Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2855-2019
https://doi.org/10.5194/gmd-12-2855-2019
Model evaluation paper
 | 
11 Jul 2019
Model evaluation paper |  | 11 Jul 2019

A spatial evaluation of high-resolution wind fields from empirical and dynamical modeling in hilly and mountainous terrain

Christoph Schlager, Gottfried Kirchengast, Juergen Fuchsberger, Alexander Kann, and Heimo Truhetz

Related authors

Empirical high-resolution wind field and gust model in mountainous and hilly terrain based on the dense WegenerNet station networks
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607–5627, https://doi.org/10.5194/amt-11-5607-2018,https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024,https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
Assimilation of GNSS tropospheric gradients into the Weather Research and Forecasting (WRF) model version 4.4.1
Rohith Thundathil, Florian Zus, Galina Dick, and Jens Wickert
Geosci. Model Dev., 17, 3599–3616, https://doi.org/10.5194/gmd-17-3599-2024,https://doi.org/10.5194/gmd-17-3599-2024, 2024
Short summary
Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024,https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Assessing acetone for the GISS ModelE2.1 Earth system model
Alexandra Rivera, Kostas Tsigaridis, Gregory Faluvegi, and Drew Shindell
Geosci. Model Dev., 17, 3487–3505, https://doi.org/10.5194/gmd-17-3487-2024,https://doi.org/10.5194/gmd-17-3487-2024, 2024
Short summary
Bergen metrics: composite error metrics for assessing performance of climate models using EURO-CORDEX simulations
Alok K. Samantaray, Priscilla A. Mooney, and Carla A. Vivacqua
Geosci. Model Dev., 17, 3321–3339, https://doi.org/10.5194/gmd-17-3321-2024,https://doi.org/10.5194/gmd-17-3321-2024, 2024
Short summary

Cited articles

Abdel-Aal, R., Elhadidy, M., and Shaahid, S.: Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks, Renew. Ener., 34, 1686–1699, https://doi.org/10.1016/j.renene.2009.01.001, 2009. a
Awan, N. K., Truhetz, H., and Gobiet, A.: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the alpine region: An ensemble-based analysis, J. Climate, 24, 3107–3123, https://doi.org/10.1175/2011JCLI3674.1, 2011. a
Bartalev, S., Belward, A., Ershov, D., and S. Isaev, A.: A new SPOT4-VEGETATION derived land cover map of Northern Eurasia, Int. J. Remote Sens., 24, 1977–1982, https://doi.org/10.1080/0143116031000066297, 2003. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bellasio, R., Maffeis, G., Scire, J. S., Longoni, M. G., Bianconi, R., and Quaranta, N.: Algorithms to Account for Topographic Shading Effects and Surface Temperature Dependence on Terrain Elevation in Diagnostic Meteorological Models, Bound.-Lay. Meteor., 114, 595–614, https://doi.org/10.1007/s10546-004-1670-6, 2005. a, b
Download
Short summary
Empirical high-resolution surface wind fields from two study areas, automatically generated by a weather diagnostic application, were intercompared with wind fields of different modeling approaches. The focus is on evaluating spatial differences and displacements between the different datasets. In general, the spatial verification indicates a better statistical agreement for the first study area (hilly WegenerNet Feldbach Region), than for the second one (mountainous WegenerNet Johnsbachtal).