Articles | Volume 12, issue 8
https://doi.org/10.5194/gmd-12-3401-2019
https://doi.org/10.5194/gmd-12-3401-2019
Methods for assessment of models
 | 
05 Aug 2019
Methods for assessment of models |  | 05 Aug 2019

Assessment of wavelet-based spatial verification by means of a stochastic precipitation model (wv_verif v0.1.0)

Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs

Related authors

Verification of boundary layer wind patterns in COSMO-REA2 using clear-air radar echoes
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021,https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025,https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025,https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary

Cited articles

Addison, P. S.: The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance, CRC press, 2017. a
Ahijevych, D., Gilleland, E., Brown, B. G., and Ebert, E. E.: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts, Weather Forecast., 24, 1485–1497, 2009. a, b
Bachmaier, M. and Backes, M.: Variogram or semivariogram? Variance or semivariance? Allan variance or introducing a new term?, Math. Geosci., 43, 735–740, 2011. a
Brune, S., Kapp, F., and Friederichs, P.: A wavelet-based analysis of convective organization in ICON large-eddy simulations, Q. J. Roy. Meteor. Soc., 144, 2812–2829, 2018. a
Buschow, S.: wv_verif (Version 0.1.0), Zenodo, https://doi.org/10.5281/zenodo.3257511, 2019. a
Download
Short summary
Highly resolved forecasts of precipitation fields are difficult to evaluate since individual rain features are typically not placed precisely at the right location. Instead of comparing forecasts and observations pixel by pixel, we base our verification on the fields' wavelet transforms which compactly summarize the overall structure. The methodology is rigorously tested using randomly generated rain fields for which that structure can be determined at will.
Share