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Abstract. A Lagrangian particle dispersion model, the
FLEXible PARTicle dispersion chemical transport model
(FLEXPART CTM), is used to simulate global three-
dimensional fields of trace gas abundance. These fields are
constrained with surface observation data through nudging, a
data assimilation method, which relaxes model fields to ob-
served values. Such fields are of interest to a variety of ap-
plications, such as inverse modelling, satellite retrievals, ra-
diative forcing models and estimating global growth rates of
greenhouse gases. Here, we apply this method to methane us-
ing 6 million model particles filling the global model domain.
For each particle, methane mass tendencies due to emissions
(based on several inventories) and loss by reaction with OH,
Cl and O(1D), as well as observation data nudging were cal-
culated. Model particles were transported by mean, turbulent
and convective transport driven by 1◦×1◦ ERA-Interim me-
teorology. Nudging is applied at 79 surface stations, which
are mostly included in the World Data Centre for Greenhouse
Gases (WDCGG) database or the Japan–Russia Siberian
Tall Tower Inland Observation Network (JR-STATION) in
Siberia. For simulations of 1 year (2013), we perform a sen-
sitivity analysis to show how nudging settings affect mod-
elled concentration fields. These are evaluated with a set
of independent surface observations and with vertical pro-
files in North America from the National Oceanic and At-
mospheric Administration (NOAA) Earth System Research

Laboratory (ESRL), and in Siberia from the Airborne Ex-
tensive Regional Observations in SIBeria (YAK-AEROSIB)
and the National Institute for Environmental Studies (NIES).
FLEXPART CTM results are also compared to simulations
from the global Eulerian chemistry Transport Model version
5 (TM5) based on optimized fluxes. Results show that nudg-
ing strongly improves modelled methane near the surface,
not only at the nudging locations but also at independent sta-
tions. Mean bias at all surface locations could be reduced
from over 20 to less than 5 ppb through nudging. Near the
surface, FLEXPART CTM, including nudging, appears bet-
ter able to capture methane molar mixing ratios than TM5
with optimized fluxes, based on a larger bias of over 13 ppb
in TM5 simulations. The vertical profiles indicate that nudg-
ing affects model methane at high altitudes, yet leads to lit-
tle improvement in the model results there. Averaged from
19 aircraft profile locations in North America and Siberia,
root mean square error (RMSE) changes only from 16.3 to
15.7 ppb through nudging, while the mean absolute bias in-
creases from 5.3 to 8.2 ppb. The performance for vertical pro-
files is thereby similar to TM5 simulations based on TM5
optimized fluxes where we found a bias of 5 ppb and RMSE
of 15.9 ppb. With this rather simple model setup, we thus
provide three-dimensional methane fields suitable for use as
boundary conditions in regional inverse modelling as a priori
information for satellite retrievals and for more accurate esti-
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mation of mean mixing ratios and growth rates. The method
is also applicable to other long-lived trace gases.

1 Introduction

Three-dimensional (3-D) global concentration fields of dif-
ferent trace gases, such as methane (CH4), carbon dioxide
(CO2) or carbon monoxide (CO), are of interest for many
applications. They can, for instance, inform regional air qual-
ity policies and verify climate policies via a comparison
of global emissions and atmospheric concentration growth
rates, and are required as input for many types of applications
like radiation simulations or satellite retrievals. For instance,
3-D global concentration fields used as initial and bound-
ary conditions for regional chemical transport models have
a substantial influence on the results from these models (e.g.
Tang et al., 2007; Andersson et al., 2015; Pendlebury et al.,
2018). Regional inverse modelling of greenhouse gas emis-
sions often requires global 3-D greenhouse gas concentra-
tions as boundary conditions (Thompson and Stohl, 2014).
These and many other applications explain the popularity of
3-D concentration fields produced with different tools (e.g.
CarbonTracker; Peters et al., 2007).

In situ measurements are typically too sparse to provide
global 3-D concentration fields. Interpolation methods are
associated with large errors in regions with few observations
(e.g. in the free troposphere and over oceans). They are there-
fore rarely used for constructing 3-D concentration fields for
the atmosphere, while interpolation of maritime CO2 mea-
surements is more popular (Laruelle et al., 2017). Satellite
retrievals can in principle produce global coverage but gen-
erally lack sufficient temporal and/or vertical resolution, spa-
tial coverage (especially in polar regions) and the calibration
necessary to make them comparable to ground-based mea-
surements, and they can therefore contain substantial uncer-
tainties and biases. Often, satellite observations require in-
put of a priori vertical concentration profiles in their retrieval
(Schepers et al., 2012). Concentration fields can also be sim-
ulated with atmospheric chemistry transport models, yet un-
certainties in the fluxes (emissions and surface uptake) and
atmospheric chemistry and transport errors in modelling will
lead to mismatches between modelled and observed concen-
trations. In particular, if simulated concentrations are glob-
ally or regionally too high or too low compared to reality,
such biases may render these concentration fields unusable.
For example, for regional inverse modelling of surface emis-
sions, a “background” concentration field biased high would
lead to low (or even, for many species, unrealistic negative)
emissions (Manning et al., 2003; Stohl et al., 2009). For ex-
ample, an average increase by 10 ppb in the methane back-
ground leads to a 20 % decrease in Swiss national methane
emissions (Stephan Henne, unpublished results).

Therefore, often a combination of (transport) models with
data assimilation techniques is used to obtain more accurate
model results. One prominent technique uses observation
data and a data assimilation or inverse modelling approach
to optimize the surface fluxes of greenhouse gases. Such
methods can improve our understanding of greenhouse gas
emissions and quantify sources and sinks (e.g. Meirink et al.,
2008; Bergamaschi et al., 2013; Berchet et al., 2015). Simu-
lations using the optimized emissions will generally also im-
prove the 3-D concentration distribution compared to simu-
lations with non-optimized emissions. The global chemistry
Transport Model version 5 (TM5) simulations used in this
paper were made following this approach. However, these
methods cannot correct for transport errors and errors in
the chemical sinks, although such errors may partly be off-
set by compensating errors in optimized emissions. Further-
more, emissions are only improved for certain large regions,
emission types and often at low (e.g. monthly) time resolu-
tion. Thus, to improve 3-D concentration distributions, direct
“correction” of simulated concentrations using observation
data is preferable over improvement of emission fluxes. A
combination of both approaches can also be conceived.

Data assimilation techniques such as four-dimensional
variational assimilation (4D-Var) also allow simulated con-
centrations to be corrected in a formal fully consistent model
framework. These techniques are, however, relatively com-
putationally expensive and may not offer substantial bene-
fits over more simple methods. Newtonian relaxation (also
known as nudging or repeated insertion) is a much simpler
data assimilation method to correct simulated concentrations
with observation data (e.g. Anthes, 1974; Stauffer and Sea-
man, 1990). While it may lead to violations of the model’s
underlying physics and mass conservation, the method has
gained popularity because of its computational efficiency,
robustness and simple implementation. In contrast to com-
plex data assimilation techniques such as 4D-Var, which re-
quire adjoint versions of the simulation model, implementing
Newtonian relaxation requires only a few lines of extra code.

Apart from the question of how observation data are used
to correct model biases, there exists a separate problem with
current Eulerian chemistry transport models. These mod-
els struggle with the simulation of large-scale transport of
chemical species, e.g. over intercontinental distances due to
numerical diffusion introduced by the advection schemes
(Rastigejev et al., 2010; Eastham and Jacob, 2017). In re-
mote areas, where concentration enhancements occur mainly
through transport from far-away source regions, these models
are not very reliable. Lagrangian transport models, which do
not suffer from numerical diffusion to a comparable extent,
have often been used successfully to simulate pollution trans-
port over intercontinental distances (e.g. Stohl et al., 2003).

In this study, we improve modelled concentration fields
of long-lived trace gases in a Lagrangian transport model,
the FLEXible PARTicle dispersion chemical transport model
(FLEXPART CTM), by nudging simulated concentrations
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towards observations where and when available. We explore
the method with the application to methane. Concentration
fields obtained with and without nudging are evaluated based
on (independent) surface observations and vertical profiles
from aircraft campaigns in different regions. Furthermore,
we compare the model skill to that of a frequently used Eule-
rian model (TM5) using non-optimized and optimized emis-
sion fields. For this comparison, we chose TM5 because this
is a state-of-the-art transport model and the TM5-4D-Var is
the inversion framework used in Europe’s Copernicus Atmo-
spheric Monitoring Service (CAMS).

A description of the transport model, nudging method and
observations is given in Sect. 2. In Sect. 3, we will first dis-
cuss the sensitivity of modelled concentration fields to set-
tings of the nudging method and then evaluate model perfor-
mance in comparison to surface and profile observations, and
TM5 modelled concentration fields.

2 Methods and data

2.1 FLEXPART CTM

The FLEXPART CTM model was developed at Empa based
on FLEXPART (Stohl et al., 1998, 2005). FLEXPART is a
Lagrangian particle dispersion model that calculates trajec-
tories of parcels to describe transport processes in the atmo-
sphere. Parcels, which can represent gases or aerosols, are
influenced by dry deposition and wet deposition. For the cur-
rent study, we used FLEXPART 8-CTM-1.1 (Henne et al.,
2018a), which is based on FLEXPART 8.0 and described in
detail by Henne et al. (2018b). Important differences between
FLEXPART and FLEXPART CTM are found in the imple-
mentation of flux fields and chemistry. For the current pur-
pose, simulations are made in domain filling mode (Stohl and
James, 2004). This means that at initialization air parcels are
randomly distributed over the whole model domain (in this
case global) proportionally to air density. Each parcel repre-
sents a fraction of the total atmospheric mass. In addition to
an air tracer, each parcel can also carry a number of chem-
ical species including methane. Whenever air parcels reside
near the surface, methane fluxes are accounted for by chang-
ing the methane masses of the respective parcel. Methane
loss through reaction with OH, Cl and O(1D) radicals is
also accounted for in the form of a pseudo-first-order reac-
tion with prescribed monthly variable concentration fields
(Henne et al., 2018b). We used OH concentration fields from
the GEOS-Chem model (Bey et al., 2001). As such, we can
simulate methane concentrations if initial conditions are well
represented and a spin-up time is included.

The simulations presented here are driven with methane
fluxes from a combination of several inventories. For an-
thropogenic sources, we included fluxes from the Emis-
sions Database for Global Atmospheric Research (EDGAR),
versions v4.2 for 2000–2008, while 2008 emissions were

repeated for 2009–2013. Monthly biomass burning emis-
sions are based on the Global Fire Emissions Database
(GFED) version 3 (Van der Werf et al., 2010). Wetland
emissions were obtained from the Lund–Potsdam–Jena Wet-
land Hydrology and Methane (LPJ-WHyMe; Spahni et al.,
2011) dynamic global vegetation model. Additional sources
taken into account include ocean hydrates (Houweling et al.,
1999), wild ruminants (Houweling et al., 1999) and termites
(Sanderson, 1996). Flux fields are averaged or interpolated
to monthly intervals with 1◦× 1◦ spatial resolution. A spin-
up simulation without nudging was run for the years 2000–
2012. At the end of this spin-up, a single global scaling fac-
tor was applied to the simulated methane molar mixing ra-
tios derived by a comparison to surface observations for the
year 2012. This scaling allowed us to remove part of the bias
from the spin-up. The sensitivity analysis and evaluation of
FLEXPART CTM and the nudging method was made for
2013. The first 20 days of the simulation year with nudg-
ing are also considered spin-up time and not analysed fur-
ther. In the sensitivity analysis, we consider different set-
tings for our nudging routine (see Sect. 2.2 and Table 1) and
in our evaluation we compare simulations with and without
nudging to observations as well as other model simulations.
Meteorological input data are ERA-Interim reanalysis fields
(1◦× 1◦, 3-hourly) from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Output fields are saved
as daily averages at 2◦× 2◦ spatial resolution at 24 levels.
The output levels follow topography and resolution ranges
from 500 m near the surface, 1000 m in the troposphere and
increasing up to 5000 m at the top level. The simulations in-
clude approximately 6 million particles each.

2.2 Nudging routine

In our simulations, we will test and use the nudging routine
presented by Henne et al. (2018b). For each observation, we
consider a symmetrical kernel in which modelled data should
be relaxed towards the observation. The weight of the kernel
varies in space and time. An Epanechnikov function is used
for the spatial weight of the kernel (ws) for each pair of ob-
servation (i) and parcel (j ):

ws,ij =
(

1− r2
ij

)
I, I =

{
1 for r2 < 1
0 otherwise

, (1)

where rij is based on the kernel extent h in directions x, y
and z following

r2
ij =

(
Xj − xi

hx,j

)2

+

(
Yj − yi

hy,j

)2

+

(
Zj − zi

hz,j

)2

. (2)

Xj ,Yj and Zj refer to the parcel location; xi,yi and zi refer
to the observation location.
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Table 1. Overview of kernel settings in the sensitivity analysis. The spatial width in the x direction is equal to the width in the y direction
(in metres). σobs is the standard deviation of observations over 1 year at each nudging location, σmax is the maximum value of σobs from all
nudging locations, hmin is 1◦ and u is the mean wind speed at the nudging location based on ERA-Interim data.

Sim Spatial width Height Temporal width Relaxation time
(hy , ◦) (hz, m) (ht, s) (τn, s)

Ref – – – –
NF1 0.5 250 3 · 3600 ·hy/hmin 3600
NF2 2◦ 500 86400hy/hmin 7200
NF3 2◦ 500 86400hy/hmin 3600
NF4 2◦ 250 86400hy/hmin 7200
NF5 2◦ 500 43200hy/hmin 7200
NF6 4◦ 500 86400hy/hmin 7200

NV1 σmax/σobs ·hmin
(∼ 1–20◦)

500 86400hy/hmin 7200

NV2 σmax/σobs ·hmin
(∼ 1–20◦)

300 86400hy/hmin 7200

NV3 σmax/σobs ·hmin
(∼ 1–20◦)

300 86400hy/hmin 3600

NW1 σmax/σobs ·hmin
(∼ 1–20◦)

300 111× 103
·hy/u

(∼ 6 h–4 days)
3600

NW2 htu/111× 103

(∼ 2–9◦)
300 24 · 3600 3600

NW3 86400·u/111×103

(∼ 2–9◦)
300 24 · 3600

√
σobs/σobs 3600

The temporal kernel has a tricubic weight function follow-
ing

wt,ij =

(
1−

∣∣∣∣ tj − tiht

∣∣∣∣3
)3

, (3)

where ht is the temporal kernel width, tj the current model
time and ti the time of the closest valid observation. Using
the spatial and temporal weight, the nudging tendency is cal-
culated as

1mji = ws,ijwt,ij
Mi −mj

τi
1t, (4)

wheremj is the modelled mass andMi is the observed mass,
which is calculated from observed mole fractions. τi is the
nudging relaxation timescale and1t the model synchroniza-
tion time step. The latter should be smaller than the former
to assure numerical stability. The kernel widths and nudg-
ing relaxation timescale can be set for each observation loca-
tion. Different settings have been tested as shown in Table 1.
In tests NF1 to NF6, we analysed the influence of specific
parameters and kernel settings, which were the same at all
stations. In tests NV1 to NV3, we introduced a kernel size
dependent on the variability of the observed methane con-
centrations over 1 year at each station. We thereby assumed
that the kernel size should be smaller in the case of larger
variability (standard deviation). In all these tests, the tempo-
ral kernel width is assumed to be proportional to the spatial

width. In test NW1, we reduced the temporal kernel size with
increasing mean wind speed at each location, assuming air
masses will reside less time around the nudging location if
wind speeds are strong and observations are representative
of a shorter time period. To determine the mean wind speed,
we used the wind speed in 2013 at the stations interpolated
from ERA-Interim data. In test NW2, we tested an influence
of wind speed on the spatial extent of the kernel. Finally,
in NW3, we assumed that spatial kernel size increases with
wind speed, yet the temporal kernel width decreases with in-
creased variability of the observed methane mole fractions.

2.3 Observations

Several data sources were used for different purposes in this
study. Input data for the FLEXPART CTM simulations have
been described in Sect. 2.1. At the surface, we included ob-
servations of CH4 (reported in units of dry air mole frac-
tion, nmol mol−1, abbreviated ppb) from the World Data
Centre for Greenhouse Gases (WDCGG; https://ds.data.jma.
go.jp/gmd/wdcgg/, last access: 17 January 2017) and EBAS
(http://ebas.nilu.no/, last access: 28 February 2017) at 85 lo-
cations and 5 locations in the JR-STATION tall tower net-
work in Siberia (Sasakawa et al., 2010). Observations include
flask air sampled at intervals of a few days up to months and
continuous measurements. All observations have been con-
verted to the National Oceanic and Atmospheric Adminis-
tration (NOAA) 2004 methane standard scale (Dlugokencky
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et al., 2005). The National Institute for Environmental Stud-
ies (NIES) data were converted to NOAA 2004 National In-
stitute for Environmental scale assuming CH4 NOAA−2004 =

(CH4 NIES+ 12.2)/1.0087. Of 90 surface or tower observa-
tion locations in total, we arbitrarily selected 11 for valida-
tion purposes that were not used for nudging. Locations are
shown in Fig. 1; a full list of surface stations is given in the
Supplement (Table S1).

Further validation of the nudging routine was based on the
comparison to aircraft measurements. These include regu-
lar vertical profiles of NOAA at 13 locations (Sweeney et
al., 2015). Profiles were taken from the surface up to about
8000 m altitude in approximately monthly intervals. Further-
more, we include methane profiles observed in Siberia dur-
ing an Airborne Extensive Regional Observations in SIBeria
(YAK-AEROSIB) campaign (Paris et al., 2008) in July 2013
and observed by NIES at monthly intervals in Surgut and
Novosibirsk (Sasakawa et al., 2017) for validation. Loca-
tions are shown in Fig. 1. We interpolated FLEXPART CTM
data to each measurement during NOAA, NIES or YAK-
AEROSIB flights. We then calculated mean profiles per
month based on the vertical grid resolution of FLEXPART
CTM output (24 layers).

2.4 TM5 simulations

To compare the performance of FLEXPART CTM with the
nudging routine, we also evaluate reference and reanalysis
fields of methane from the global chemistry transport model
TM5 (Huijnen et al., 2010; Krol et al., 2005) with the same
observations and methods. Methane inversion simulations
are provided by the Netherlands Organisation for Applied
Scientific Research – Netherlands Institute for Space Re-
search (TNO-SRON) and are available through CAMS. The
TM5-4D-Var inverse modelling system provides optimized
methane fluxes (e.g. Bergamaschi et al., 2013). The TM5
methane fields are averaged daily and have a 2◦× 3◦ reso-
lution. In our evaluation, we include TM5 simulations based
on a priori information (here referred to as the TM5 reference
simulation) and a simulation with optimized fluxes (referred
to as TM5 reanalysis simulation) that included all NOAA
surface observations. Notice that TM5 has assimilated data
also from the surface stations used for evaluation, and thus
the comparison is not totally independent, giving the TM5
reanalysis simulation a (perhaps small) advantage over the
FLEXPART CTM simulations. We did not use TM5 reanal-
ysis simulations with the assimilated Greenhouse Gases Ob-
serving Satellite (GOSAT) data (Bergamaschi et al., 2009)
since the bias in comparison to surface observations was
larger than in the presented simulations, as shown in the Sup-
plement (Figs. S1 and S2).

3 Results and discussion

3.1 Sensitivity analysis

The nudging kernel settings such as the size, described in
Sect. 2.2, will affect the influence observations have on the
methane fields. To show this influence and to find appropriate
settings for our application, we performed a sensitivity anal-
ysis. The different kernel settings are listed in Table 1. Fig-
ure 2 shows the annual mean surface methane molar mixing
ratios as simulated with FLEXPART CTM without nudging.
Additionally, the difference in annual mean mixing ratios
between the reference simulation and two nudging simula-
tions is shown. With relatively small nudging kernels (NF2,
Fig. 2b), some influence on global methane fields is seen.
The strongest effects, however, are restricted to the nudg-
ing locations. Increasing the kernel size for background sta-
tions (NV3, Fig. 2c) shows that the nudging can influence
simulated methane values strongly in a far larger region.
The nudging appears to mostly lower modelled methane
mole fractions in the Northern Hemisphere and to increase
methane in the Southern Hemisphere, indicating a positive
and negative bias of methane concentrations, respectively.
This will later be discussed based on a comparison to ob-
servations. Furthermore, Fig. 3 illustrates how nudging influ-
ences simulated methane values over time in a region in the
Southern Hemisphere at different altitudes. Methane starts
to increase in the planetary boundary layer, because nudg-
ing occurs at surface stations, and over time the influence
of nudging extends to higher altitudes. The differences come
from nudging stations within this particular region, but ef-
fects from elsewhere will also reach this region with time
and likely at higher altitudes.

A more quantitative analysis of the sensitivity to nudg-
ing kernel settings is given in Fig. 4. We compare observed
and modelled daily averaged methane concentrations in 2013
through the coefficient of determination (r2), root mean
square error (RMSE) and bias for nudged FLEXPART CTM
simulations and the reference simulation at all surface loca-
tions (including both stations used for the nudging and inde-
pendent validation stations). Generally, model performance
in terms of root mean squared error, correlation and bias im-
proves for all tested nudging kernel settings compared to the
reference simulation. Already for a rather small kernel size
(NF1), the coefficient of determination increases, while there
remains a relatively large spread in model bias. It also ap-
pears that the chosen relaxation time (NF4 vs. NF3 or NV3
vs. NV2) affects the coefficient of determination. Especially
large changes are seen for the temporal kernel width (NW3
vs. NW2 and NF5 vs. NF3).

The representativeness of a station is directly linked to
the variability of the observed methane concentrations. If
the variability is high, this may indicate that the station is
often influenced by emissions in its vicinity or by small-
scale transport phenomena. Such a station should exert less
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Figure 1. Map of surface and profile locations used for nudging or validation. For profiles that span a larger domain, only the centre location
is indicated.

weight on the simulated concentration field than a station
with greater representativeness and its area (and/or time pe-
riod) of influence should be smaller. Therefore, in another
set of tests (NV1–3, NW1 and NW3), we assumed that the
variability of observed concentrations (expressed in terms of
the annual standard deviation) limits either the temporal or
spatial kernel width. Unlike tests NF1–NF6, the kernel size
is thereby no longer identical for all locations. Based on the
small values of RMSE, it appears that changing the spatial
kernel size based on the observed variability can improve the
performance of the nudging routine (NV1 and NV3). The
mean RMSE in the reference case is 35.3 ppb for all sta-
tions and 23.6 ppb for validation stations and is reduced to
10.3 ppb for all and 18.7 ppb for validation stations in the
NV3 simulation. The correlation improves mostly at nudg-
ing stations, as can be concluded from an increase of mean
r2 for all stations from 0.54 in the reference to 0.92 in the
NV3 simulation, yet at validation stations remains at 0.62 for
REF and NV3.

We are particularly interested if the nudging routine can re-
move some of the bias of modelled methane simulations, as
bias is detrimental for many applications (e.g. inverse mod-
elling). In Fig. 5, we therefore show the model bias and coef-
ficient of determination at surface stations for a selection of
sensitivity simulations. In the reference simulation, methane
concentrations tend to be underestimated in the Southern
Hemisphere and overestimated in the Northern Hemisphere
by FLEXPART CTM with the used emission inventories. The
nudging routine removes most of the model bias at many
stations. We found a large variation of observed methane in
Siberia at the stations of the JR-STATION network. At some
of these stations, daily mean mixing ratios reach values ex-

ceeding 2000 ppb (Sasakawa et al., 2010). The stations are
located in taiga, steppe and wetland biomes. Sasakawa et
al. (2010) showed that during summer methane emissions
from wetlands and during winter from fossil fuel extraction
can explain most of the variation in methane values in this
region. Also biomass burning is locally contributing to ele-
vated methane. It appears that, in this region, the model ben-
efits from nudging kernel sizes related to the standard devia-
tion of observations (compare NV3 to NF3). For simulation
NV3, the nudging kernel sizes are relatively small and there
is less overlap of the different kernels in this region, allowing
for a larger spatial variability in simulated concentrations.

Bias and r2 shown in Fig. 5 summarize model perfor-
mance at many stations. To get a better understanding of
how nudging changes the modelled methane concentrations,
we discuss the annual cycle at two surface stations (Figs. 6
and 7). As an example of a nudging location, we look
at the remotely located Palmer Station, Antarctica (PSA;
−64.92◦ N, −64.00◦ E). Here, observations include approx-
imately weekly flask-air samples. Modelled and observed
mixing ratios in 2013 are shown as time series and a scat-
ter plot (Fig. 6). Additionally, model performance statistics
for PSA are given in the table in Fig. 6. The figures and ta-
ble show that correlation between model and observations
is already large for the reference simulation, as the seasonal
cycle is well captured by the model, but the bias can be re-
duced through nudging. For the smallest nudging kernel size
(NF1), the improvement is limited, from −8.5 ppb (REF)
to −8.4 ppb (NF1). For all other nudged simulations, how-
ever, the bias is reduced to less than −2.3 ppb. The time se-
ries reveals more differences. Since the variation of observed
methane mixing ratios at PSA is relatively small, the nudg-
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Figure 2. Simulated annual mean surface methane (ppb) for 2013 in the FLEXPART CTM reference simulation (a) and the difference in
annual mean surface methane for FLEXPART CTM NF2 (b) and NV3 (c) compared to the reference simulation. Additionally, zonal averages
of surface methane (ppb) for all three simulations are also shown (d).

ing kernel in simulation NV3 was large (over 10◦ radius). In
the case of small nudging kernels (NF3), methane deviates
from the reference simulation only during measurement pe-
riods but nearly returns to the reference values in between
measurements. For larger kernels (NV3), the methane con-
centrations are kept at a level similar to the observations also
in between observations. Given the remote site location and
the lack of local emissions, this scenario appears more re-
alistic. This behaviour is particular to remote stations and
rather extreme at PSA, where the reference model has a pro-
nounced bias and there are no other observations to correct
it. At other stations, the influence of other close-by nudging
stations is generally larger and better results are obtained for
small kernels as well. Besides the kernel settings, the num-
ber of nudging stations included in a simulation will thus also
affect model performance, as will be discussed at the end of
this section.

Another station for which we show observations and sim-
ulations in more detail is Heimaey (ICE, Fig. 7). Heimaey
is located close to the southern coast of Iceland and is an
independent station where no nudging is applied in FLEX-
PART CTM simulations. At this location, the reference sim-
ulation has a relatively large bias of over 28 ppb. With the
introduction of nudging at other stations, the bias is reduced
to approximately 6 ppb and also all other statistical parame-
ters improve (see table in Fig. 7). Most improvement, both in
correlation and bias reduction, was seen in simulation NV3.
In this simulation, the relatively large kernel given to back-
ground stations helps to reduce bias globally. In the time se-
ries (Fig. 7a), it can be seen that model performance at the
start of the year is worse than at the end of the year. Although
the deviation between reference and nudged simulations oc-
curs from the start, the difference between several simula-
tions accumulates during the simulation period as more ob-
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Figure 3. Difference in simulated regional mean methane (ppb) per
altitude for FLEXPART CTM simulations NV3–REF in January
2013. The values are averages per altitude level for the region south
of 60◦ S.

servations are included. We show the simulations over the
complete nudging period to demonstrate this, but we did not
include the first 20 days with nudging in the model perfor-
mance calculations. Deviations can of course also increase if
the model performs worse in particular periods, for instance,
due to errors in emissions, inducing stronger nudging effects.

To demonstrate that the nudging routine generally im-
proves model results throughout the domain, we evaluate the
bias at all independent validation stations in Table 2. Effects
are smaller than at many nudging stations shown in Fig. 5.
Nonetheless, there is a clear improvement at some stations,
even though they are remote, such as USH (Ushuaia, Tierra
del Fuego, Argentina). Table 2 also shows that FLEXPART
CTM model performance at some stations can decrease de-
pending on nudging kernel settings. This is the case at
THD (Trinidad Head, California, USA) and YAK1 (Yakutsk,
Siberia, Russia). While methane mixing ratios were slightly
underestimated at THD in the reference simulation, an over-
estimation was observed at close-by nudging locations. In the
nudging simulations, methane concentrations were thus de-
creased in this region and underestimation at the independent
station increased. In Yakutsk, measurements are made at a
low inlet (11 m, here called YAK1) and a high inlet (77 m,
YAK2). Nudging appears to decrease bias of the methane
values at the high inlet but not at lower altitude. A large bias
both in reference and nudged simulations is seen at BKT
(Bukit Koto, Tabang, Indonesia). This station is influenced
by nearby biomass burning emissions and a sea-breeze sys-
tem that is difficult to resolve in the FLEXPART simulations
(Henne et al., 2018b).

Jungfraujoch, Switzerland (JFJ), is a high-altitude sta-
tion and the strongly decreased bias of modelled mixing
ratios indicates that surface nudging has a beneficial influ-

Figure 4. FLEXPART CTM model performance based on boxplots
of coefficient of determination, root mean square error (RMSE) and
bias in daily average methane model fractions at surface stations for
different kernel settings (see Table 1). Independent validation sta-
tions are included. The red line in the boxplots indicates the median,
the bottom and top box edges are the 25th and 75th percentiles, and
whisker ends are at 9th and 91st percentiles. The circles are outliers.

ence also at higher altitudes (observations from JFJ were
not used in nudging). To verify the influence of kernel set-
tings on methane mixing ratios at high altitude, we selected
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Figure 5. Bias and coefficient of determination of modelled methane at all surface stations, including validation stations (diamonds) for a
selection of simulations (see Table 1 for settings). Some bias values exceed −15 ppb (also, see Fig. 4); colour limits were chosen to show the
influence of nudging at the majority of stations.

two locations with NOAA Earth System Research Labora-
tory (ESRL) vertical profiles.

Nudging at the surface changes modelled methane con-
centrations up to heights of 8 km (Fig. 8). At ACG (Alaska
Coast Guard, Alaska, United States of America), differences

due to surface nudging even appear largest at heights be-
tween 2 and 6 km. The number of nudging observations is
limited in this region and differences are therefore mostly
due to nudging in well-observed regions further south, fol-
lowed by northward transport accompanied by isentropic up-
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Figure 6. Methane (ppb) as observed and modelled at Palmer Station in 2013 for a selection of FLEXPART CTM simulations, shown as
time series (a) and a scatter plot (b).

Figure 7. Methane (ppb) as observed and modelled in Heimaey in 2013 for a selection of FLEXPART CTM simulations, shown as time
series (a) and a scatter plot (b).

lift of those air masses to higher altitudes. Similarly, Sweeney
et al. (2015) showed, based on vertical profiles of CO2, that
air transported to this region from the central Pacific is well
mixed throughout the observed column (< 8000 m). In a re-
gion with multiple nudging locations such as DND (Dahlen,
North Dakota, USA), on the other hand, mainly the methane
concentrations near the surface are affected by nudging. As
for surface validation stations, improvements are seen mostly
in RMSE and bias rather than correlation (Table 3).

Finally, we noted earlier that, besides nudging kernel prop-
erties, the number of nudging observations included in the
simulation can affect the model performance. We there-
fore tested model performance for simulations with different
numbers of particles and where some of the nudging loca-
tions in NV3 were removed. As expected, reducing the num-
ber of particles somewhat increases the noise in the simu-

lation but does not strongly influence overall model perfor-
mance (not shown), because as long as the parcels in the
simulation are well-mixed the same fraction of particles will
be influenced by nudging. We expect a larger difference in
the case where we randomly remove nudging stations from
our simulations. We tested this for the kernel settings used in
NV3, with 50 % and 80 % of the nudging stations included.
A summary of model performance results is given in Table 4.
Looking at all stations, correlation increases and RMSE de-
creases with an increase in number of stations. As already
discussed, the influence on correlation between model and
observations at independent sites is limited. RMSE at inde-
pendent validation sites does decrease if 50 % or 80 % of
the nudging locations are included, but the final 20 % do not
improve results here. With 80 % of the nudging locations,
the background methane mixing ratios were thus already im-
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Table 2. Bias of modelled methane (ppb) at independent surface validation stations. The mean value is the mean of absolute bias value at all
stations listed. Settings of FLEXPART CTM simulations are given in Table 1. Station locations are shown in Fig. 1 and coordinates are given
in Table S1.

REF NF1 NF2 NF3 NF4 NF5 NF6 NV1 NV2 NV3 NW1 NW2 NW3

YAK1, Yakutsk 5.6 4.3 1.3 1.1 1.6 2.8 −1.1 −11.2 −10.1 −11.4 −8.2 0.3 1.4
YAK2, Yakutsk 12.7 11.3 8.4 8.3 8.6 9.7 5.9 −4.1 −3.1 −4.3 −1.1 7.4 8.5
USH, Ushuaia −9.1 −9.0 −7.3 −6.9 −8.1 −7.9 −3.7 −0.8 −1.0 −0.6 −1.4 −3.9 −4.4
BHD, Baring Head −7.5 −7.9 −4.0 −3.0 −5.6 −5.6 1.7 6.1 4.7 6.1 5.0 −0.9 −2.3
BKT, Bukit Koto Tabang −38.5 −38.7 −39.3 −39.5 −39.6 −38.9 −39.5 −39.4 −38.9 −39.3 −37.8 −40.1 −39.3
GMI, Guam −5.2 −5.6 −6.4 −6.3 −6.6 −6.5 −5.9 −4.9 −6.0 −5.8 −4.1 −6.5 −6.0
KUM, Cape Kumukahi −2.5 −1.6 1.6 2.7 −1.2 1.4 3.2 4.6 2.2 3.6 4.8 3.1 3.2
AZR, Terceira Island 12.4 11.8 8.0 6.8 8.4 7.9 5.6 −3.4 −2.5 −3.3 −1.2 3.9 3.8
THD, Trinidad Head −0.8 −1.5 −4.7 −5.1 −3.9 −4.4 −7.6 −11.9 −12.0 −12.0 −10.7 −9.0 −8.9
CBA, Cold Bay 18.4 18.3 12.5 12.2 13.6 14.4 9.6 −1.0 −1.0 −1.7 1.9 11.0 11.2
ICE, Heimaey 28.4 27.2 21.0 20.1 22.0 22.1 16.5 6.5 7.2 6.2 7.1 16.8 17.4
JFJ, Jungfraujoch 24.2 21.9 14.5 14.8 15.5 14.5 14.7 10.8 10.6 10.7 9.8 13.2 11.7
Mean 13.8 13.2 10.8 10.6 11.2 11.3 9.6 8.7 8.3 8.8 7.8 9.7 9.8

Figure 8. Averaged annual vertical methane profiles for 2013 based
on monthly averaged data at NOAA profile locations ACG (Alaska
Coast Guard, USA) and DND (Dahlen, North Dakota, USA). See
Fig. 1 for approximate profile locations.

proved globally, or the nudging stations most relevant for the
validation stations were already included in the 80 %.

3.2 Model performance

Based on results shown in previous sections, we selected
the NV3 run to provide the best nudged FLEXPART CTM
methane distribution. For further analysis of model perfor-
mance, we will only use this simulation. We will evaluate this
best case simulation in comparison with the methane field
simulated by the Eulerian TM5 model (see Sect. 2.4).

Table 3. Model performance at ACG (Alaska Coast Guard, USA)
and Dahlen (DND) in terms of r2, RMSE and bias (ppb) of a selec-
tion of simulations according to Table 1.

ACG DND
r2 RMSE Bias r2 RMSE Bias

REF 0.50 14.89 5.36 0.53 24.17 7.55
NF1 0.60 13.17 4.42 0.55 23.13 6.91
NF3 0.59 12.38 2.35 0.56 19.71 2.69
NV3 0.58 13.73 −6.46 0.58 18.49 −5.54
NW3 0.58 13.73 2.21 0.57 18.73 0.70

3.2.1 Surface mixing ratios

As for FLEXPART CTM in Fig. 5, we show bias and cor-
relation values for 1 year of TM5 simulations at all surface
stations (Fig. 9). We include TM5 simulations that are based
on a priori information (TM5 REF) and TM5 reanalysis sim-
ulations that include fluxes optimized by the TM5-4D-Var
system (e.g. Bergamaschi et al., 2010). When comparing the
reference versions of FLEXPART CTM and TM5, similar
biases can be found for both models, although FLEXPART
CTM’s performance with mean RMSE of 35.3 ppb and mean
absolute bias of 20.9 ppb appears slightly poorer than that
of TM5 with mean RMSE of 33.9 ppb and mean absolute
bias of 17.3 ppb (also, see Table 5). On the other hand, cor-
relation is higher for FLEXPART CTM (r2

= 0.54) than for
TM5 (r2

= 0.39). Differences may be due to the use of dif-
ferent emission inventories but can also be related to other
modelling aspects, e.g. differences in methane lifetime and
OH fields. More interesting, however, is the performance of
FLEXPART CTM when the nudging routine is switched on
and TM5 based on optimized fluxes, shown in Fig. 9 and Ta-
ble 5. Especially if nudging stations and validation stations
are both considered, the performance of the nudged FLEX-
PART CTM simulation (NV3) is better than that of the TM5
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Table 4. Average of coefficient of determination, root mean square
error and absolute bias at all surface stations and at surface valida-
tion stations only for different FLEXPART CTM simulations. The
percentage refers to the number of nudging locations that were in-
cluded in the simulation.

r2 RMSE Bias
All Validation All Validation All Validation

REF 0.54 0.62 35.3 23.6 20.9 13.8
NV3 50 % 0.74 0.63 18.6 19.5 9.6 9.0
NV3 80 % 0.85 0.62 13.9 18.7 6.9 8.3
NV3 0.92 0.62 10.3 18.7 4.9 8.8

simulations. Mean bias of all stations was reduced to 4.9 ppb
in NV3 but 13.3 ppb in the optimized TM5 simulation. At in-
dependent stations (for FLEXPART CTM), methane mixing
ratios are on average biased by 8.8 ppb in NV3 and 8.1 ppb in
TM5 reanalysis. It should be noted that most of the nudging
data are also used in the reanalysis version of TM5. In fact,
data from independent NOAA surface stations (diamonds in
Fig. 9) such as ICE, USH, AZR (Terceira Island, Azores, Por-
tugal) and GMI (Guam, USA) are not used in FLEXPART
CTM but are ingested in the TM5 reanalysis system, and
better performance by TM5 may therefore be expected. Ob-
servations from the Yakutsk tower are not used in either of
the simulations. Here, the model bias is lower in the nudged
FLEXPART CTM simulations. This is probably also related
to the inclusion of data from the JR-STATION network in
FLEXPART CTM, which are not included in TM5. It ap-
pears that both models, with optimization, are well able to
capture background concentrations in the Southern Hemi-
sphere. In the northern midlatitudes, deviations from obser-
vations are generally largest. This is also the region with the
most observations, and spatial variability appears large. Here,
the models are, with the current setup, not able to capture
this large spatial variability, and observations are representa-
tive of small regions only. This is further demonstrated in a
comparison of averaged zonal mean values from FLEXPART
CTM and TM5 simulations and zonal mean values from the
GLOBALVIEW-CH4 product in Fig. 10. GLOBALVIEW-
CH4 extends surface measurements of methane in time and
space to provide model-independent trace gas climatology
(Masarie and Tans, 1995; GLOBALVIEW-CH4, 2009). Dif-
ferences between the three products are largest from the
Equator to the northern midlatitudes. The GLOBALVIEW-
CH4 product is probably more representative of a maritime
baseline and biased low in the Northern Hemisphere, partly
explaining the larger difference here between both models
and GLOBALVIEW-CH4.

3.2.2 Aircraft profiles

To assess model performance above the surface, we use ver-
tical profiles obtained from aircraft measurements at 16 lo-
cations (see Fig. 1). Overall, 12 of these are located in North

Table 5. Mean values of r2, RMSE and absolute bias for different
FLEXPART CTM and TM5 simulations at surface stations for all
stations or independent validation stations only.

r2 RMSE Bias
All Validation All Validation All Validation

REF 0.54 0.62 35.3 23.6 20.9 13.8
NF1 0.62 0.62 30.1 23.3 17.8 13.2
NF3 0.92 0.63 9.4 20.6 4.9 10.6
NV3 0.92 0.62 10.3 18.7 4.9 8.8
NW3 0.78 0.59 18.4 20.2 9.6 9.8

TM5 REF 0.39 0.41 33.9 22.2 17.3 7.9
TM5 RA 0.46 0.54 29.7 20.6 13.3 8.1

America and are part of the NOAA/ESRL aircraft program;
one is also part of NOAA but is in the region of the Cook
Islands in the central southern Pacific Ocean (Rarotonga).
In Siberia, we obtained data from the YAK-AEROSIB cam-
paign and regular NIES profiles in Surgut and Novosibirsk.
We show mean profiles in 2013 at each location in Fig. 11.
The simulations are interpolated to profile observation loca-
tions and times, and averaging is done at FLEXPART CTM
vertical resolution. Besides comparing FLEXPART and ob-
servations, we again also include results of TM5 reference
and reanalysis (or 4D-Var) output. As was also shown be-
fore based on vertical profiles at two stations (Fig. 8), nudg-
ing FLEXPART CTM simulations at the surface influences
vertical profiles throughout the troposphere. In North Amer-
ica, many surface observations used for nudging FLEX-
PART CTM are also included in the TM5 reanalysis simu-
lations. Good results are therefore obtained with both mod-
els at some locations, such as DND (Dahlen) or CMA (Cape
May). It appears that FLEXPART CTM tends to underesti-
mate methane concentrations at altitudes above 6000 m; see,
for instance, SCA (Charleston, South Carolina, USA), WBI
(West Branch, Iowa, USA) and YAK-AEROSIB. This may
indicate that the exchange between troposphere and strato-
sphere is too strong in FLEXPART CTM, or that the strato-
spheric methane may be underestimated. Obviously, the per-
formance of both models varies with altitude, as will be dis-
cussed later. An especially large difference between FLEX-
PART CTM and TM5 is seen in Novosibirsk, even though
this does not appear related only to the inclusion of Siberian
data in the FLEXPART CTM nudging routine. This may be
due to the use of different emission inventories.

The profiles shown in Fig. 11 are averages of all available
monthly profiles per site. Model performance of FLEXPART
CTM and TM5 varies throughout the year, however, and as
an example, we show seasonally averaged profiles at ESP
(Estevan Point, British Columbia, Canada) in Fig. 12. Both
models appear to benefit from the nudging and reanalysis
techniques, respectively, with improved concentrations, es-
pecially near the surface, compared to reference simulations.
For both models, strong deviations from measurements oc-
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Figure 9. Bias (ppb, a, c) and r2 (b, d) of modelled methane at all surface stations for TM5 (reference, a, b; reanalysis, c, d) simulations.

Figure 10. Zonal mean surface methane (ppb) in 2013 based on
FLEXPART CTM, TM5 and GLOBALVIEW-CH4.

cur in autumn with very similar profiles for TM5 and nudged
FLEXPART CTM. The nudging appears to improve mod-
elled FLEXPART CTM concentrations up to roughly 3 km
altitude in all seasons except for autumn.

To assess if modelled vertical profiles deviate systemati-
cally from observed vertical profiles, we split the profiles into
three altitude ranges: below 2000 m altitude, from 2000 up

to 6000 m altitude and above 6000 m. In Fig. 13, the bias of
each model is shown for all NOAA profiles in North America
for each of the altitude ranges. As was already indicated by
the average profiles in Fig. 11, FLEXPART CTM tends to un-
derestimate methane at altitudes above 6000 m. The nudging
routine near the surface partly enhances this bias in this al-
titude range. In TM5, values are rather overestimated at this
altitude and an improvement between the reference and re-
analysis runs is visible. At the altitude range between 2000
and 6000 m, FLEXPART CTM performs better than at upper
levels. For TM5, there seems to be a small overestimation of
methane concentrations at this altitude range. Near the sur-
face, below 2000 m, a clear impact of the nudging routine
for FLEXPART CTM is shown. For TM5, strong positive as
well as negative biases occur near the surface and are larger
in the reanalysis simulation. For this region, it appears that
the FLEXPART CTM nudging routine improves near-surface
concentration fields, while the TM5 reanalysis scheme is bet-
ter able to improve high-altitude concentrations. Similarly,
Bergamaschi et al. (2013) showed for a comparison between
TM5 modelled methane concentrations and NOAA aircraft
measurements during 2003 to 2010, that RMSE in the bound-
ary layer was larger than in the free troposphere.

The underestimation of methane concentrations at high al-
titude by FLEXPART CTM means that the bias of average
profiles is mostly negative (Table 6), and averaged absolute
bias of all profiles increases in the case of nudging. The re-
moval of methane near the surface can cause too-low val-
ues at higher altitudes. Looking at RMSE, both models show
similar values (∼ 16 ppb) for average profiles (Table 7). Al-
though nudging was particularly useful to reduce the bias
near the surface, as we concluded based on surface observa-
tions, it is less effective at improving vertical profiles above
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Figure 11. Averaged modelled and observed vertical profiles in 2013 at 16 NOAA locations, during the YAK-AEROSIB campaign and in
Surgut and Novosibirsk. FLP refers to FLEXPART CTM.
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Figure 12. Seasonal observed and modelled methane profiles in 2013 at Estevan Point (Canada). FLP refers to FLEXPART CTM.

Figure 13. Model bias of FLEXPART CTM (abbreviated FLP) and TM5 at three altitude ranges for NOAA profiles in 2013 in North America.
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Table 6. Bias (ppb) of averaged methane profiles at NOAA and NIES profile sites and during the YAK-AEROSIB flight campaign. Bias is
determined with equal weight of each vertical layer.

FLEXPART CTM FLEXPART CTM TM5 TM5
REF NV3 REF RA

ACG, Alaska Coast Guard, USA 5.4 −6.5 13.6 −2.5
CAR, Briggsdale, Colorado, USA −3.6 −8.8 8.7 7.0
CMA, Cape May, New Jersey, USA 0.6 −8.2 0.7 0.5
CRV, Carbon in Arctic Reservoirs Vulnerability Experiment 4.1 −9.7 2.6 −8.8
DND, Dahlen, North Dakota, USA 7.5 −5.5 2.2 −5.1
ESP, Estevan Point, British Columbia, Canada 6.0 −8.2 4.2 −5.4
ETL, East Trout Lake, Saskatchewan, Canada 14.2 −2.4 6.2 −0.3
HIL, Homer, Illinois, USA −5.7 −15.7 −2.9 −2.8
LEF, Park Falls, Wisconsin, USA 5.6 −1.9 0.2 −0.6
NHA, Worcester, Massachusetts, USA −0.8 −11.0 2.4 1.0
PFA, Poker Flat, Alaska, USA 2.3 −10.2 1.4 −6.8
RTA, Rarotonga, Cook Islands −11.0 −3.5 −3.8 0.9
SCA, Charleston, South Carolina, USA −8.1 −14.2 3.0 2.4
TGC, Sinton, Texas, USA −3.8 −6.9 11.2 9.0
THD, Trinidad Head, California, USA −2.9 −11.6 9.3 −0.1
WBI, West Branch, Iowa, USA 2.4 −9.1 5.2 6.0
YAK-AEROSIB, Siberia, Russia 3.6 −13.6 3.0 −5.4
Novosibirsk, Siberia, Russia −3.4 −8.3 18.3 19.5
Surgut, Siberia, Russia 10.2 0.3 −2.6 −10.9

Mean of absolute values 5.3 8.2 5.3 5.0

Table 7. RMSE (ppb) of averaged methane profiles at NOAA and NIES profile sites and during the YAK-AEROSIB flight campaign. RMSE
is determined with equal weight of each vertical layer.

FLEXPART CTM FLEXPART CTM TM5 TM5
REF NV3 REF RA

ACG, Alaska Coast Guard, USA 14.9 13.7 19.6 10.4
CAR, Briggsdale, Colorado, USA 11.6 14.5 20.6 15.4
CMA, Cape May, New Jersey, USA 15.4 13.6 17.8 15.1
CRV, Carbon in Arctic Reservoirs Vulnerability Experiment 19.3 20.4 24.8 20.2
DND, Dahlen, North Dakota, USA 24.2 18.5 22.0 19.1
ESP, Estevan Point, British Columbia, Canada 19.6 14.1 17.7 14.6
ETL, East Trout Lake, Saskatchewan, Canada 23.1 13.2 20.2 19.9
HIL, Homer, Illinois, USA 19.3 21.4 24.9 25.2
LEF, Park Falls, Wisconsin, USA 11.9 11.8 19.6 12.1
NHA, Worcester, Massachusetts, USA 14.8 17.1 17.6 15.5
PFA, Poker Flat, Alaska, USA 15.7 16.6 15.1 12.8
RTA, Rarotonga, Cook Islands 13.3 7.7 7.8 6.8
SCA, Charleston, South Carolina, USA 18.9 21.6 21.8 18.6
TGC, Sinton, Texas, USA 13.0 14.7 17.9 17.4
THD, Trinidad Head, California, USA 15.5 17.8 20.3 15.5
WBI, West Branch, Iowa, USA 14.9 13.8 10.7 12.8
YAK-AEROSIB, Siberia, Russia 18.6 20.4 13.2 13.8
Novosibirsk, Siberia, Russia 6.1 10.5 22.4 23.8
Surgut, Siberia, Russia 19.0 17.5 5.8 12.3

Mean 16.3 15.7 17.9 15.9
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about 2000 m. Nonetheless, it appears that FLEXPART CTM
nudged concentration profiles are of similar accuracy as al-
ternatives available at present.

4 Conclusions

We presented a nudging routine in combination with FLEX-
PART CTM to provide three-dimensional fields of long-
lived trace gas abundance constrained with surface observa-
tions. In particular, this study focuses on the optimization
of methane. However, with the right settings, this frame-
work could be used for other species. The nudging constrains
model results with observations and thereby considerably
levels out (combined) model errors in emissions, transport
modelling and methane losses.

In a sensitivity analysis, we showed that modelled methane
near the surface greatly improves through the inclusion of
observations at 79 locations. To show that the observations
improve the concentration fields not only locally but glob-
ally, we compare model results to independent observations.
These were at the surface (11 sites) as well as vertical profiles
from aircraft campaigns (19 sites). For very small kernels
(0.5◦ width), nudging was too weak and not much improve-
ment was seen. Large kernels are suitable for background
stations, but for stations with large variability in the obser-
vations a smaller kernel leads to better results. The num-
ber of observations included in the simulation also influences
model performance. We concluded that nudging kernel set-
tings of test NV3 (see Table 1) were best to improve mod-
elled methane concentrations. This setting is based on a ker-
nel whose bandwidth is dependent on the observed methane
variability over 1 year at a site.

A comparison with methane fields from TM5 simulations
was made. We included reference TM5 simulations, based
on bottom-up emission information, as well as reanalysis
simulations that use optimized emission fluxes (TM5-4D-
Var). There are small differences in the bottom-up emis-
sion inventories driving FLEXPART CTM and TM5. Results
showed that in the upper troposphere FLEXPART CTM un-
derestimates methane and best results are obtained near the
surface. In contrast, TM5 appears to be better in the up-
per atmosphere, yet model performance near the surface is
poorer. The mean RMSE of all averaged vertical profiles
was 15.7 ppb for FLEXPART CTM (nudged), yet 15.9 ppb
for TM5 (reanalysis). For all surface stations, mean RMSE
values were 10.3 and 29.7 ppb for FLEXPART CTM and
TM5, respectively, and at independent surface stations val-
ues were 18.7 and 20.6 ppb, respectively. It should be noted,
however, that the independent stations are only strictly in-
dependent for FLEXPART CTM simulations but are partly
included in TM5 assimilation runs. In future experiments, it
might be useful to use the same data selections for the FLEX-
PART nudging and the TM5-4D-Var inversion. It could also
be interesting to drive the FLEXPART nudging with a poste-

riori emissions from the TM5 inversion to see the differences
in how the models simulate 3-D concentrations. Increases in
correlation between observations and modelled values at sur-
face stations are considerable at nudging locations but low at
independent validation stations.

In summary, we can simulate three-dimensional fields of
methane with a Lagrangian model constrained with obser-
vations through nudging. We have shown that in the tropo-
sphere this simple assimilation technique, which is compu-
tationally inexpensive, can give similarly good results as a
Eulerian chemistry transport model combined with a compu-
tationally expensive four-dimensional variational data assim-
ilation scheme. Near the surface, the Lagrangian model with
nudging even seems to outperform the Eulerian model with
data assimilation.

Code and data availability. The FLEXPART 8-CTM-1.1 source
code is available under https://doi.org/10.5281/zenodo.1249190
(Henne et al., 2018a).

Modelled methane concentration fields from the nudged NV3
FLEXPART CTM simulation are currently available at https://
folk.nilu.no/~christine/ch4.html (last access: 17 September 2018).
Moreover, we will update this website with modelled monthly mean
global methane fields simulated with FLEXPART CTM using the
NV3 kernel settings starting from the year 2005. Other model re-
sults discussed here are available upon request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-11-4469-2018-supplement.
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