Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2915-2019
https://doi.org/10.5194/gmd-12-2915-2019
Model description paper
 | 
12 Jul 2019
Model description paper |  | 12 Jul 2019

AtmoSwing: Analog Technique Model for Statistical Weather forecastING and downscalING (v2.1.0)

Pascal Horton

Related authors

Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687,https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023,https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Statistical reconstruction of daily precipitation and temperature fields in Switzerland back to 1864
Lucas Pfister, Stefan Brönnimann, Mikhaël Schwander, Francesco Alessandro Isotta, Pascal Horton, and Christian Rohr
Clim. Past, 16, 663–678, https://doi.org/10.5194/cp-16-663-2020,https://doi.org/10.5194/cp-16-663-2020, 2020
Short summary
The analogue method for precipitation prediction: finding better analogue situations at a sub-daily time step
Pascal Horton, Charles Obled, and Michel Jaboyedoff
Hydrol. Earth Syst. Sci., 21, 3307–3323, https://doi.org/10.5194/hess-21-3307-2017,https://doi.org/10.5194/hess-21-3307-2017, 2017
Short summary
Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann
Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013,https://doi.org/10.5194/nhess-13-869-2013, 2013

Related subject area

Atmospheric sciences
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary

Cited articles

Alessandrini, S., Delle Monache, L., Sperati, S., and Cervone, G.: An analog ensemble for short-term probabilistic solar power forecast, Appl. Energ., 157, 95–110, https://doi.org/10.1016/j.apenergy.2015.08.011, 2015a. a
Alessandrini, S., Delle Monache, L., Sperati, S., and Nissen, J. N.: A novel application of an analog ensemble for short-term wind power forecasting, Renew. Energ., 76, 768–781, https://doi.org/10.1016/j.renene.2014.11.061, 2015b. a
Barnston, A. G., van den Dool, H. M., Rodenhuis, D. R., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., Livezey, R. E., Zebiak, S. E., Cane, M. A., Barnett, T. P., Graham, N. E., Ji, M., Leetmaa, A., Barnston, A. G., van den Dool, H. M., Zebiak, S. E., Barnett, T. P., Ji, M., Rodenhuis, D. R., Cane, M. A., Leetmaa, A., Graham, N. E., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., and Livezey, R. E.: Long-Lead Seasonal Forecasts—Where Do We Stand?, B. Am. Meteorol. Soc., 75, 2097–2114, https://doi.org/10.1175/1520-0477(1994)075<2097:LLSFDW>2.0.CO;2, 1994. a
Ben Daoud, A.: Améliorations et développements d'une méthode de prévision probabiliste des pluies par analogie, PhD thesis, Université de Grenoble, France, 2010. a, b, c, d, e
Ben Daoud, A., Sauquet, E., Lang, M., Obled, C., and Bontron, G.: La prévision des précipitations par recherche d'analogues: état de l'art et perspectives, La Houille Blanche, 6, 60–65, https://doi.org/10.1051/lhb/2009079, 2009. a
Download
Short summary
Analog methods rely on the principle that similar atmospheric situations are likely to result in a similar local effect, such as precipitation. By using archives of measured atmospheric parameters and observed precipitation, one can establish a probabilistic forecast, for example, of the precipitation for a chosen target day. Analog methods require low computing capacity and have demonstrated useful potential for application in both operational forecasting and the context of climate studies.