Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2915-2019
https://doi.org/10.5194/gmd-12-2915-2019
Model description paper
 | 
12 Jul 2019
Model description paper |  | 12 Jul 2019

AtmoSwing: Analog Technique Model for Statistical Weather forecastING and downscalING (v2.1.0)

Pascal Horton

Related authors

Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687,https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023,https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Statistical reconstruction of daily precipitation and temperature fields in Switzerland back to 1864
Lucas Pfister, Stefan Brönnimann, Mikhaël Schwander, Francesco Alessandro Isotta, Pascal Horton, and Christian Rohr
Clim. Past, 16, 663–678, https://doi.org/10.5194/cp-16-663-2020,https://doi.org/10.5194/cp-16-663-2020, 2020
Short summary
The analogue method for precipitation prediction: finding better analogue situations at a sub-daily time step
Pascal Horton, Charles Obled, and Michel Jaboyedoff
Hydrol. Earth Syst. Sci., 21, 3307–3323, https://doi.org/10.5194/hess-21-3307-2017,https://doi.org/10.5194/hess-21-3307-2017, 2017
Short summary
Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann
Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013,https://doi.org/10.5194/nhess-13-869-2013, 2013

Related subject area

Atmospheric sciences
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary

Cited articles

Alessandrini, S., Delle Monache, L., Sperati, S., and Cervone, G.: An analog ensemble for short-term probabilistic solar power forecast, Appl. Energ., 157, 95–110, https://doi.org/10.1016/j.apenergy.2015.08.011, 2015a. a
Alessandrini, S., Delle Monache, L., Sperati, S., and Nissen, J. N.: A novel application of an analog ensemble for short-term wind power forecasting, Renew. Energ., 76, 768–781, https://doi.org/10.1016/j.renene.2014.11.061, 2015b. a
Barnston, A. G., van den Dool, H. M., Rodenhuis, D. R., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., Livezey, R. E., Zebiak, S. E., Cane, M. A., Barnett, T. P., Graham, N. E., Ji, M., Leetmaa, A., Barnston, A. G., van den Dool, H. M., Zebiak, S. E., Barnett, T. P., Ji, M., Rodenhuis, D. R., Cane, M. A., Leetmaa, A., Graham, N. E., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., and Livezey, R. E.: Long-Lead Seasonal Forecasts—Where Do We Stand?, B. Am. Meteorol. Soc., 75, 2097–2114, https://doi.org/10.1175/1520-0477(1994)075<2097:LLSFDW>2.0.CO;2, 1994. a
Ben Daoud, A.: Améliorations et développements d'une méthode de prévision probabiliste des pluies par analogie, PhD thesis, Université de Grenoble, France, 2010. a, b, c, d, e
Ben Daoud, A., Sauquet, E., Lang, M., Obled, C., and Bontron, G.: La prévision des précipitations par recherche d'analogues: état de l'art et perspectives, La Houille Blanche, 6, 60–65, https://doi.org/10.1051/lhb/2009079, 2009. a
Download
Short summary
Analog methods rely on the principle that similar atmospheric situations are likely to result in a similar local effect, such as precipitation. By using archives of measured atmospheric parameters and observed precipitation, one can establish a probabilistic forecast, for example, of the precipitation for a chosen target day. Analog methods require low computing capacity and have demonstrated useful potential for application in both operational forecasting and the context of climate studies.