Articles | Volume 11, issue 11
Geosci. Model Dev., 11, 4435–4449, 2018
https://doi.org/10.5194/gmd-11-4435-2018
Geosci. Model Dev., 11, 4435–4449, 2018
https://doi.org/10.5194/gmd-11-4435-2018

Methods for assessment of models 05 Nov 2018

Methods for assessment of models | 05 Nov 2018

Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies

Huikyo Lee et al.

Related authors

A global analysis of diurnal variability in dust and dust mixture using CATS observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021,https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
Michael J. Garay, Marcin L. Witek, Ralph A. Kahn, Felix C. Seidel, James A. Limbacher, Michael A. Bull, David J. Diner, Earl G. Hansen, Olga V. Kalashnikova, Huikyo Lee, Abigail M. Nastan, and Yan Yu
Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020,https://doi.org/10.5194/amt-13-593-2020, 2020
Short summary
A Global Analysis of Dust Diurnal Variability Using CATS Observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, and James R. Campbell
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-975,https://doi.org/10.5194/acp-2019-975, 2019
Preprint withdrawn
Short summary
Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models
Huikyo Lee, Olga V. Kalashnikova, Kentaroh Suzuki, Amy Braverman, Michael J. Garay, and Ralph A. Kahn
Atmos. Chem. Phys., 16, 6627–6640, https://doi.org/10.5194/acp-16-6627-2016,https://doi.org/10.5194/acp-16-6627-2016, 2016
Short summary
Extensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999–2010
J. Seo, D. Youn, J. Y. Kim, and H. Lee
Atmos. Chem. Phys., 14, 6395–6415, https://doi.org/10.5194/acp-14-6395-2014,https://doi.org/10.5194/acp-14-6395-2014, 2014

Related subject area

Climate and Earth system modeling
Modeling land use and land cover change: using a hindcast to estimate economic parameters in gcamland v2.0
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022,https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022,https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Evaluation and optimisation of the I/O scalability for the next generation of Earth system models: IFS CY43R3 and XIOS 2.0 integration as a case study
Xavier Yepes-Arbós, Gijs van den Oord, Mario C. Acosta, and Glenn D. Carver
Geosci. Model Dev., 15, 379–394, https://doi.org/10.5194/gmd-15-379-2022,https://doi.org/10.5194/gmd-15-379-2022, 2022
Short summary
Coupling the Community Land Model version 5.0 to the parallel data assimilation framework PDAF: description and applications
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022,https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Convolutional conditional neural processes for local climate downscaling
Anna Vaughan, Will Tebbutt, J. Scott Hosking, and Richard E. Turner
Geosci. Model Dev., 15, 251–268, https://doi.org/10.5194/gmd-15-251-2022,https://doi.org/10.5194/gmd-15-251-2022, 2022
Short summary

Cited articles

ana4MIPs: Reanalysis for MIPs, available at: https://esgf.nccs.nasa.gov/projects/ana4mips/ProjectDescription, last access: 4 October 2018. a
ASF: The Apache Software Foundation (ASF), available at: http://apache.org/, last access: 4 October 2018a. a
ASF: The Apache Incubator Project, available at: http://incubator.apache.org/, last access: 4 October 2018b. a
ASF: The Apache License v2.0, available at: https://www.apache.org/licenses/LICENSE-2.0, last access: 15 March 2018c. a
CONDA-FORGE: CONDA-FORGE, available at: https://conda-forge.org/, last access: 4 October 2018. a
Download
Short summary
The Regional Climate Model Evaluation System (RCMES) is designed to facilitate access to observational data and systematic evaluations of regional climate model simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX). To ensure software sustainability, development of RCMES is an open, publicly accessible process enabled by leveraging the Apache Software Foundation's open-source library, Open Climate Workbench (OCW).