Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-1087-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-1087-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SEAS5: the new ECMWF seasonal forecast system
Stephanie J. Johnson
CORRESPONDING AUTHOR
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Timothy N. Stockdale
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Laura Ferranti
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Magdalena A. Balmaseda
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Franco Molteni
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Linus Magnusson
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Steffen Tietsche
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Damien Decremer
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Antje Weisheimer
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Gianpaolo Balsamo
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Sarah P. E. Keeley
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Kristian Mogensen
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Hao Zuo
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Beatriz M. Monge-Sanz
ECMWF, Shinfield Park, Reading, RG2 9AX, UK
Related authors
No articles found.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Jonathan J. Day, Sarah Keeley, Gabriele Arduini, Linus Magnusson, Kristian Mogensen, Mark Rodwell, Irina Sandu, and Steffen Tietsche
Weather Clim. Dynam., 3, 713–731, https://doi.org/10.5194/wcd-3-713-2022, https://doi.org/10.5194/wcd-3-713-2022, 2022
Short summary
Short summary
A recent drive to develop seamless forecasting systems has culminated in the development of weather forecasting systems that include a coupled representation of the atmosphere, ocean and sea ice. Before this, sea ice and sea surface temperature anomalies were typically fixed throughout a given forecast. We show that the dynamic coupling is most beneficial during periods of rapid ice advance, where persistence is a poor forecast of the sea ice and leads to large errors in the uncoupled system.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020, https://doi.org/10.5194/tc-14-165-2020, 2020
Short summary
Short summary
A spectral to broadband conversion is developed empirically that can be used in combination with the Melt Pond Detector algorithm to derive broadband albedo (300–3000 nm) of Arctic sea ice from MERIS data. It is validated and shows better performance compared to existing conversion methods. A comparison of MERIS broadband albedo with respective values from ERA5 reanalysis suggests a revision of the albedo values used in ERA5. MERIS albedo might be useful for improving albedo representation.
Joula Siponen, Petteri Uotila, Eero Rinne, and Steffen Tietsche
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-272, https://doi.org/10.5194/tc-2019-272, 2019
Manuscript not accepted for further review
Short summary
Short summary
Long sea-ice thickness time series are needed to better understand the Arctic climate and improve its forecasts. In this study 2002–2017 satellite observations are compared with reanalysis output, which is used as initial conditions for long forecasts. The reanalysis agrees well with satellite observations, with differences typically below 1 m when averaged in time, although seasonally and in certain years the differences are large. This is caused by uncertainties in reanalysis and observations.
Hao Zuo, Magdalena Alonso Balmaseda, Steffen Tietsche, Kristian Mogensen, and Michael Mayer
Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, https://doi.org/10.5194/os-15-779-2019, 2019
Short summary
Short summary
OCEAN5 is the fifth generation of the ocean and sea-ice analysis system at ECMWF. It was used for production of historical ocean and sea-ice states from 1979 onwards and is also used for generating real-time ocean and sea-ice states responsible for initializing the operational ECMWF weather forecasting system. This is a valuable data set with broad applications. A description of the OCEAN5 system and an assessment of the historical data set have been documented in this reference paper.
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, https://doi.org/10.5194/gmd-11-3681-2018, 2018
Short summary
Short summary
This paper presents climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6).
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018, https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary
Short summary
We compare Arctic sea-ice thickness from L-band microwave satellite observations and an ocean–sea ice reanalysis. There is good agreement for some regions and times but systematic discrepancy in others. Errors in both the reanalysis and observational products contribute to these discrepancies. Thus, we recommend proceeding with caution when using these observations for model validation or data assimilation. At the same time we emphasise their unique value for improving sea-ice forecast models.
Jonathan J. Day, Steffen Tietsche, Mat Collins, Helge F. Goessling, Virginie Guemas, Anabelle Guillory, William J. Hurlin, Masayoshi Ishii, Sarah P. E. Keeley, Daniela Matei, Rym Msadek, Michael Sigmond, Hiroaki Tatebe, and Ed Hawkins
Geosci. Model Dev., 9, 2255–2270, https://doi.org/10.5194/gmd-9-2255-2016, https://doi.org/10.5194/gmd-9-2255-2016, 2016
Short summary
Short summary
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable.
Related subject area
Climate and Earth system modeling
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Process-based modeling framework for sustainable irrigation management at the regional scale: Integrating rice production, water use, and greenhouse gas emissions
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-236, https://doi.org/10.5194/gmd-2024-236, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-212, https://doi.org/10.5194/gmd-2024-212, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study proposed an advancing framework for modeling regional rice production, water use, and greenhouse gas emissions. The framework integrated a process-based soil-crop model with key physiological effects, a novel model upscaling method, and the NSGA-II multi-objective optimization algorithm at a parallel computing platform. The framework provides a valuable tool for irrigation optimization to deliver co-benefits of ensuring food production, reducing water use and greenhouse gas emissions.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation
Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present),
J. Hydrometeorol., 4, 1147–1167,
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Ahlgrimm, M. and Forbes, R.: Improving the representation of low clouds and
drizzle in the ECMWF model based on ARM observations from the Azores, Mon.
Weather Rev., 142, 668–685, 2014. a
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF
ocean reanalysis system ORAS4, Q. J. Roy. Meteor.
Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063, 2013. a, b
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes,
M.: On the contribution of lakes in predicting near-surface temperature in a
global weather forecasting model, Tellus A, 64, 15829,
https://doi.org/10.3402/tellusa.v64i0.15829, 2012. a
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H.,
Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P.,
Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface
reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407,
https://doi.org/10.5194/hess-19-389-2015, 2015. a
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and Dewitt, D. G.:
Skill of real-time seasonal ENSO model predictions during 2002–11: Is our
capability increasing?, B. Am. Meteorol. Soc., 93, 631–651,
https://doi.org/10.1175/BAMS-D-11-00111.1, 2012. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134,
1337–1351, 2008. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in
Large-Scale Models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2014. a, b
Beljaars, A., Brown, A. R., and Wood, N.: A new parametrization of turbulent
orographic form drag, Q. J. Roy. Meteor. Soc.,
130, 1327–1347, 2004. a
Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M., and Scaife,
A. A.: Stratospheric communication of El Niño teleconnections to
European winter, J. Climate, 22, 4083–4096,
https://doi.org/10.1175/2009JCLI2717.1, 2009. a
Boussetta, S., Balsamo, G., Beljaars, A., Kral, T., and Jarlan, L.: Impact of
a satellite-derived leaf area index monthly climatology in a global numerical
weather prediction model, Int. J. Remote Sens., 34,
3520–3542, https://doi.org/10.1080/01431161.2012.716543, 2013. a
Breivik, Ø., Mogensen, K., Bidlot, J.-R., Balmaseda, A., and Janssen, P. A.
E. M.: Surface wave effects in the NEMO ocean model: Forced and coupled
experiments, J. Geophys. Res.-Oceans, 120, 2973–2992,
https://doi.org/10.1002/2014JC010565, 2015. a
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.:
Unified modeling and prediction of weather and climate: A 25-year journey,
B. Am. Meteorol. Soc., 93, 1865–1877,
https://doi.org/10.1175/BAMS-D-12-00018.1, 2012. a
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A review, Rev.
Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. a
Buizza, R., Hollingsworth, A., Lalaurette, F., and Ghelli, A.: Probabilistic
Predictions of Precipitation Using the ECMWF Ensemble Prediction System,
Weather Forecast., 14, 168–189,
https://doi.org/10.1175/1520-0434(2000)015<0365:COPPOP>2.0.CO;2, 1999. a
Cariolle, D. and Déqué, M.: Southern hemisphere medium-scale
waves and total ozone disturbances in a spectral general circulation model,
J. Geophys. Res.-Atmos., 91, 10825–10846, 1986. a
Cariolle, D. and Teyssèdre, H.: A revised linear ozone photochemistry
parameterization for use in transport and general circulation models:
multi-annual simulations, Atmos. Chem. Phys., 7, 2183-2196,
https://doi.org/10.5194/acp-7-2183-2007, 2007. a
Cassou, C.: Intraseasonal interaction between the Madden Julian Oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527, 2008. a
Charney, J. and Shukla, J.: Predictability of monsoons, in: Monsoon Dynamics,
edited by: Lighthill, J. and Pearce, R. P., chap. 6, 99–110, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511897580.009, 1981. a
Chassignet, E. P. and Marshall, D. P.: Gulf Stream Separation in Numerical
Ocean Models, in: Ocean Modeling in an Eddying Regime, edited by: Hecht, M. W. and Hasumi, H., Geophysical Monograph
Series, 177, 39–61,
https://doi.org/10.1029/177GM05, 2008. a
Craig, P. D. and Banner, M. L.: Modeling Wave-Enhanced Turbulence in the Ocean
Surface Layer, 24, 2546–2559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2, 1994. a
de Rosnay, P., Balsamo, G., Albergel, C., Muñoz-Sabater, J., and Isaksen,
L.: Initialisation of land surface variables for Numerical Weather
Prediction, Surv. Geophys., 35, 607–621,
https://doi.org/10.1007/s10712-012-9207-x, 2014. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Dee, D. P., van de Berg, L., Bidlot,
J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P.,
Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim
reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a, b, c
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Ann. Rev. Mar.
Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skilful predictions of the winter North
Atlantic Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016. a
Dutra, E., Stepanenko, V. M., Balsamo, G., Viterbo, P., Miranda, P., Mironov,
D., and Schär, C.: An offline study of the impact of lakes in the
performance of the ECMWF surface scheme, Boreal Environ. Res., 15,
100–112, 2010b. a
Ebdon, R. A.: The quasibiennial oscillation and its association with
tropospheric circulation patterns, Meteorol. Mag., 104, 282–297,
1975. a
Fichefet, T. and Maqueda, M. A.: Sensitivity of a global sea ice model to the
treatment of ice thermodynamics and dynamics, J. Geophys.
Res.-Oceans, 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
Folland, C. K., Scaife, A. A., Lindesay, J., and Stephenson, D. B.: How
potentially predictable is northern European winter climate a season ahead?,
Int. J. Climatol., 32, 801–818, https://doi.org/10.1002/joc.2314,
2012. a
Forbes, R. M. and Ahlgrimm, M.: On the Representation of High-Latitude
Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model, Mon. Weather
Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1,
2014. a
Forbes, R. M. and Tompkins, A.: An improved representation of cloud and
precipitation, ECMWF Newsletter, 129, 13–18, doi:10.21957/nfgulzhe, 2011. a
Forbes, R. M., Tompkins, A. M., and Untch, A.: A new prognastic bulk
microphysics scheme for the IFS, ECMWF Technical Memorandam, 649, doi:10.21957/bf6vjvxk, 2011. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for
Ensemble Prediction Systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a
Hogan, R. J. and Bozzo, A.: Mitigating errors in surface temperature forecasts
using approximate radiation updates, J. Adv. Model. Earth
Sy., 7, 836–853, 2015. a
Hogan, R. J. and Hirahara, S.: Effect of solar zenith angle specification in
models on mean shortwave fluxes and stratospheric temperatures, Geophys.
Res. Lett., 43, 482–488, 2016. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Ineson, S. and Scaife, A.: The role of the stratosphere in the European
climate response to El Niño, Nat. Geosci., 2, 32–36, 2009. a
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H.,
Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George,
M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L.,
Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M.,
Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O.,
Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC
team: The MACC reanalysis: an 8 yr data set of atmospheric composition,
Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013,
2013. a
Janssen, P. A. E. M., Breivik, Ø., Mogensen, K., Vitart, F., Balmaseda,
M., Bidlot, J.-r., Keeley, S., Leutbecher, M., Magnusson, L., and Molteni,
F.: Air-Sea Interaction and Surface Waves, ECMWF Technical Memorandum, 712,
36 pp., 2013. a
Kim, H. M., Webster, P. J., and Curry, J. A.: Seasonal prediction skill of
ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern
Hemisphere Winter, Clim. Dynam., 39, 2957–2973,
https://doi.org/10.1007/s00382-012-1364-6, 2012. a
Köhler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry
convective and stratocumulus-topped boundary layers in the ECMWF model,
Q. J. Roy. Meteor. Soc., 137, 43–57, 2011. a
Leutbecher, M., Lock, S. J., Ollinaho, P., Lang, S. T., Balsamo, G., Bechtold,
P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E., English,
S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J.,
Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart,
S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N.,
and Weisheimer, A.: Stochastic representations of model uncertainties at
ECMWF: state of the art and future vision,
Q. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094, 2017. a, b
Lin, H., Brunet, G., and Derome, J.: An observed connection between the North
Atlantic oscillation and the Madden-Julian oscillation, J. Climate,
22, 364–380, https://doi.org/10.1175/2008JCLI2515.1, 2009. a
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc., 123, 101–127, 1997. a
Maclachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife,
A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J.,
Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): A high-resolution seasonal forecast system,
Q. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396,
2015. a
Madec, G. and the NEMO team: NEMO ocean engine, available at:
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (last access: 21 February 2019), 2016. a
Matheson, J. E. and Winkler, R. L.: Scoring Rules for Continuous Probability
Distributions, Manage. Sci., 22, 1087–1096, 1976. a
Maycock, A. C., Keeley, S. P., Charlton-Perez, A. J., and Doblas-Reyes, F. J.:
Stratospheric circulation in seasonal forecasting models: implications for
seasonal prediction, Clim. Dynam., 36, 309–321,
https://doi.org/10.1007/s00382-009-0665-x, 2011. a
McPhaden, M. J., Zebiak, S. E., Glantz, M. H., and Mcphaden, M.: ENSO as an
Concept Integrating in Earth Science, Science, 314, 1740–1745, 2006. a
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and
Terzhevik, A.: Implementation of the lake parameterisation scheme FLake into
the numerical weather prediction model COSMO, Boreal Environ. Res.,
15, 218–230, 2010. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J.. Geophys. Res.- Atmos., 102, 16663–16682, 1997. a
Mogensen, K., Alonso Balmaseda, M., and Weaver, A.: The NEMOVAR ocean data
assimilation system as implemented in the ECMWF ocean analysis for System 4,
ECMWF Technical Memorandum, 668, https://doi.org/10.21957/x5y9yrtm, 2012a. a
Mogensen, K., Keeley, S., and Towers, P.: Coupling of the NEMO and IFS models
in a single executable, ECMWF Technical Memorandum, 673, https://doi.org/10.21957/rfplwzuol, 2012b. a
Molteni, F., Stockdale, T. N., and Vitart, F.: Understanding and modelling
extra-tropical teleconnections with the Indo-Pacific region during the
northern winter, Clim. Dynam., 45, 3119–3140,
https://doi.org/10.1007/s00382-015-2528-y, 2015. a, b, c
Monge-Sanz, B. M., Chipperfield, M. P., Cariolle, D., and Feng, W.: Results
from a new linear O3 scheme with embedded heterogeneous chemistry compared
with the parent full-chemistry 3-D CTM, Atmos. Chem. Phys., 11, 1227–1242,
https://doi.org/10.5194/acp-11-1227-2011, 2011. a, b
Morcrette, J. J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R.:
Impact of a new radiation package, McRad, in the ECMWF Integrated
Forecasting System, Mon. Weather Rev., 136, 4773–4798, 2008. a
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved
middle atmosphere climate and forecasts in the ECMWF model through a
nonorographic gravity wave drag parameterization, J. Climate, 23,
5905–5926, 2010. a
Palmer, T. and Anderson, D. L. T.: The prospects for seasonal forecasting - A
review paper, Q. J. Roy. Meteor. Soc., 120,
755–793, https://doi.org/10.1002/qj.49712051802, 1994. a
Palmer, T. N.: Towards the probabilistic Earth-system simulator: A vision
for the future of climate and weather prediction, Q. J. Roy. Meteor. Soc.,
138, 841–861, https://doi.org/10.1002/qj.1923, 2012. a
Polichtchouk, I., Hogan, R. J., Shepherd, T. G., Bechtold, P., Stockdale, T.,
Malardel, S., Lock, S.-J., and Magnusson, L.: What influences the middle
atmosphere circulation in the IFS?, ECMWF Technical Memorandum, 809,
https://doi.org/10.21957/mfsnfv15o, 2017. a
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain,
M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set
reprocessed over 20 years, Ocean Sci., 12, 1067–1090,
https://doi.org/10.5194/os-12-1067-2016, 2016. a
Raoult, B., Bergeron, C., López Alós, A., Thépaut, J.-N., and Dee, D.:
Climate service develops user-friendly data store, ECMWF newsletter, 151, 22–27,
https://doi.org/10.21957/p3c285, 2017. a
Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G.: Evidence
of a downward propagating, annual wind reversal in the equatorial
stratosphere, J. Geophys. Res., 66, 813–818, 1961. a
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
improved in situ and satellite SST analysis for climate, J. Climate,
15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002. a
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley,
S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting
System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11,
3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018. a
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43855, 1999. a
Sandu, I., Beljaars, A., Balsamo, G., and Ghelli, A.: Revision of the
surface roughness length table, ECMWF Newsletter, 130, 8–10, 2011. a
Sandu, I., Beljaars, A., and Balsamo, G.: Improving the representation of
stable boundary layers, ECMWF Newsletter, 138, 24–29, 2014. a
Sardeshmukh, P. D. and Hoskins, B. J.: The Generation of Global Rotational
Flow by Steady Idealized Tropical Divergence, J. Atmos. Sci., 45,
1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2, 1988. a
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M.,
Dunstone, N., Knight, J., Maclachlan, C., Manzini, E., Müller, W.,
Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability of
the quasi-biennial oscillation and its northern winter teleconnection on
seasonal to decadal timescales, Geophys. Res. Lett., 41, 1752–1758,
https://doi.org/10.1002/2013GL059160.Received, 2014. a, b
Scaife, A. A., Comer, R. E., Dunstone, N. J., Knight, J. R., Smith, D. M.,
MacLachlan, C., Martin, N., Peterson, K. A., Rowlands, D., Carroll, E. B.,
Belcher, S., and Slingo, J.: Tropical rainfall, Rossby waves and regional
winter climate predictions, Q. J. Roy. Meteor. Soc., 143, 1–11,
https://doi.org/10.1002/qj.2910, 2017. a
Scaife, A. A., Ferranti, L., Alves, O., Athanasiadis, P., Baehr, J., Deque',
M., Dippe, T., Dunstone, N., Fereday, D., Gudgel, R. G., Greatbatch, R. J.,
Hermanson, L., Imada, Y., Jain, S., Kumar, A., MacLachlan, C., Merryfield,
W., Müller, W. A., Ren, H.-L., Smith, D., Takaya, Y., Vecchi, G., and
Yang, X.: Tropical Rainfall Predictions from Multiple Seasonal Forecast
Systems, Int. J. Climatol., https://doi.org/10.1002/joc.5855, online first, 2018. a
Shepherd, T. G., Polichtchouk, I., Hogan, R. J., and Simmons, A. J.: Report on
Stratosphere Task Force, ECMWF Technical Memorandam, 824, https://doi.org/10.21957/0vkp0t1xx, 2018. a
Shutts, G.: A kinetic energy backscatter algorithm for use in ensemble
prediction systems, Q. J. Roy. Meteor. Soc.,
131, 3079–3102, https://doi.org/10.1256/qj.04.106, 2005. a
Stockdale, T., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A.:
Global seasonal rainfall forecasts using a coupled ocean-atmosphere model,
Nature, 392, 370–373, 1998. a
Stockdale, T. N., Molteni, F., and Ferranti, L.: Atmospheric initial
conditions and the predictability of the Arctic Oscillation, Geophys.
Res. Lett., 42, 1173–1179, https://doi.org/10.1002/2014GL062681, 2015. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather
Rev., 121, 3040–3061, 1993. a
Tietsche, S., Balmaseda, M. A., Zuo, H., and Mogensen, K.: Arctic sea ice in
the global eddy-permitting ocean reanalysis ORAP5, Clim. Dynam., 49,
775–789, https://doi.org/10.1007/s00382-015-2673-3, 2017.
a
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and
sea surface temperature data set, version 2: 1. Sea ice concentrations,
J. Geophys. Res.-Atmos., 119, 2864–2889,
https://doi.org/10.1002/2014JD021914, 2014. a
Troccoli, A.: Seasonal climate forecasting, Meteorol. Appl., 17, 251–268,
https://doi.org/10.1002/met.184, 2010. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community
software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013. a
Van den Hurk, B., Viterbo, P., Beljaars, A. C. M., and Betts, A. K.: Offline
validation of the ERA40 surface scheme, ECMWF Technical Memorandum, 295,
https://doi.org/10.21957/9aoaspz8,
2000. a
Viterbo, P. and Beljaars, A. C. M.: An improved land surface parameterization
scheme in the ECMWF model and its validation, J. Climate, 8,
2716–2748, 1995. a
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the Geopotential
Height Field during the Northern Hemisphere Winter, 109, 784–812,
https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2, 1981. a
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean-atmosphere dynamics in the Indian Ocean during 1997–98, Nature, 401,
356–360, https://doi.org/10.1038/43848, 1999. a
Weisheimer, A. and Palmer, T. N.: On the reliability of seasonal climate
forecasts, J. R. Soc. Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162,
2014. a, b
Weisheimer, A., Corti, S., Palmer, T., and Vitart, F.: Addressing model
error through atmospheric stochastic physical parametrizations: impact on the
coupled ECMWF seasonal forecasting system, Philos. T. R. Soc. A, 372,
20130290, https://doi.org/10.1098/rsta.2013.0290, 2014. a, b
Zebiak, S. E.: Air–Sea Interaction in the Equatorial Atlantic Region, J.
Climate, 6, 1567–1586,
https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2, 1993. a, b
Zeng, X. and Beljaars, A.: A prognostic scheme of sea surface skin
temperature for modeling and data assimilation, Geophys. Res. Lett., 32,
1–4, https://doi.org/10.1029/2005GL023030, 2005. a
Zuo, H., Balmaseda, M. A., Boisseson, E. D., Hirahara, S., Chrust, M., and
de Rosnay, P.: A generic ensemble generation scheme for data assimilation
and ocean analysis, ECMWF technical memorandum, 795, https://doi.org/10.21957/cub7mq0i4, 2017a. a, b, c
Zuo, H., Balmaseda, M. A., and Mogensen, K.: The new eddy-permitting ORAP5
ocean reanalysis: description, evaluation and uncertainties in climate
signals, Clim. Dynam., 49, 791–811, https://doi.org/10.1007/s00382-015-2675-1,
2017b. a
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The
ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice:
a description of the system and assessment, Ocean Sci. Discuss.,
https://doi.org/10.5194/os-2018-154, in review, 2019. a, b, c
Short summary
In this article, we describe the new ECMWF seasonal forecast system, SEAS5, which replaced its predecessor in November 2017. We describe the forecast methodology used in SEAS5 and compare results from SEAS5 to results from the previous seasonal forecast system, highlighting the strengths and weaknesses of SEAS5. SEAS5 data are publicly available through the Copernicus Climate Change Service's multi-system seasonal forecast.
In this article, we describe the new ECMWF seasonal forecast system, SEAS5, which replaced its...