Articles | Volume 12, issue 7
Model description paper
12 Jul 2019
Model description paper |  | 12 Jul 2019

AtmoSwing: Analog Technique Model for Statistical Weather forecastING and downscalING (v2.1.0)

Pascal Horton

Related authors

CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784,,, 2023
Short summary
Statistical reconstruction of daily precipitation and temperature fields in Switzerland back to 1864
Lucas Pfister, Stefan Brönnimann, Mikhaël Schwander, Francesco Alessandro Isotta, Pascal Horton, and Christian Rohr
Clim. Past, 16, 663–678,,, 2020
Short summary
The analogue method for precipitation prediction: finding better analogue situations at a sub-daily time step
Pascal Horton, Charles Obled, and Michel Jaboyedoff
Hydrol. Earth Syst. Sci., 21, 3307–3323,,, 2017
Short summary
Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann
Nat. Hazards Earth Syst. Sci., 13, 869–885,,, 2013

Related subject area

Atmospheric sciences
Representation of atmosphere-induced heterogeneity in land–atmosphere interactions in E3SM–MMFv2
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287,,, 2023
Short summary
A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes
Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu
Geosci. Model Dev., 16, 7223–7235,,, 2023
Short summary
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta): ensemble of 3D ensemble-variational (En-3DEnVar) assimilations
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142,,, 2023
Short summary
Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057,,, 2023
Short summary
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 2: Influence of uncertainty factors
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6833–6856,,, 2023
Short summary

Cited articles

Alessandrini, S., Delle Monache, L., Sperati, S., and Cervone, G.: An analog ensemble for short-term probabilistic solar power forecast, Appl. Energ., 157, 95–110,, 2015a. a
Alessandrini, S., Delle Monache, L., Sperati, S., and Nissen, J. N.: A novel application of an analog ensemble for short-term wind power forecasting, Renew. Energ., 76, 768–781,, 2015b. a
Barnston, A. G., van den Dool, H. M., Rodenhuis, D. R., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., Livezey, R. E., Zebiak, S. E., Cane, M. A., Barnett, T. P., Graham, N. E., Ji, M., Leetmaa, A., Barnston, A. G., van den Dool, H. M., Zebiak, S. E., Barnett, T. P., Ji, M., Rodenhuis, D. R., Cane, M. A., Leetmaa, A., Graham, N. E., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., and Livezey, R. E.: Long-Lead Seasonal Forecasts—Where Do We Stand?, B. Am. Meteorol. Soc., 75, 2097–2114,<2097:LLSFDW>2.0.CO;2, 1994. a
Ben Daoud, A.: Améliorations et développements d'une méthode de prévision probabiliste des pluies par analogie, PhD thesis, Université de Grenoble, France, 2010. a, b, c, d, e
Ben Daoud, A., Sauquet, E., Lang, M., Obled, C., and Bontron, G.: La prévision des précipitations par recherche d'analogues: état de l'art et perspectives, La Houille Blanche, 6, 60–65,, 2009. a
Short summary
Analog methods rely on the principle that similar atmospheric situations are likely to result in a similar local effect, such as precipitation. By using archives of measured atmospheric parameters and observed precipitation, one can establish a probabilistic forecast, for example, of the precipitation for a chosen target day. Analog methods require low computing capacity and have demonstrated useful potential for application in both operational forecasting and the context of climate studies.