Articles | Volume 12, issue 5
Geosci. Model Dev., 12, 2107–2117, 2019
https://doi.org/10.5194/gmd-12-2107-2019
Geosci. Model Dev., 12, 2107–2117, 2019
https://doi.org/10.5194/gmd-12-2107-2019

Methods for assessment of models 29 May 2019

Methods for assessment of models | 29 May 2019

Convective response to large-scale forcing in the tropical western Pacific simulated by spCAM5 and CanAM4.3

Toni Mitovski et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jason Cole on behalf of the Authors (08 Feb 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (21 Feb 2019) by Paul Ullrich
RR by Anonymous Referee #1 (25 Feb 2019)
RR by Anonymous Referee #2 (19 Mar 2019)
ED: Publish subject to minor revisions (review by editor) (19 Mar 2019) by Paul Ullrich
AR by Jason Cole on behalf of the Authors (01 Apr 2019)  Author's response    Manuscript
ED: Publish as is (09 Apr 2019) by Paul Ullrich
Download
Short summary
Changes in the large-scale environment during convective precipitation events simulated by the Canadian Atmospheric Model (CanAM4.3) are compared against those simulated by the super-parameterized Community Atmosphere Model (spCAM5). Compared to spCAM5, CanAM4.3 underestimates the frequency of extreme convective precipitation and the duration of convective events are 50 % shorter. The dependence of precipitation on changes in the large-scale environment differs between CanAM4.3 and spCAM5.