00–24:00 UTC) and
at a frequency of 5 min for 12 h of the simulations (16:00–
04:00 UTC). The outermost domain of the same nested sim-
ulation setup is used for the comparison with satellite data
presented in Sect. 4.

For the two following examples, we use model results
from simulations with the Weather Research and Forecast-
ing (WRF) model (Skamarock et al., 2005). These simu-
lations use the Morrison microphysics scheme (Morrison
et al., 2005, 2009) and the Rapid Radiative Transfer Model
(RRTMG) shortwave and longwave radiation scheme (Ia-
cono et al., 2008).

We use a combination of the three-dimensional fields of
vertical velocity and total condensate mixing ratio in this ap-
plication to track individual convective clouds. The individ-
ual steps of the analysis are visualised for a specific point in
time and a subset of the model domain in Fig. 4. The three-
dimensional vertical velocity field is reduced to the maxi-
mum updraft velocity in each model column over a mid-
tropospheric range of geopotential height (3000 to 8000 m)
(Fig. 4a). This avoids the impact of strong vertical motions
both in the lower troposphere, which may be associated with
outflow boundaries, and gravity waves in the upper tropo-
sphere. A Gaussian filter with a variance of σ = 1km is used
to filter the input in the feature detection step (Fig. 4b) to
create a smoother field that assists in the feature detection.
This two-dimensional field is then used to identify individual
deep convective updrafts in the simulation. The feature iden-
tification following Sect. 2.2 is performed with a set of three
updraft velocity thresholds of 3, 5 and 10 ms−1 (Fig. 4c)
and yields the individual features marked in Fig. 4d. Seg-
mentation is performed on the condensate mixing ratio using
the watershedding technique (see Sect. 2.3) with a thresh-
old of 0.5 gkg−1 to identify the cloud volumes corresponding
to the individual identified updrafts. The cloud volumes de-
rived with watershedding from the condensate mixing ratio
field of each of the identified updrafts is represented by the
surface projection of the 3-D volumes (Fig. 4e). Note that
the intersecting lines in Fig. 4e represent instances in which
cloud volumes associated with different updraft cores may be
present in the same column but at different altitudes. Trajec-
tories are formed by linking up the individual features and are
shown including the surface projection of the cloud volumes
at the initial and final time step of each tracked cell (Fig. 4f).

The data processing has been performed on the JASMIN
data analysis facility (CEDA, 2019). The script, including
feature detection, segmentation, trajectory linking and sav-
ing of the analysis output for the 1 min data output, had a
processing time of around 17 min with a maximum memory
footprint of 3.1 GB using a maximum of three processes and
27 threads. The segmentation step has been broken up into
chunks of 10 min each to limit the total memory consump-
tion of the analysis. The processing time is almost entirely
taken up by the segmentation step using time-resolved three-
dimensional data of the total condensate. It is thus strongly
affected by the time required to access the data on the disk
and highly dependent on both the infrastructure and the struc-
ture of the data file, i.e. the data compression in the input
files. A smaller subset of the data and analysis for this exam-

Geosci. Model Dev., 12, 4551–4570, 2019 www.geosci-model-dev.net/12/4551/2019/



M. Heikenfeld et al.: tobac 4559

Figure 4. Schematic overview of the individual steps of the tracking algorithm for an example subset of the domain used in example A
including the input mid-tropospheric velocity field. The input data (a) are smoothed with a filter (b) before regions above or below a set of
thresholds are determined (c) to identify the individual features (d). (e) The surface projection of the associated cloud volumes determined
in the segmentation set and (f) the entire trajectories of the cells present at this time step, including the surface projection of the cell volume
at the start (dashed) and at the end (solid) of the trajectory.

ple including the tracking analysis and visualisation is avail-
able as a Jupyter notebook as part of the package source code.

3.1 Time resolution requirements for cloud tracking

The cloud tracking framework presented here can be applied
to model output from any atmospheric model simulation with
sufficient resolution to resolve the features intended to be
studied. However, successful tracking of individual clouds in
the simulation output requires sufficiently high spatial and
temporal resolution. However, writing output data at high
frequency from numerical model simulations drastically in-
creases the computational expense of the simulations and
the size of the output datasets. For observational data, such
as geostationary satellite data, the available time resolution
might be limited by technical restrictions such as scanning
time or data transmission. It is thus important to determine
the necessary input frequency for the successful tracking of
a specific type of dataset.

The tracking step (Sect. 2.4) uses trackpy, which is
based on the tracking methods developed in Crocker and
Grier (1996). The algorithm was originally developed for mi-
croscopic particles; however, all considerations apply equally
to the tracked features we regard here in tobac. In their devel-
opment of the algorithm, the authors state that successfully
linking objects into trajectories is only feasible if the typi-
cal displacement of a particle during one time step is smaller
than the typical inter-particle spacing. To assess how valid
these assumptions are for our application, we investigated
the nearest-neighbour distances for individual cells and the
typical displacement of the tracked objects within one time

step. Distances between cloudy updrafts (Fig. 5a) were most
frequently around 5 km, with a substantial tail of up to 30 km
representing more isolated cells. This distribution is indepen-
dent of the chosen output time step as it represents an in-
stantaneous relationship between cells at individual points in
time. The updraft propagation velocities derived for tracking
with a 1 min output time step (Fig. 5b) were most frequently
at around 4 ms−1, with more than 90 % of the velocities be-
low 10 ms−1.

Using the output time step and these velocities, we can
calculate the displacement of the clouds within one track-
ing time step and compare that to the nearest-neighbour dis-
tances (Fig. 5c). In addition to the time step of 1 min, the dis-
placements that would result from lower output frequencies
of 5, 10, 15 and 30 min based on these velocities were calcu-
lated (Fig. 5c). While there is no clear overlap between the
nearest-neighbour distance distribution and the displacement
distribution for an output time step of 1 min, the tails of the
distributions start overlapping for 5 min input data, although
the peaks are still distinctly separate. For lower output fre-
quencies of 15 and 30 min, however, there is a clear overlap
between the nearest-neighbour distance distribution and the
distributions of displacement within one time step. There-
fore, these frequencies would be outside the range postulated
for the successful application of the tracking algorithm used
by trackpy. Hence, when applying this tracking algorithm,
it is important to understand both the spatial distribution of
the desired tracked features and their propagation velocities
to ensure that the output time step is sufficiently frequent. For
the simulations assessed here, both 1 and 5 min output fre-
quencies would be acceptable for tracking cloudy updrafts,
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Figure 5. (a) Distributions of the distance to the next identified ob-
ject for all identified objects and (b) velocities for tracked cloud
objects at each time step of the trajectories. (c) The distribution of
derived travel distances of individual clouds during one output time
step (shaded colours) resulting from these velocities in (b) is shown
together with the distribution of the minimal distance to the nearest
neighbour for individual objects as shown in (a).

with 1 min output likely to provide more successful and ac-
curate tracks.

The cloud lifetimes (Fig. 6) are analysed for the same
3 h period using the two different time resolutions (1 and
5 min) and agree well for clouds with lifetimes larger than
about 15 to 20 min. For shorter lifetimes, the 1 min input data
yield substantially more tracked cells. It is obvious that we
can only properly represent and analyse cloud lifetimes for
clouds that exist over a certain number of output time steps
in this framework. An individual cloud that is tracked for 5 to
10 min based on 1 min output allows for robust conclusions
about the evolution of the cloud in that period. The same time
would merely lead to two or three individually identified ob-
jects for 5 min data output, which would be the minimum to
draw any useful conclusions about the lifetimes or time evo-
lution of the clouds.

Figure 6. Cell lifetimes for tracking and analysis using two different
output time steps (1 and 5 min) showing both total counts (a) and
the probability distribution function (PDF) (b).

4 Example B: tracking deep convective clouds in model
simulations and geostationary satellite data based on
outgoing longwave radiation (OLR)

Satellite retrievals are an important tool in climate and
weather research as they are an effective way of obtaining
observation-based quantities over greater spatial scales in the
atmosphere. Specifically, geostationary satellites offer con-
tinuous coverage in space and time for a specific region and
can therefore be used to understand the temporal evolution of
atmospheric phenomena. Direct comparisons of model simu-
lations with satellite retrievals for the same area and time pe-
riod are an important means of assessing model capabilities
to successfully represent atmospheric processes in the real
world. Using a tracking framework for the analysis allows us
to investigate the representation of clouds in the model in a
way that takes the development of individual clouds within
the population of clouds into account as opposed to relying
on temporal and spatial statistics of the cloud field. Using
the same tracking framework for both model and observation
data allows for a more robust comparison between them.

Here, we use satellite data from the Geostationary Oper-
ational Environmental Satellite (GOES) system, specifically
GOES-13 (Hillger and Schmit, 2007), and WRF model sim-
ulation results from the ACPC deep convection case study
(van den Heever et al., 2017). The satellite data were down-
loaded from the NOAA Comprehensive Large Array-data
Stewardship System (CLASS) (NOAA, 2019a) for the conti-
nental United States (CONUS) area in NetCDF format. The
NOAA Weather and Climate Toolkit (WCT) (NOAA, 2019b)
was used to convert pixel counts to radiances and brightness
temperatures for the two channels used in the analysis here.
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The satellite data used in this example have an average hori-
zontal spacing of about 4 km.

The model simulation comprises the outermost nested grid
of the nested WRF simulation setup described in Sect. 3.
This outer domain covers a much larger area, encompass-
ing most of Texas and the surrounding states of the southern
USA, as well as neighbouring areas of northeastern Mex-
ico. It features a grid spacing of 4.5 km and a width of 400
grid cells, equivalent to 1800 km in each horizontal direction.
The simulation results were output at a time resolution of
15 min for the entire 24 h simulation period from 12:00 UTC
on 19 June 2013 to 12:00 UTC on 20 June 2013.

Although the temporal and spatial resolution of the input
data can be arbitrary for the use in tobac, a meaningful com-
parison of the two datasets requires the analysis to cover the
same region at a similar temporal and spatial resolution. The
spatial resolution of the two datasets is reasonably similar
(around 4 km for the satellite data and 4.5 km for the model
output) and both datasets use a regular 15 min interval, with
a difference of up to a minute due to the scan time of the
satellite data. The satellite data were restricted to the same
temporal and spatial extent as the model output.

Top-of-atmosphere outgoing longwave radiation (OLR) is
used to track individual deep convective clouds in both model
simulations and satellite retrievals. OLR is a standard model
output for most high-resolution simulations and is often used
as a diagnostic for simulated deep convection (Pearson et al.,
2010; Russo et al., 2011). OLR retrievals also have the ben-
efit that they do not depend on other aspects of a compli-
cated radiative transfer model, which require, amongst other
assumptions, pixels to be assigned as either cloud or cloud-
free for the radiative retrieval of several optical (effective ra-
dius and optical depth) and thermal (cloud-top temperature
and height) cloud properties (McGarragh et al., 2018). For
the satellite data, we use an empirical conversion derived in
Singh et al. (2007) to convert the radiances L from two chan-
nels in the GOES-13 measurements, the water vapour chan-
nel (WV, 5.8 to 7.30 µm) and a channel in the infrared win-
dow (WIN, 10.2 to 11.2 µm), to OLR.

OLR= 11.44LWIN+ 9.04LWV+
9.11LWV

LWIN

−
86.36
LWIN

− 0.14L2
WV+ 111.12 (4)

Singh et al. (2007) report an uncertainty from these conver-
sions within 2.5 W m−2.

The distribution of OLR for the model simulations and
the satellite retrievals shows a very similar shape (Fig. 7).
The satellite-retrieved OLR features a larger number of pix-
els characterised by lower OLR values in the range between
100 and 250 Wm−2 corresponding to deep cloud tops. The
range covered and the peak position of OLR, correspond-
ing to cloud-free and low cloud regions around 290 Wm−2,
agree well between the model simulation and the satellite re-
trieval.

Figure 7. Probability density function of OLR for the model sim-
ulation and the satellite retrievals including the thresholds (vertical
dashed and dotted lines) set for feature detection and segmentation.

We use these histograms to choose the threshold values for
the feature detection and the segmentation steps in the tobac
routine. The threshold for the outline of the convective clouds
in the segmentation step (250 Wm−2) reflects the lower tail
of the peak of OLR in both the model simulations and the
satellite retrievals. The additional thresholds used in the fea-
ture detection algorithm (250, 225, 200, 175 and 150 Wm−2)
are distributed over the range of OLR values in the part of the
distribution representing the deeper clouds.

The individual steps of the tracking analysis for the model
data are shown in Fig. 8, but the same steps are applied
equally to the satellite-retrieved data. The outgoing long-
wave radiation field (Fig. 8a) is filtered with a Gaussian filter
with a standard deviation of σ = 4.5km, equivalent to the
grid spacing of the model data (Fig. 8b). The feature iden-
tification following Sect. 2.2 is performed with the set of
five OLR thresholds of 250, 225, 200, 175 and 150 Wm−2

(Fig. 8c, d). The segmentation is performed using the wa-
tershedding technique (Sect. 2.3) with an OLR threshold of
250 Wm−2 to identify the area of the individual clouds lead-
ing to the cloud areas shown in Fig. 8e. The complete linked
trajectories of all clouds present at the specific time step, as
illustrated in the other sub-figures, are shown in Fig. 8f with
the cloud extent at the start (dashed) and end (solid) of the
lifetime of the cloud.

The data processing was performed on the JASMIN data
analysis facility (CEDA, 2019). The total processing time of
the script, including feature detection, segmentation trajec-
tory linking and saving the output data, was around 1 min
with a maximum memory footprint of around 500 MB for the
model data and 2.5 min with a memory footprint of around
400 MB for the satellite data, each using a maximum of three
processes and 27 threads. Additional tests of the processing
on a typical laptop with four processing cores showed a sim-
ilar processing time and memory footprint. A smaller subset
of the data and the analysis for this example, including the
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Figure 8. Schematic overview of the individual steps of the tracking algorithm for an example subset of the domain used in example B
based on outgoing longwave radiation. The input data (a) are smoothed with a filter (b) before regions above or below a set of thresholds are
determined (c) to identify the individual features (d). (e) The associated cloud areas determined in the segmentation step and (f) all individual
clouds present at the time step over their entire life cycle, including an outline of the cloud area at the start (dashed) and at the end (solid) of
the trajectory.

tracking analysis and visualisation, is available as a Jupyter
notebook as part of the package source code.

The tracked clouds for both the model simulation and the
satellite retrieval are visualised for two different times in
Fig. 9. Both the model simulations and the satellite retrieval
show many individual convective clouds in a region north of
the coastline, especially towards the east of the analysed do-
main around the Mississippi River Delta and further inland in
Texas. In addition, larger connected regions of clouds occur
both towards the southern end of the analysed domain over
the Gulf of Mexico and in the form of a large organised storm
system entering the domain from the northwest. The propa-
gation of this large system is not represented accurately in
the model simulation, as it shows a lag of several hours and
is smaller in magnitude than in the satellite retrievals.

The lifetime distribution of the clouds identified and
tracked from the model simulations and from the satellite
retrievals shows a similar distribution (see Fig. 10a). How-
ever, more clouds are identified in the satellite data than in
the model data. When normalised for total number, the life-
time distributions agree better between the two different data
inputs (Fig. 10b). Most cloud objects are tracked for periods
of up to an hour, but in both the model simulations and the
satellite retrievals there are numerous cloud objects tracked
for up to several hours. The distributions of the cloud areas
(Fig. 10c, d) show that the total cloud area for both model
and satellite data is made up of two types of identified ob-
jects, smaller tracked clouds with a radius of up to 100 km
and large tracked features with a radius of a few hundred

kilometres. Due to the larger number of tracked clouds, there
is more total cloud area in the tracked clouds in the satellite
data. The distribution of cloud sizes is relatively similar be-
tween the two datasets. The satellite data show more small
clouds below the 100 km equivalent radius. Furthermore, the
size of the largest tracked objects is larger in the satellite
data than in the model data, which corresponds to the large
MCS propagating through the domain of interest (Fig. 9) and
which is not represented properly in the model simulations
with respect to both timing and total size.

An analysis of the cloud velocities and nearest-neighbour
distances as described in Sect. 3.1 is presented in Fig. 11.
The distribution of both the nearest-neighbour distances
(Fig. 11a) and the cloud displacement velocities (Fig. 11b)
agree well between the model simulations and the satellite re-
trieval. The peak of the nearest-neighbour distances appears
around 20 km. The propagation velocities peak at around
8 ms−1, with most of the velocities below 20 ms−1. A com-
parison of the nearest-neighbour distances and the displace-
ments per input time step that would result for different tem-
poral resolution (1, 5, 15 and 30 min) shows that the 15 min
time step used here already shows some overlap in the distri-
butions. Longer time steps of 30 min or more would probably
lead to problems in the tracking, while shorter time steps of
a few minutes would be expected to improve the tracking
further. However, output at similarly high temporal frequen-
cies is not always feasible or simply not available for a lot
of data sources, e.g. for the GOES-13 geostationary satellite
retrievals used in this study. The newest generation of geosta-
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Figure 9. Identified and tracked objects at two specific points in time (19 June 2013 at 18:55 and 22:55 UTC) based on outgoing longwave
radiation for the WRF simulations with 4.5 km grid spacing (a, c) and the outgoing longwave radiation derived from the combination of two
GOES-13 channels following Singh et al. (2007) (b, d).

tionary satellite imagers, such as the GOES-R series (GOES
16–17) that has replaced the GOES-13 satellite used here, as
well as Himawari-8 (Bessho et al., 2016) and the future Me-
teosat Third Generation (MTG) satellites (Stuhlmann et al.,
2005), all feature substantially higher temporal and spatial
resolution.

The scattered convective cells of differing depths over the
area of Houston that were the focus of the analysis in the first
application example (Sect. 3) are not clearly resolved in these
two datasets. The lower spatial resolution of the simulations
and satellite retrieval (around 4 km compared to 500 m in the
high-resolution simulations used in Sect. 3) limits the spatial
scale of cloud features that can be resolved to more than a
few tens of kilometres in radius. The use of outgoing long-
wave radiation as a variable for feature identification does
not include as much information as the three-dimensional
model output fields used in Sect. 3; however, it provides com-
plementary information to compare model simulations with
satellite retrievals.

5 Conclusions

We have presented tobac, a new framework for the object-
based analysis and tracking of individual convective clouds

in different types of input data. The workflow of the soft-
ware package consists of the detection of suitable features,
segmentation of the areas or volumes representative of an in-
dividual cloud object, and subsequent linking of objects at
individual time steps into trajectories. All individual steps
are implemented in a modular way, thereby allowing for the
implementation of different algorithms for each of the steps,
should the need arise.

We have developed a feature detection algorithm based on
identifying regions above or below a defined sequence of
thresholds in two-dimensional input fields. Cloud volumes
or cloud areas are associated based on a watershedding tech-
nique featuring a single specific threshold value on two- or
three-dimensional input fields.

We have shown how we can leverage another open-source
Python package, trackpy, initially developed for applica-
tion in microscopy, in the tobac framework to link up cloud
objects at individual time steps into consistent cloud trajec-
tories. These cloud trajectories allow for an analysis of cloud
lifetimes and the time evolution of cloud properties and phys-
ical processes in the clouds over the lifetime of the cloud.
The analysis routines provided as part of the package can
be applied to derive cloud properties and statistics for indi-
vidual clouds over their life cycle as well as for the entire
population of clouds in the analysed cloud field. The built-in
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Figure 10. Distributions of cloud lifetimes obtained from the track-
ing of model data and satellite retrievals, shown as total counts
(a) and frequency (b). The distribution of cloud areas is shown as
the distribution of total area resulting from the sum in each area bin
(d) and as a PDF of cloud area (c). Both these distributions are plot-
ted against the equivalent radius of a circular cloud of the same area.

visualisation routines allow for a convenient way to assess
the performance of the analysis and evaluate the choice of
parameters for the different steps of the analysis framework.
The automatically created animated visualisations of individ-
ual tracked cells can guide users in the development of fur-
ther detailed analyses based on the analysis tools provided in
the framework.

The implementation of the tracking framework in Python
enables the use of extensive and actively developed open-
source libraries for scientific computing. We have shown that
this provides numerous advantages, e.g. for memory man-
agement, data structures and visualisation. The rapid devel-
opment of the underlying libraries means that tobac can profit
from future advances without any further development of to-

Figure 11. (a) Distributions of the distance to the next identified
object for all identified objects and (b) velocities for tracked cloud
objects at each time step of the trajectories for both the model sim-
ulations and the satellite data. (d) The travel distance per input in-
terval resulting from different time resolution of the input based on
these velocities (b) is shown together with the distribution of the
minimal distance to the nearest neighbour in (a) for the model data
in (c) and for the satellite data.

bac and any requirements on the side of the user. The mod-
ular structure of the framework allows for the inclusion of
other existing or newly developed methods for the individual
steps of feature detection, object segmentation and tracking
into the software package in the future. These capabilities
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enable the use of different tracking algorithms in parallel for
evaluation and comparisons as well as tracking based on dif-
ferent types of input data in a single analysis framework.

We have presented two application examples of the use of
tobac for the study of deep convective clouds. In the first ap-
plication (example A), we have tracked scattered deep con-
vective cells based on a combination of the vertical velocity
and total condensate mixing ratio fields from CRM simula-
tions with WRF over the area around Houston, Texas. The
simulations were performed with a grid spacing of 500 m
and thus represent a typical application of a CRM. The track-
ing framework is currently being applied to other CRMs for
the same case study as part of the ACPC deep convection
case study (van den Heever et al., 2017) to investigate the
response of deep convective clouds in models to changes in
aerosols. We have performed the tracking for different out-
put frequencies to evaluate the dependency of the tracking
performance on the time resolution of the input data. The
output resolutions of 1 and 5 min lead to comparable track-
ing results for scattered convective cells. This result can be
confirmed using an analysis of typical displacement veloci-
ties of the clouds and nearest-neighbour distances between
the individual identified cloud objects.

In a second application (example B), we have pre-
sented a simultaneous tracking of deep convective cloud
features and larger convective systems based on outgo-
ing longwave radiation output from model simulations with
convection-permitting grid spacing (4.5 km) and outgoing
longwave radiation derived from geostationary satellite re-
trievals (GOES-13) in the same region. The 15 min time res-
olution available from the satellite retrieval is shown to be
sufficient for successful tracking performance. The analysis
also demonstrated that the model simulations and the satel-
lite retrieval feature clouds with a similar lifetime distribu-
tion. The distribution of cloud areas in model and satellite
data shows a similar combination of smaller convective cells
and larger systems. The main differences occur for the largest
tracked systems, which are stronger in the satellite retrievals.
This can be explained by the limited representation of the
propagation of two large organised storms within the model
domain. This would have been more challenging to assess
from a bulk analysis of the domain-wide averaged proper-
ties.

The newest generation of geostationary satellites, such as
Himawari-8 and GOES-16–17, provide substantially higher
spatial and temporal resolution (Bessho et al., 2016; Schmit
et al., 2016). These advances will strongly improve the ap-
plicability of these types of satellite data for use in object-
based tracking and analyses with tobac and also allow for a
wider range of applications, e.g. by capturing smaller scat-
tered cells such as the ones investigated in Sect. 3.

The ability of tobac to be used for both models and obser-
vations as shown in these examples helps to compare models
with observations more directly and therefore better under-
stand the differences between the two types of data.

Although we have focused on tracking and analysing deep
convection here, there are numerous other applications that
tobac can be used for without much additional work. There
are a large number of existing data products, such as high-
resolution radar data, e.g. from NEXRAD over the United
States and similar networks in several other regions of the
world (Reed et al., 2017), that would be most suited for
use with tobac. Furthermore, the application of tobac is not
strictly limited to the analysis of clouds, and it can also be
applied to study other features of the Earth system that can
be identified as well-defined time-evolving regions, such as
distinct aerosol plumes in the atmosphere or plankton in the
surface layer of the ocean.

We are currently working on implementing additional al-
gorithms for the modular steps of the framework, e.g. based
on the analyses developed in Senf et al. (2018). Additionally,
we are implementing a more flexible representation of the
links between cloud objects at specific points in time, which
will allow for proper treatment of more complex splitting and
merging of cells. We invite the community to contribute to
the future development of tobac through the implementation
of existing algorithms into the common framework and by
using the framework as a basis for new developments.

Code and data availability. The tobac source code is publicly
available in a GitHub repository distributed under a BSD 3-Clause
licence at https://github.com/climate-processes/tobac (Heikenfeld
et al., 2019b, c). The version tobac 1.2 described here is available
as a release (Heikenfeld et al., 2019a). The latest version of tobac
can be installed using conda with the command conda install
-c conda-forge tobac.

The linking step makes use of trackpy (Allan et al., 2016). We
use several standard Python packages for scientific computing and
image processing that are all available through package managers
such as pip or conda. The GOES-13 satellite imager data have been
downloaded from the NOAA Comprehensive Large Array- data
Stewardship System (CLASS) (NOAA, 2019a) and processed with
the NOAA Weather and Climate Toolkit (WCT) (NOAA, 2019b).

Jupyter notebooks containing the tracking analysis and visuali-
sations of the tracking results for a smaller subsample of the data
used in the two example applications are provided as part of the to-
bac source code. The data used in these notebooks are downloaded
automatically and are available in Heikenfeld (2019).
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