Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-3939-2019
https://doi.org/10.5194/gmd-12-3939-2019
Model evaluation paper
 | 
06 Sep 2019
Model evaluation paper |  | 06 Sep 2019

Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment

Frederik Kurzrock, Hannah Nguyen, Jerome Sauer, Fabrice Chane Ming, Sylvain Cros, William L. Smith Jr., Patrick Minnis, Rabindra Palikonda, Thomas A. Jones, Caroline Lallemand, Laurent Linguet, and Gilles Lajoie

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Frederik Kurzrock on behalf of the Authors (06 Aug 2019)  Author's response   Manuscript 
ED: Publish as is (09 Aug 2019) by Simon Unterstrasser
AR by Frederik Kurzrock on behalf of the Authors (16 Aug 2019)
Download
Short summary
This study assesses the assimilation of cloud water path retrievals in three phases (ice, supercooled, and liquid), derived from Meteosat-8, into a limited-area model using an ensemble Kalman filter (EnKF). The ability of the method to improve cloud analyses in the southwest Indian Ocean and short-term forecasts of global horizontal irradiance on Réunion Island is demonstrated using the Data Assimilation Research Testbed (DART) and the Weather Research and Forecasting (WRF) model.