Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2855-2019
https://doi.org/10.5194/gmd-12-2855-2019
Model evaluation paper
 | 
11 Jul 2019
Model evaluation paper |  | 11 Jul 2019

A spatial evaluation of high-resolution wind fields from empirical and dynamical modeling in hilly and mountainous terrain

Christoph Schlager, Gottfried Kirchengast, Juergen Fuchsberger, Alexander Kann, and Heimo Truhetz

Related authors

Empirical high-resolution wind field and gust model in mountainous and hilly terrain based on the dense WegenerNet station networks
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607–5627, https://doi.org/10.5194/amt-11-5607-2018,https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary

Cited articles

Abdel-Aal, R., Elhadidy, M., and Shaahid, S.: Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks, Renew. Ener., 34, 1686–1699, https://doi.org/10.1016/j.renene.2009.01.001, 2009. a
Awan, N. K., Truhetz, H., and Gobiet, A.: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the alpine region: An ensemble-based analysis, J. Climate, 24, 3107–3123, https://doi.org/10.1175/2011JCLI3674.1, 2011. a
Bartalev, S., Belward, A., Ershov, D., and S. Isaev, A.: A new SPOT4-VEGETATION derived land cover map of Northern Eurasia, Int. J. Remote Sens., 24, 1977–1982, https://doi.org/10.1080/0143116031000066297, 2003. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bellasio, R., Maffeis, G., Scire, J. S., Longoni, M. G., Bianconi, R., and Quaranta, N.: Algorithms to Account for Topographic Shading Effects and Surface Temperature Dependence on Terrain Elevation in Diagnostic Meteorological Models, Bound.-Lay. Meteor., 114, 595–614, https://doi.org/10.1007/s10546-004-1670-6, 2005. a, b
Download
Short summary
Empirical high-resolution surface wind fields from two study areas, automatically generated by a weather diagnostic application, were intercompared with wind fields of different modeling approaches. The focus is on evaluating spatial differences and displacements between the different datasets. In general, the spatial verification indicates a better statistical agreement for the first study area (hilly WegenerNet Feldbach Region), than for the second one (mountainous WegenerNet Johnsbachtal).