Articles | Volume 11, issue 11
https://doi.org/10.5194/gmd-11-4469-2018
https://doi.org/10.5194/gmd-11-4469-2018
Development and technical paper
 | 
08 Nov 2018
Development and technical paper |  | 08 Nov 2018

Three-dimensional methane distribution simulated with FLEXPART 8-CTM-1.1 constrained with observation data

Christine D. Groot Zwaaftink, Stephan Henne, Rona L. Thompson, Edward J. Dlugokencky, Toshinobu Machida, Jean-Daniel Paris, Motoki Sasakawa, Arjo Segers, Colm Sweeney, and Andreas Stohl

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christine Groot Zwaaftink on behalf of the Authors (17 Sep 2018)  Author's response   Manuscript 
ED: Publish as is (01 Oct 2018) by Andrea Stenke
AR by Christine Groot Zwaaftink on behalf of the Authors (08 Oct 2018)
Download
Short summary
A Lagrangian particle dispersion model is used to simulate global fields of methane, constrained by observations through nudging. We show that this rather simple and computationally inexpensive method can give results similar to or as good as a computationally expensive Eulerian chemistry transport model with a data assimilation scheme. The three-dimensional methane fields are of interest to applications such as inverse modelling and satellite retrievals.