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Authors’ response to the Referees

For clarifying our answers to the reviewers’ comments, the following scheme
is used: comments of the reviewers are denoted in plain font, our answers are
denoted in bold font and quotes from the manuscript are denoted in bold italic.
We also number the different comments of the reviewers as: I.J, where I is the
number of the referee and J the number of the remark.

Response to the comments of Stephanie Horion

The work presented by Papagiannopoulou et al. in this manuscript is of interest
for the reader of GMD and is also very relevant for the ecosystem and climate
research community. Overall the manuscript is well structured and the method-
ology section generally well documented. Knowing that the focus of GMD is on
the progress and novelty in computation and model development, I support the
need for in-depth description of the MTL model and its performances (e.g. STL
vs MTL, capability to detect Granger causality, etc.). However I believe that
the manuscript would be strengthened and results better supported if the au-
thors could really demonstrate that the new product (i.e. map of hydro-climatic
biomes) is outperforming other bio-climatic maps that did not consider in their
design the vegetation response to climate variability. This is still lacking in the
current manuscript. In addition some methodological aspects that led to the
final design of the MTL and clustering should also be improved to backup the
authors statement on the performances of the final models and derived product.
Based on these observations and on the detailed comments provided below I
recommend the paper for major revision.

We would like to thank the reviewer for her appreciation of our
manuscript, the constructive feedback, and thorough assessment. Be-
low we provide a point-by-point response to each comment.
In general, we would like to clarify that the goal of our study is

to provide a new methodology that can identify coherent regions in
which vegetation responds to climate in a similar way. We model our
problem with a multi-task learning approach that considers the dif-
ferent locations as different tasks and learns the relationship between
the tasks during the learning process. Hence, the climate–vegetation
interaction is simultaneously learned for all locations. The similarity
between the learned relationships (between the tasks) is also discov-
ered during the process. This is the first time (to the best of our
knowledge) that an approach of this kind, which discovers the struc-
ture of the relationships between the different locations at global
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scale, is applied on this setting. As such, we try to avoid the claim
that our hydro-climatic biomes ‘outperform’ other schemes, which
rely on climate and/or vegetation data and not on the modelled in-
teraction between climate and vegetation. It is not really our intent to
outperform these land cover classifications, and the comparison that
is provided against them is to assure that – despite the fact that our
approach does not prescribe any explicit information on land cover
types – comparable regions arise from our data-guided appraisal.

Specific comments

Introduction
1.1) Studying vegetation response to climate variability is and has been the focus
of numerous researches. I know the objective of the authors is to create a new
bio-climatic map, however I can imagine that their work build up on recent de-
velopments in science regarding ecosystem response to climate variability. This
is not well reflected in the introduction. Please add some references to key pa-
pers, studies in the matter. Some suggestions below:
Liu L, Zhang Y, Wu S, Li S, Qin D (2018) Water memory effects and their
impacts on global vegetation productivity and resilience. Sci Rep, 8, 2962.
Seddon AW, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity
of global terrestrial ecosystems to climate variability. Nature, 531, 229-232.
De Keersmaecker W, Lhermitte S, Tits L, Honnay O, Somers B, Coppin P (2015)
A model quantifying global vegetation resistance and resilience to short-term
climate anomalies and their relationship with vegetation cover. Global Ecology
and Biogeography, 24, 539-548.
Nemani RR, Keeling CD, Hashimoto H et al. (2003) Climate-driven increases
in global terrestrial net primary production from 1982 to 1999. Science, 300,
1560-1563

We have included the suggested literature in the revised manuscript.

p2.23: Previous studies rely on spectral information, supervised tech-
niques or clustering approaches, which are applied to observations of
climate variables and/or vegetation characteristics. However, these
classification schemes are not based on the type of response of vegeta-
tion to climate dynamics. Recent advances in understanding vegeta-
tion response to climate variability highlight the importance of reveal-
ing the sensitivity of ecosystems to climate conditions, see Nemani
et al. (2003); De Keersmaecker et al. (2015); Seddon et al. (2016);
Papagiannopoulou et al. (2017); Liu et al. (2018). Therefore, a
step beyond these previous studies is a spatial characterization of the
vegetation dynamics that are induced by climate variability, so that
ecosystems of similar response to climate anomalies can be unveiled.

1.2) The authors claim (p2, l23) that it is the first time that ecoregions are
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being defined based on the analysis of vegetation response to climate variabil-
ity. I agree that the idea is relatively novel and definitely relevant. Yet previous
attempts have been made, notably by combining PCA and clustering techniques
applied to climate and vegetation dataset. See the following reference as an ex-
ample:
Ivits E, Horion S, Fensholt R, Cherlet M (2014) Global Ecosystem Response
Types Derived from the Standardized Precipitation Evapotranspiration Index
and FPAR3g Series. Remote Sensing, 6, 4266-4288.

Thanks for pointing us to this paper. The reference is relevant to
our study and has been referred to in the revised version. The differ-
ences compared to this and other studies have been also highlighted
in the revised version.

p2.34: A previous effort towards detecting regions with similar vegeta-
tion response to climate involves the work of Ivits et al. (2014),where
PCA is performed on the data matrix of drought anomalies and vege-
tation state, and a clustering is applied to the correlation coefficients
based on the spatio-temporal patterns obtained by PCA. However, in
this study, the interaction between climate and vegetation is not ex-
plicitly learned, nor the causes behind vegetation changes are inferred
in a predictor-target framework.

Methodology

1.3) Sect. 2.4. The authors mentioned that the ASO method used here should
not be confused with PCA. It would be useful to develop this statement. Indeed
for both techniques orthonormal vectors are derived from the high dimensional
feature space, creating a new ‘optimized’ low-dimensional feature space. The
authors mentioned that the goal of the ASO method is to detect the PC of
the predictive structure. Knowing that PCA can be performed in two ways
(t-mode and s-mode), the t-mode being the most frequently used by climatolo-
gist to identify recurrent spatial patterns over time, whereas the S-mode allows
for identifying recurrent temporal patterns over space. How would the current
method differ from an extended PCA in S-mode? I can imagine that using
EPCA over a dataset as large as the one used here could be a real challenge
for example. But I would like the authors to elaborate on the pros and cons of
the new method as compared to already established techniques in the climate
research such as PCA/EPCA for example.

In the last paragraph of Sect. 2.4, we mentioned the main differ-
ence between the commonly-used PCA approaches and the proposed
method. However, we have elaborated on the differences and poten-
tial advantages of our approach in the revised manuscript by extend-
ing Sect. 2.4 and adding relevant literature.
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p8.7: The SVD-based ASO method can be interpreted as a dimension-
ality reduction technique applied to the model space (i.e., weights).
It should be stressed here that this method must not be confused with
principal component analysis (PCA), which is usually employed on
the data space (input space of predictors) (Metzger et al., 2012; Ivits
et al., 2014). The goal of the ASO method is to detect the principal
components of the parameter matrix, while PCA identifies the princi-
pal components of the input data X. The goal of the ASO method can
be achieved by considering the models of multiple tasks as samples of
their own distribution. Therefore, these samples can only be formed
by using an MTL approach, in which there is access to the models
from multiple learning tasks. Moreover, in our work, we explicitly
consider the climatic variables as predictors and the vegetation vari-
able as target variable, and we learn the relationship between them in
a supervised setting. As such, the regions that we define rely on the
relationship between climate and vegetation in a prediction setting,
and the clustering is calculated based on similarity of this relation-
ship (i.e. the model coefficients for different locations), see Sect. 2.5
for more details. As such, we learn relationships between climate
and vegetation in a supervised setting, whereas PCA-based methods
(Metzger et al., 2012; Ivits et al., 2014) are fully unsupervised. In
our study the SVD decomposition is used as part of the optimization
algorithm, thus in a supervised setting. In this setting, the model
weights are optimized based on a given training set. Therefore, the
discovered structures are obtained during the training process.

1.4) Sect. 2.5. The authors do not give any name or reference for the clustering
technique used here. Please clarify if a new algorithm has been developed for
the study or if an already developed clustering technique was applied.

In the manuscript, it is mentioned that the clustering technique that
we use is the agglomerative hierarchical clustering (with Euclidean
distance measure). This is a well-known clustering method in Statis-
tics (see Sect. 2.5 and 3.2 of the manuscript). To make it more clear
to the broad audience of GMD, we have mentioned in the revised
manuscript that we used the hierarchical clustering python imple-
mentation of scikit-learn, and added a specific reference.

p10.32: In our application, we use a hierarchical agglomerative clus-
tering approach (Ward, 1963) where the number of clusters is not
predefined.

p17.26: We use the implementation of Python for the L-BFGS opti-
mizer, the singular value decomposition method and the hierarchical
clustering (scikit-learn python library (Pedregosa et al., 2011)).
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1.5) General comment on the use of R2 for assessing the model performance:
at several occasions (in the manuscript and in the supplementary material), the
authors used R2 to quantify the performance of different models (MTL vs. STL,
models with and without Granger causality, inclusion of higher-level features in
the input dataset, final decision on the number of clusters). They generally
conclude that the best model is the one with the highest R2. I agree on the
principle, however looking at the differences between R2 (e.g. figures 3b and
3d, large areas present difference in R2 below 0.1), I wonder whether all these
differences are statistically significant. As based on the analysis of R2, the au-
thors are deciding on the final set of input data, the final design of the MTL
model, and the final number of clusters, I would really urge the need for fur-
ther statistical assessment of the model performances. One first analysis could
simply be to estimate the percentage area of pixels with statistically significant
increase in R2.

The distributions depicted in Figs. 3c and 3f of the manuscript show
that the results of the MTL and STL methods are substantially differ-
ent. Specifically, the distributions of the MTL results are shifted to
the right, meaning that STL is outperformed by MTL at global scale.
This result can be confirmed by any paired statistical test (Demšar,
2006). The results of the Wilcoxon non-parametric statistical test are
included in the revised manuscript.

At pixel level, traditional statistical tests usually have too many
assumptions for our purposes. Alternatively, non-parametric tests
based on resampling, such as permutation or bootstrap tests, cannot
really be applied due to the size of our data set. A proposed solution
is to use the Diebold-Mariano statistical test (Diebold, 2015). This
test has been used to compare the MTL and the STL approaches in
the revised version of the manuscript.

For the final decision about the number of clusters, see our answer
in comment 1.6.

p13.6: The dotted regions in Fig. 3b correspond to areas where the
MTL model significantly outperforms the STL models based on the
Diebold-Mariano statistical test, which compares model predictions
(Diebold, 2015). For the statistical test, we use the False Discovery
Rate (Benjamini and Hochberg, 1995) method to correct the p-values
at level 0.05 due to the multiple-hypothesis testing setting.

p13.16: As it can be observed, the distribution of the R2 scores is
shifted to the right for the MTL, meaning that values are typically
greater than those derived from the STL approach. Moreover, the
skew towards the left in the blue histogram, with values close to zero,
is an indication of the near-zero performance of the STL models in
many locations. The Wilcoxon paired statistical test (Demšar, 2006)
confirms that the results of the two approaches are statistically dif-
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ferent (p-value < 10−9).

p13.27: In this figure it becomes clear that climate dynamics Granger-
cause monthly vegetation anomalies in most regions of the world, and
the ability of the MTL model to detect deterministic relationships is
evidenced. This is also confirmed by the Wilcoxon paired statistical
test (p-value < 10−9).

p13.33: Analogous to Fig. 3c, Fig. 3f compares the distributions
of Granger causality (i.e., the difference in predictive performance
in terms of R2 between the full and the baseline model) between the
STL and MTL approach. Once again, the blue histogram corresponds
to the distribution of Granger causality retrieved using the STL ap-
proach, while the orange corresponds to the results of the MTL ap-
proach. The shift to the right of the orange histogram shows the larger
ability of the MTL model to reveal Granger-causality between climate
and vegetation. Similar to the previous comparison, the Wilcoxon
paired statistical test (Demšar, 2006) confirms that the results of the
two approaches are statistically different (p-value < 10−9).
See Sect. 3.1 and Fig. 3b.

Results

1.6) General comment on the final number of clusters: the fact that the majority
of the Iberian Peninsula is included in the transitional energy driven cluster to-
gether with Ireland, an important part of SE Asia, part of Brasil and Venezuela
Colombia makes me wonder if a higher number of clusters would not be more
appropriate. The authors mentioned already in Figure S2 that the differences
in the predictive performance for h = 6 - 15 are marginal. Further assess-
ments should therefore be performed in order to identify the optimal number
of hydro-climatic biomes. Part of this assessment should be dedicated to the
understanding of the actual drivers (main predictors) for each biome. I believe
providing a solid justification for the naming of the different biomes (by refer-
ring back to the main predictors) would be beneficial for the paper.

We agree that the differences in predictive performance for h = 6-15
are marginal. However, the proposed method is a fully data-driven
approach that is not fine-tuned based on any kind of prior knowledge.
Therefore, the selection of the final value of the h parameter is based
on an objective criterion, i.e. the model performance. As for the re-
sulting map (Fig. 4a), although we are aware that this map may not
fully reflect all particular expectations, we do believe that the spa-
tial distribution broadly captures the expected regimes of climate–
vegetation interactions, as described in the results section. Note as
well that in our early experiments we ran our approach with a differ-
ent number of clusters to visually inspect the resulting regions. The
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regions formed with h values close to 11 are similar to the reported
ones (Fig. 4a of the manuscript). This result proves the robustness of
the proposed method to detect the basic vegetation response types
with respect to climate. The results (for h = 9-12) have been included
as supplementary figures in the revised manuscript.

Concerning the label scheme, we should stress that the names
of the biomes are inspired by the main predictors based on Papa-
giannopoulou et al. (2017). We are afraid that making the labels
reflect these predictors more accurately would make them extremely
complex and rather impractical. So we preferred to keep this label
scheme in the revised manuscript.

p1.16 of Supplement: Therefore, we can conclude that the method gives
robust results as the strongest predictive structures are captured for
the first most important components given by the singular value de-
composition. This conclusion is also confirmed by Fig. S3, where
the maps with 9 (Fig. S3a), 10 (Fig. S3b), 11 (Fig. S3c) and 12
(Fig. S3d) hydro-climatic biomes are depicted. In all figures, the
tropics, the boreal and the arid regions are well-detected. In addition,
sub-tropical regions and transitional ones are also commonly defined
in all of the aforementioned figures. Differences in the borders of
the identified regions are noticed between temperature-driven areas
(e.g., Europe and North America). In transitional water- and energy-
driven regions also there are some differences in the clusters borders.
However, these inconsistencies can be explained by the smoother dif-
ferences between the climatic and environmental conditions in these
areas.
See Fig. S3 of Supplementary material.

1.7) In relation to the previous comment, how does the new global map of
hydro-climatic biomes perform as compared to previous ones (not including in-
formation of vegetation condition and response to climate)? It would be really
interesting if the authors could showcase for one (or more) bio-climatic zone
how the new bio-climatic zone provide a finer, more accurate picture of global
terrestrial biomes by analysis the specific (/sub-local) ecosystem response to
climate variability. To this regard, the bioclimatic map produced by Metzger et
al. (see reference below) could also be of interest for comparison.
Metzger MJ, Bunce RGH, Jongman RHG et al. (2012) A high-resolution bio-
climate map of the world: a unifying framework for global biodiversity research
and monitoring. Global Ecology and Biogeography, 22, 630-638.

Thanks for the relevant reference, it has been cited in the revised
manuscript. However, as we mentioned above, by using our approach
we really aim for detecting regions of consistent behavior in response
to climate (based on the learned weights). That is what we should
evaluate. As such, we cannot really aim for ‘accurate’ biomes. This
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is the reason why we do not compare our result to other data-driven
approaches described in our introductory section that rely on climate
and/or vegetation data (as Metzger et al. (2012)); our study tries to
detect regions based on different criteria (based on the interaction
between climate–vegetation and not on the data). This difference
has been also stressed in the revised manuscript. We also note again
that the comparison that is provided against traditional land classi-
fication schemes is to assure that comparable regions arise from our
data-guided approach, despite these land cover types not being ex-
pecificaly prescribed. See also our answer to the remark 1.3 for the
comparison of PCA-based methods to the proposed approach.

p2.11: Metzger et al. (2012) applied an alternative data-driven ap-
proach on climate and vegetation data that used principal component
analysis (PCA) to discover informative structures in the data. In this
method, the principal components of the initial climate–vegetation
data set were applied as input to a clustering algorithm.

1.8) Figure 4. (c) The Köppen classification divides the world into 5 main
classes and 29 sub-classes. The authors should justify the use of 10 classes in
the figure. This can be very misleading when looking and interpreting the re-
sults. An example: I do not think that the statement p14, l21-23 ‘...the region of
North Asia is coherent in terms of climate, but quite diverse in terms of vegeta-
tion types; the hydro-climatic biomes show a clear distinction from shrublands
(...) to coniferous ...’ holds entirely when looking at the high level details (29
classes) of the Köppen classification. Please justify your choice here.

It is true that the Köppen climate classification scheme consists of
divisions and sub-divisions of the five main climate types. We could
choose to use the divisions of the Köppen classification, which are
basically 12 (if we also divide the tropics further) and not 10 as in
Fig. 4. However, the use of 10 instead of 12 classes will not make
the map look much different. Moreover, from the color scheme used
in Fig. 4, it is clear that there are five main classes. In Fig. 4, we
aim for comparing the regions detected by the proposed method to
the regions based on the Köppen climate classification scheme. Since
the division of 10 climate classes is closer to the number of regions
detected by our approach, we choose this number of regions (10)
on Köppen’s map. Nonetheless, we agree that the statements men-
tioned in the comment sound a bit strong, so we modified them in
the revised version. Again, the comparison to the Köppen and IGBP
maps serves only as a general evaluation or proof of concept for our
hydro-climatic biomes map, since in the end such maps are based on a
different rationale. This has been clarified in the revised manuscript.
We also visualized the distributions of the three classification schemes
(Köppen, IGBP, hydro-climatic biomes) with respect to the mean an-
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nual precipitation and mean temperature. These scatter plots serve
as a kind of “evaluation” for the statement that our hydro-climatic
biomes map combines information from both the Köppen and IGBP
maps.

p16.12: For instance, the region of North Asia is quite coherent in
terms of climate based on the 10 climate classes shown here (Fig.
4c), but quite diverse in terms of vegetation type (Fig. 4d); the
hydro-climatic biomes show a clear distinction in the transition from
shrublands (energy-driven) to coniferous forests (energy- and water-
driven).

p16.21: The comparison to the Köppen-Geiger and IGBP maps serves
only as a general evaluation or proof of concept for our hydro-climatic
biomes map, since in the end such maps are based on a different ra-
tionale, and thus, there is no intent to ‘outperform’ these classifica-
tion schemes. However, it can be observed in this comparison that
the hydro-climatic biomes map in Fig. 4a combine information on
climate and vegetation zones by illustrating regions where vegetation
similarly interacts with the multi-month dynamics in climatic and
environmental conditions. This conclusion is confirmed by the scat-
ter plots in Figs. 4e-g. Figure 4e depicts our hydro-climatic biomes
of Fig. 4a in climate space of mean annual temperature against pre-
cipitation, while Fig. 4f shows the same but for the Köppen-Geiger
climate classes of Fig. 4c. In Fig. 4f, the five climate classes are
well-separated, since their definition is based on these two climatic
variables. On the other hand, Fig. 4g depicts the same information
but for the IGBP map of Fig. 4d. In this figure, savannahs, trop-
ics, and shrublands appear again well clustered. It can be observed
that the scatter plot of Fig. 4e clearly lie between the two previous
classifications in terms of clustering. Boreal biomes correspond to
cold climate classes, the sub-tropical and mid-latitude water-driven
biomes correspond to arid regions, while the transitional biomes cor-
respond to the savannas and croplands.

1.9) Supplementary material S4. The authors indicate that the best-formed
clusters are depicted in FigS4a (hence by the hydro-climatic biomes). I find
very difficult to make any final judgment of the best “depiction” (/detection)
of biomes based on the 2-dimensional graphs provided here.

We improved these figures in the revised manuscript by using the
t-SNE method as dimensionality reduction technique.

p5 of Supplement: See Figs. S5 and S6 of the revised version in the
Supplementary material.
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Technical comments

1.10) P5, l14: please add a reference for the statement: ‘...this kind of mod-
elling is becoming more common in climate science...’

This sentence refers to the previously mentioned studies, which are
described in the same paragraph, and serves as a conclusion that
MTL approaches are used more common recently than in the past in
climate science. We added the relevant references in the sentence.

p6.3: Although this kind of modelling is becoming more common in
climate science (i.e., Subbian and Banerjee (2013); McQuade and
Monteleoni (2013); Gonalves et al. (2017); Xu et al. (2016)), it has
not been combined (to the best of our knowledge) with clustering ap-
proaches in the context of mapping land cover nor climate-vegetation
dynamics.

1.11) P10, l10: please clarify what you mean by multi-month vegetation dy-
namics. Is it seasonal, subseasonal, yearly?

We replaced “multi-month” with “mean monthly” vegetation dynam-
ics.

1.12) P12, l5: please correct ‘Geanger’ with ‘Granger’

Corrected.

1.13) Figure 4. (a) the color code for the clusters sub-tropical energy driven
and mid-latitude temperature driven are too similar. It is difficult to differenti-
ate them. Please adjust the color scheme of the legend.

Adjusted.

1.14) p15, l22: The term ‘turning point’ has only been introduced recently
in ecosystem and climate science so for clarity, you can refer to:
Horion S, Prishchepov AV, Verbesselt J, De Beurs K, Tagesson T, Fensholt
R (2016) Revealing turning points in ecosystem functioning over the Northern
Eurasian agricultural frontier. Glob Chang Biol, 22, 2801-2817.

We included this relevant reference in the revised manuscript.

Response to the comments of Referee#2

This study presents a new approach for the classification of global biomes. The
idea is to focus on the statistical sensitivities of NDVI anomalies to multiple
predictors. I do think that it is important to emphasize the “goal” of classifica-
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tion, and therefore the paper is a step in the right direction.

We would like to thank the reviewer for the constructive feedback and
thorough assessment. Below we provide a point-by-point response to
each comment.

2.1) I have, however, doubts if focusing on NDVI anomalies is the right tar-
get. In particular for tropical ecosystems NDVI does not tell us much about
ecosystem dynamics and the figures show the underlying predictions are indeed
not convincing. Hence, I have some doubts about the novelty that this classi-
fication can offer. Similar as all classical approaches, also this method fails to
reveal the complex spatial patterns in tropical ecosystems. This is why I see
this paper more as a methodological contribution that can actually help future
studies to realize analogous exercises based on different data sets.

We agree with the reviewer that although NDVI is a commonly-used
index, it is known to saturate in tropical ecosystems. As we discussed
in our previous work (Papagiannopoulou et al., 2017), the low predic-
tive power of our model in tropical regions can be explained by the
fact that in these regions, (i) the uncertainty in the data is larger, and
(ii) vegetation might be primarily affected by other factors such as nu-
trient availability (rather than climate). However, with the proposed
data-driven framework, pixels that belong to these tropical regions
are grouped together. This means that the learned weight vectors of
these pixels are similar and thus the clustering algorithm is able to
detect these similarities to conform a coherent biome. Moreover, we
also agree that our work can be seen as a methodological contribu-
tion, since it can be used in different application scenarios or with
an alternative target variable. So, we are willing to explore the ap-
plicability of the method to a different target variable. As such, the
applicability to microwave Vegetation Optical Depth (VOD) anoma-
lies, instead of the NDVI anomalies, has been explored, see Fig. S7 in
the Supplementary material. The result is quite close to the one in
the manuscript (Fig.4a) (with the NDVI anomalies as target variable).

p17.8:Results for microwave vegetation optical depth (VOD) (Liu et
al., 2011) anomalies as alternative to NDVI anomalies are consis-
tent as shown in Supplementary material Fig. S7.

2.2) Overall, the approach of the paper is to stack a series of methods. First,
“Multi-Task Learning” is used to create a statistical prediction model whose
sensitivities (condensed by SVD) later serve as basis for clustering. I applaud
the authors for identifying a machine learning method that seems to capture
spatial relationships. But my question is if there is no corresponding geostatis-
tical approach out there that could be equally used (e.g. a GWR or so) which
deals exactly with such questions? In particular, I believe (but don’t know) that

11



the MTL does not consider the fact that lat-lon grid cells represent different ge-
ographical distances, or how do the authors considered that a global analysis is
executed on a sphere?

As we have described in the manuscript, our approach is purely data-
driven. Therefore, we stress that we do not include any prior knowl-
edge about the distances between the different pixels. On the con-
trary, we let the method learn the relationships between the different
pixels. As such, the method may even group together remote pixels
in which vegetation might have similar response to climate. Other
geostatistical approaches, such as the GWR, assume that neighbor-
ing pixels have a similar behaviour with respect to specific variables.
In these approaches, similarities between the pixels are learned by
defining each time a single pixel as centroid and tuning the parame-
ter of relatedness between this particular pixel and the surrounding
pixels. In our work, we prefer to avoid this kind of neighborhood
assumptions and focus on the discovery of relationships between the
pixels based on the similarity in climate–vegetation interaction. We
are also interested in methods that can be applied on large data sets
with global coverage. However, we included this kind of methods as
relevant work in the introduction of the revised manuscript.

p2.23: Previous studies rely on spectral information, supervised tech-
niques or clustering approaches, which are applied to observations of
climate variables and/or vegetation characteristics. However, these
classification schemes are not based on the type of response of vegeta-
tion to climate dynamics. Recent advances in understanding vegeta-
tion response to climate variability highlight the importance of reveal-
ing the sensitivity of ecosystems to climate conditions, see Nemani
et al. (2003); De Keersmaecker et al. (2015); Seddon et al. (2016);
Papagiannopoulou et al. (2017b); Liu et al. (2018). Therefore, a
step beyond these previous studies is a spatial characterization of the
vegetation dynamics that are induced by climate variability, so that
ecosystems of similar response to climate anomalies can be unveiled.
This objective could be tackled by geostatistical approaches, such as
geographically weighted regression (GWR) (Brunsdon et al., 1996),
which assume that neighboring pixels have a similar behaviour with
respect to specific variables; these methods have already been applied
in studies with a regional focus (Propastin et al., 2008; Zhao et al.,
2015; Georganos et al., 2017).

2.3) The paper is neatly written, but I still had trouble finding my way through
the paper. One aspect is that it is difficult to follow the paper without knowing
the authors previous papers. In addition, I spent most of my time understand-
ing Multi Task Learning. In particular section 2.4. was hard to understand. At
this crucial point I would ask the authors to consider rewriting the paper in a
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way that can be understood intuitively by environmental scientists who are not
familiar with the method. Likewise the link to clustering is a bit opaque. What
is a “hierarchical agglomerative clustering approach”? Etc.

We expanded Section 2.4 to make the method more intuitive for the
broad audience of GMD. Specifically, we provided additional explana-
tions for the notation used in our model. For the clustering technique
that we used, see our answer to remark 1.4.

p9.9: To clarify the notation used in the ASO method, we intuitively
explain the symbolization of the method in relation to our specific set-
ting; the problem of detecting locations with similar climate–vegetation
dynamics. As mentioned above (Sect. 2.2 and 2.3), the input features
that constitute the X(l) ∈ RN×d matrix consist of the climatic predictor
variables, i.e., the extreme indices, lagged variables, etc., calculated
based on raw climatic time series of a certain location l. The dimen-
sions N and d correspond to the number of observations, i.e., the
length of the time series and the number of predictor variables, re-
spectively. The target variable for a particular location l, which is the
NDVI anomalies, is symbolized with y(l) ∈ RN . As such, an observa-
tion of a certain location l at a particular timestamp i is denoted as

a pair (x
(l)
i , y

(l)
i ). The goal of the ASO method is to learn the weight

matrix [w(1),w(2), ...,w(L)], i.e., a single weight vector w(l) for each lo-
cation l. This weight vector w(l) is able to capture the relationship
between the predictor variables and the target, i.e., the climatic vari-
ables and the NDVI anomalies. Therefore, climatic predictors that
are more important for vegetation anomalies correspond to higher
absolute values in the weight vector w(l). As a result, locations with
similar weights are considered as regions where vegetation responds
to climate in a similar way. As described in a previous paragraph
of this section, the ASO method assumes that the weight vectors w(l)

consist of two parts the u(l) and the v(l)Θ. These two parts are learned
simultaneously in Algorithm 1 in an alternating fashion. The first
part, i.e., the u(l) ∈ Rd belongs to the high-dimensional space, the ini-
tial one, which is equal to d. This part expresses the location-specific
part of the weight vector, i.e., the deviation of each location’s weight
vector from the weights learned in a lower dimensional space. The
second part consists of the matrix Θ ∈ Rh×d that represents the map
from the initial dimension d to the lower dimension h and the weight
vector v(l) ∈ Rh. The map matrix Θ is common for all the locations
(tasks) and can be learned across them due to the MTL approach.
The weight vector v(l) represents the projection of the initial weights
to a low-dimensional space h. Intuitively, this second part of the
weight decomposition expresses the coarsest and most important part
of weights, since it detects the most important structures through the
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map matrix Θ. The matrix V = [v(1), ...,v(L)]T ∈ RL×h denotes the
representation of the models in the low-dimensional space h for the
L locations.

2.4) What irritated me about the results is that the prediction method does
not manage to explain more than 40% of the variance (why else would the scale
in Fig. 3 a otherwise be cut off at ≥ 0.4?). This is actually a bit disappointing
and suggests that the regression model was not the right choice, or?

In our study, the seasonal cycle from the NDVI time series is re-
moved. Therefore, the task of predicting the NDVI anomalies is
more difficult than just predicting the raw NDVI time series. This
is due to the fact that the presence of autocorrelation in the NDVI
anomalies time series is much lower. Note that if we target the raw
NDVI time series (which includes the seasonal component), the R2

is close to 1 in most of the regions (Papagiannopoulou et al., 2017).
In addition, it is worth noting that there are other factors – such
as fires, harvesting, etc. – that affect vegetation dynamics but are
not included in the data set. Therefore, we should be aware that we
focus on explaining the variance of the NDVI anomalies, taking into
account only climatic variables.

Minor remarks:

2.5) The introduction does not provide a systematic overview of alternative
approaches. Rather, we find here a rather random selection of climate and land
cover classifications and the wording is not always correct. For example, the
paper speaks of “big data” approaches, but I did not find any of the referenced
studies really dealing with big data topics (“volume”, “diversity”, “speed”, ...).
I think we are talking here about (sometimes semi-heuristic), but essentially
classical data exploration and machine learning methods. So, I think it would
be nice to revise this part a bit to have a smooth start.

In general, we would like to stress that the goal of our study is to
provide a new data-driven methodology that can identify coherent
regions in which vegetation responds to climate in a similar way. To
the best of our knowledge, there are no other works that study this
particular problem at global scale, with the arguable exception of the
article pointed to by Referee#1 (Ivits et al., 2014). In addition, in
the manuscript, we describe the most naive approach that one could
follow by using single-task learning techniques (and by learning one
model per pixel). In the Introduction, we provide an overview of the
most related works to our study that indeed use machine learning
methods and/or prior knowledge. We think that our work builds
upon and goes one step further from previous efforts, such as the
ones described in the Introduction, since it combines information
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from climate and vegetation and models the relationship between
them. However, we added some relevant literature in the introduc-
tory section, see our answers to remarks 1.2 and 2.2. In addition, the
term “big-data” has been replaced by “data-driven” in the revised
manuscript.

p2.7: As such, data-driven methods have become popular in their use
for land cover and climate classifications.

2.6) The paper is full of shortcuts such as “detrended seasonal NDVI anoma-
lies”, which are not as clear as they appear at first glance. I can think of a large
number of possibilities for robustly estimating (linear/non-linear) trends and a
further variety of methods for estimating seasonal cycles. It would be nice if
such statements were more precise.

We agree that these terms are not clearly described in the manuscript,
and understand that the article should stand alone without the need
of prior knowledge with regards to our previous work. We added ad-
ditional statements to briefly describe this terminology in the revised
manuscript.

p3.28: The target variable of our machine-learning framework is the
de-trended seasonal NDVI anomalies. These are calculated through a
simple linear de-trending and a multi-year average for each month of
the year to capture the seasonal expectation see Papagiannopoulou
et al. (2017a) for more details. All other data sets, describing the
multi-month local climate variability over the three-decade period, are
used as predictor variables.
In addition, a wide range of ‘high-level features’ have been hand-
crafted from the raw time series of predictors, and used as well as
predictor variables. As such, our set of predictive features includes
not just the raw data time series of each climate/environmental vari-
able, but also: seasonal anomalies, de-trended seasonal anomalies,
lagged variables, past cumulative variables, and extreme indices see
Papagiannopoulou et al. (2017a). The cumulative variables capture
the climatic conditions up to present time; an example would be the
precipitation of the last (e.g.) three months. Extreme indices include
maximum/minimum values, consecutive dry days, values for specific
percentiles, etc.

2.7) The same comment applies to the selection of predictors e.g. seasonal
anomalies, detrended seasonal anomalies, time delayed variables, and cumula-
tive variables etc. look like a very arbitrary selection of predictors. In a paper
that has a strong affinity to data-driven methods, I would expect a more formal
variable selection following a clearly defined cost function. Maybe this is too
late now, but still one question can be answered: why are these predictors all
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regarded as “non-linear”? In most cases, they read like fairly linear transforma-
tions (maybe with the exception of cumulative variables).

We refer the reviewer to our previous answer (2.6) for the first part of
the comment. In addition, we would like to stress that our choice to
use this set of predictors is based on the previous literature, as it has
been analytically described in Papagiannopoulou et al. (2017). The
constructed predictors are regarded as “non-linear”, because their
derivation from the raw data is not linear (see e.g. calculation of ex-
treme indices). This has also been clarified in the revised manuscript.

p4.4: The use of these non-linear features (non-linear due to the way
that have been calculated) greatly improves causal inference and helps
characterise non-linear relationships between climate and vegetation
dynamics, as shown in our recent work (Papagiannopoulou et al.,
2017a).
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Abstract. The most widely-used global land cover and climate classifications are based on vegetation characteristics and/or

climatic conditions derived from observational data. However, these classification schemes do not directly stem from the

:::::::::::
characteristic interaction between the local climate and the biotic environment. In this work, we model the dynamic inter-

play between vegetation and local climate in order to delineate ecoregions that share a coherent response to hydro-climate

variability. Our novel framework is based on a multi-task learning approach that discovers the spatial relationships among5

different locations by learning a low-dimensional representation of predictive structures. This low-dimensional representation

is combined with a clustering algorithm that yields a classification of biomes with coherent behaviour. Experimental results

using global observation-based data sets indicate that, without the need to prescribe any land cover information, our method is

able to identify
::
the

::::::::
identified

:
regions of coherent climate-vegetation interactions that agree well with the expectations derived

from traditional global land cover maps. The resulting global ‘hydro-climatic biomes’ can be used to analyse the anomalous10

behaviour of specific ecosystems in response to climate extremes and to benchmark climate-vegetation interactions in Earth

system models.

1 Introduction

Approaches which aim to define regions with similar biophysical characteristics are commonly known as land cover classi-

fication schemes, and are widely used in multiple geoscientific disciplines. Land cover classifications are crucial to enable a15

better understanding of the spatial variability of the land surface, which can be a first and necessary step towards understand-

ing complex spatio-temporal interactions among different environmental variables (Feddema et al., 2005). Traditional land

use/land cover (change) classifications are typically based on spectral information from the land-surface coming from satellites

(Loveland and Belward, 1997; Congalton et al., 2014). Amongst the most well-known and widely used are the International

Geosphere-Biosphere Program DISCover Global 1km Land Cover classification (IGBP-DIS) (Loveland et al., 2000), Global20

Land Cover 2000 (Bartholomé and Belward, 2005) and more recently the land cover map developed within the European Space

Agency’s Climate Change Initiative (ESA CCI) (Poulter et al., 2015; Li et al., 2018). Similarly, climate classification schemes

cluster regions with similar climate conditions and are also widely used to stratify geographical regions with different climatic

expectations (Baker et al., 2009; Brugger and Rubel, 2013; Garcia et al., 2014; Herrando-Pérez et al., 2014). Here, the most

well-known
:::
best

::::::
known

:
is probably the one from Köppen (1936), the Köppen-Geiger climate classification

::::::::::::
(Köppen, 1936),25
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which has been modified many times
::
in

:::::
recent

:::::::
decades

:
(e.g. Thornthwaite, 1943; Trewartha and Horn, 1980; Feddema, 2005;

Kottek et al., 2006; Peel et al., 2007). Yet to date, dynamics in these climate regimes are used as a diagnostic of climate change

by exploring their shifting boundaries (e.g. Diaz and Eischeid, 2007; Chen and Chen, 2013; Zhang and Yan, 2014a, b; Spinoni

et al., 2015; Chan and Wu, 2015) or as a means to predict future climatic zone distributions based on climate model data
:::::
using

::::::
climate

:::::::::
projections (e.g. Hanf et al., 2012; Gallardo et al., 2013; Mahlstein et al., 2013).5

In recent years, the exponential advance in Earth observation research has made climate science one of the most data-rich

scientific domains (Faghmous and Kumar, 2014). As such, big-data
:::::::::
data-driven

:
methods have become popular in their use

for land cover and climate classifications. For instance, Lund and Li (2009) proposed a new distance measure to define sea-

sonal means and autocorrelations of climatic time series from weather stations, and grouped the stations using a hierarchical10

agglomerative clustering. Zscheischler et al. (2012) also stressed the importance of the unsupervised methods for tasks such

as the classification of the land surface into zones with different climate and vegetation characteristics.
::::::::::::::::::
Metzger et al. (2012)

::::::
applied

::
an

:::::::::
alternative

::::::::::
data-driven

::::::::
approach

:::
on

::::::
climate

::::
and

:::::::::
vegetation

:::
data

::::
that

::::
used

::::::::
principal

::::::::::
component

:::::::
analysis

::::::
(PCA)

::
to

:::::::
discover

::::::::::
informative

::::::::
structures

::
in
::::

the
::::
data.

:::
In

:::
this

:::::::
method,

::::
the

:::::::
principal

:::::::::::
components

::
of

:::
the

::::::
initial

::::::::::::::::
climate–vegetation

::::
data

::
set

:::::
were

::::::
applied

:::
as

::::
input

:::
to

:
a
:::::::::
clustering

:::::::::
algorithm. Interesting results in the same direction can be attributed to Netzel and15

Stepinski (2016, 2017), who used distance measures of climatic variables, such as dynamic time warping, coming from the

time series analysis in a data mining approach. In addition, temporal change in climate zones has been explored in the same

context via clustering algorithms, such as k-means (Zhang and Yan, 2014a, b). Finally, data-driven methods have been also

applied for the biome classification task, which has been commonly treated as an object recognition problem using remote

sensing data. In this case, techniques coming from computer vision are frequently applied (Mekhalfi et al., 2015; Chen and20

Tian, 2015). Following the progress in computer science, neural networks and deep learning approaches are also becoming pop-

ular for this kind of tasks in recent years, making the whole procedure even more automated (Scott et al., 2017; Xu et al., 2018).

All the previous
:::::::
Previous

:
studies rely on spectral information, supervised techniques or clustering approaches, which are ap-

plied to observations of climate variables and/or vegetation characteristics. However, these classification schemes are not based25

on the type of response of vegetation to climate dynamics.
::::::
Recent

::::::::
advances

::
in

::::::::::::
understanding

::::::::
vegetation

::::::::
response

::
to

:::::::
climate

::::::::
variability

::::::::
highlight

:::
the

:::::::::
importance

::
of

::::::::
revealing

:::
the

::::::::
sensitivity

::
of

::::::::::
ecosystems

::
to

::::::
climate

:::::::::
conditions,

:::
see

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Nemani et al. (2003); De Keersmaecker et al. (2015); Seddon et al. (2016); Papagiannopoulou et al. (2017b); Liu et al. (2018)

:
.
::::::::
Therefore,

::
a
::::
step

::::::
beyond

:::::
these

:::::::
previous

:::::::
studies

:
is
::

a
::::::
spatial

:::::::::::::
characterization

::
of

:::
the

:::::::::
vegetation

:::::::::
dynamics

:::
that

:::
are

:::::::
induced

:::
by

::::::
climate

:::::::::
variability,

::
so

::::
that

:::::::::
ecosystems

::
of

::::::
similar

::::::::
response

::
to

::::::
climate

::::::::
anomalies

::::
can

::
be

::::::::
unveiled.

::::
This

:::::::
objective

:::::
could

:::
be

::::::
tackled

::
by

:::::::::::
geostatistical

::::::::::
approaches,

::::
such

:::
as

::::::::::::
geographically

::::::::
weighted

:::::::::
regression

:::::::
(GWR)

:::::::::::::::::::
(Brunsdon et al., 1996),

::::::
which

::::::
assume

::::
that30

::::::::::
neighboring

:::::
pixels

:::::
have

:
a
::::::
similar

:::::::::
behaviour

::::
with

:::::::
respect

::
to

:::::::
specific

::::::::
variables;

:::::
these

:::::::
methods

:::::
have

::::::
already

:::::
been

::::::
applied

:::
in

::::::
studies

::::
with

:
a
:::::::
regional

:::::
focus

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Propastin et al., 2008; Zhao et al., 2015; Georganos et al., 2017).

::::::::
However,

:::::
here,

:::
we

:::
aim

::
to

:::::
avoid

:::::::::::
neighborhood

::::::::::
assumptions

::::
and

:::::
focus

::
on

:::
the

::::::::
discovery

::
of

:::::::::::
relationships

:::::::
between

:::::
pixels

:::::
based

:::
on

:::
the

::::::::
similarity

::
in

::::
their

::::::::
modelled

:::::::::::::::
climate–vegetation

::::::::::
interaction,

:::::::::::::
acknowledging

::::
that

:::::
global

::::::::::
ecosystems

::::
may

::::::::::
experience

::::::
similar

::::::::::
interactions

::::
even

::
if
:::::

they
:::
are

:::::::
remotely

:::::::
located

::::
from

:::::
each

:::::
other.

::
A

::::::::
previous

:::::
effort

:::::::
towards

::::::::
detecting

::::::
regions

:::::
with

::::::
similar

:::::::::
vegetation

::::::::
response

::
to

:::::::
climate35
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:::::::
involves

:::
the

::::
work

::
of

:::::::::::::::
Ivits et al. (2014),

:::::
where

:::::
PCA

::
is

::::::::
performed

:::
on

:::
the

::::
data

:::::
matrix

:::
of

::::::
drought

:::::::::
anomalies

:::
and

:::::::::
vegetation

:::::
state,

:::
and

:
a
:::::::::
clustering

::
is

::::::
applied

::
to

:::
the

:::::::::
correlation

::::::::::
coefficients

:::::
based

:::
on

:::
the

:::::::::::::
spatio-temporal

:::::::
patterns

:::::::
obtained

:::
by

::::
PCA.

:::::::::
However,

::
in

:::
this

:::::
study,

:::
the

:::::::::
interaction

::::::::
between

::::::
climate

::::
and

::::::::
vegetation

::
is
::::

not
::::::::
explicitly

:::::::
learned,

:::
nor

:::
the

::::::
causes

::::::
behind

:::::::::
vegetation

:::::::
changes

::
are

:::::::
inferred

::
in

::
a
:::::::::::::
predictor–target

::::::::::
framework.

Here, we introduce for the first time (to the best of our knowledge) a data-driven approach that aims to quantify the response5

of vegetation to local climate variables
:
in

::
a
:::::::::
supervised

::::::
setting

::
at

:
a
::::::
global

::::
scale, and use this information to define ecoregions

of consistent behaviour against hydro-climatic conditions. In other words, the emerging regions are areas
:::::::::
variability.

::
In

::::::
simple

:::::
terms,

:::
our

::::::::::
framework

::::::
results

::
in

::::::
regions

:
where vegetation responds similarly to the dynamics in temperature, soil moisture,

incoming radiation, etc. The proposed framework relies on predictive modelling and clustering techniques and builds further

upon recent work in which we investigated the
:::::
global response of vegetation to climate for each global 1-degree pixel separately10

by applying a machine learning algorithm
::::
local

::::::
climate

::
by

::::::::
applying

:::::::
machine

:::::::
learning

:::::::::
algorithms

::
in

:
a
:::::::
Granger

::::::::
causality

::::::
setting

(Papagiannopoulou et al., 2017a, b). Since here we aim to exploit the relationships from different pixels ,
::::::
between

::::::::
different

:::::
pixels

:
–
::::::
instead

:::
of

::::::::
modelling

::::
each

:::::
pixel

::::::::
separately

:::
as

::
in

:::
our

:::::::
previous

:::::
work

:
–
:
we propose the use of multi-task learning (MTL)

methods (Caruana, 1997). These methods are commonly used for solving multiple related tasks: considering as one task the pre-

diction of vegetation in one location and as multiple tasks the prediction of vegetation in multiple locations, we can model our15

problem by using an MTL approach. As such, we first
:::::
First,

::
we

:
apply an MTL approach which tries to unveil low-dimensional

common predictive structures and exploit the relation
::::::::::
relationships

:
among them. Second, we employ a clustering technique on

these informative structureswhich are constructed using the MTL approach ,
::::::
which

::
is

::::::
applied

:::
on

:
a
::::::::::::::::
lower-dimensional

:::::
space

(Sect. 2). This clustering technique is applied on a lower-dimensional space, yielding robust results; this
::::::
known

::
as

:::::::
spectral

::::::::
clustering

::::::::::::::
(Ng et al., 2002),

:::
and

:
is one of the core assets of the method which is known as spectral clustering (Ng et al., 2002)20

:::
our

:::::::::
framework. We refer to these coherent vegetation-climate regions

::
the

::::::::
emergent

:::::::
regions

::
of

::::::::
coherent

::::::::::::::::
vegetation–climate

::::::::
behaviour as hydro-climatic biomes (Sect. 3).

2 Methodology

2.1 Data sets

We have built a large database of global climate and vegetation data that will be used in the context of our framework. These25

data are described in detail in Papagiannopoulou et al. (2017a) and are mostly based on satellite and/or in situ observations.

The database spans a 30-year period (1981-2010) at monthly temporal resolution and 1◦ latitude-longitude spatial resolution.

The most important climatic and environmental drivers of vegetation are includedin this database, namely: (i) land surface

temperature, (ii) near-surface air temperature, (iii) longwave/shortwave surface radiative fluxes, (iv) precipitation, (v) snow

water equivalent, and (vi) soil moisture. To characterise vegetation, we use the Global Inventory Modeling
::::::::
Modelling

:
and30

Mapping Studies (GIMMS) NDVI 3g data set (Tucker et al., 2005). The target variable of our machine-learning framework

is the de-trended seasonal NDVI anomaliescalculated as in Papagiannopoulou et al. (2017a) , while all
:
.
:::::
These

:::
are

:::::::::
calculated

::::::
through

::
a

::::::
simple

:::::
linear

:::::::::
de-trending

::::
and

:
a
:::::::::
multi-year

:::::::
average

:::
for

::::
each

:::::
month

:::
of

:::
the

::::
year

::
to

::::::
capture

:::
the

:::::::
seasonal

::::::::::
expectation

::
–

3



:::
see

:::::::::::::::::::::::::::
Papagiannopoulou et al. (2017a)

::
for

:::::
more

::::::
details.

:::
All

:
other data sets

:
,
:::::::::
describing

:::
the

::::::::::
multi-month

:::::
local

::::::
climate

:::::::::
variability

:::
over

:::
the

:::::::::::
three-decade

::::::
period,

:
are used as predictor variables.

In addition, a series
::::
wide

:::::
range

:
of ‘high-level features’ have been hand-crafted from the raw time series of predictors, and

used as well as predictor variables. As such, our set of predictive features includes not just the raw data time series of each

climate/environmental variable, but also: seasonal anomalies, de-trended seasonal anomalies, lagged variables, past cumula-5

tive variables, and extreme indices -–
:
–
:
see Papagiannopoulou et al. (2017a). The

:::::::::
cumulative

::::::::
variables

:::::::
capture

:::
the

:::::::
climatic

::::::::
conditions

:::
up

::
to

::::::
present

:::::
time;

:::
an

:::::::
example

:::::
would

:::
be

:::
the

:::::::::::
precipitation

::
of

:::
the

:::
last

:::::
(e.g.)

:::::
three

:::::::
months.

:::::::
Extreme

::::::
indices

:::::::
include

::::::::::::::::
maximum/minimum

:::::::
values,

::::::::::
consecutive

:::
dry

:::::
days,

::::::
values

:::
for

:::::::
specific

::::::::::
percentiles,

:::
etc.

::::
The

:
use of these non-linear features

greatly improved
:::::::::
(non-linear

:::
due

:::
to

::
the

::::
way

::::
that

::::
have

::::
been

::::::::::
calculated)

::::::
greatly

::::::::
improves causal inference and help

::::
helps

:
char-

acterise non-linear relationships between climate and vegetation dynamics
:
,
::
as

::::::
shown in our recent work (Papagiannopoulou10

et al., 2017a). For a further discussion about the importance of the
:::
this

:
higher-level

::::::
feature

:
representation adopted in our

framework, we refer the reader to Sect. S1 of the Supplementary material.

2.2 Pixel-based approach: single-task learning

In our study, we use information on climate and vegetation variables at specific time points and locations. Formally, we

consider a spatio-temporal data set D = {(X(1),y(1)),(X(2),y(2)), ...,(X(L),y(L))}, with L being the number of different15

locations and (X(l),y(l))
:::::::::
(X(l),y(l))

:
the tuple of the predictor variables and the target variable of each location l. We denote

D(l) = {(x(l)
i ,y

(l)
i )}i=1,...,N the observations of a location l while the input feature vectors

:::
(i.e.

:::
the

:::
set

::
of

:::::::
climatic

:::::::::
variables)

are denoted as a matrix X(l) = [x
(l)
1 , ...,x

(l)
N ]T and the corresponding target values as y(l) = [y

(l)
1 , ...,y

(l)
N ]T .

:::
(i.e.,

:::
the

::::::
NDVI

:::::::::
anomalies).

:
Specifically, X(l) ∈ RN×d is the matrix of the predictor variables with d being the number of predictors, and

y(l) ∈ RN the response time series (i.e., NDVI seasonal de-trended anomalies), where N denotes the number of discrete time20

stamps, i.e., the length of the time series. In this setting, a straightforward approach is to tackle each regression problem in

each location l separately, i.e., by independently training one model for each location (Papagiannopoulou et al., 2017a). That

way, for every pixel only the data of that particular location l is used ((X(l),y(l)), l = 1, ...,L), not attempting to utilize the data

from other regions where the target variable might have a similar response to the predictors. As such, we

:::
We can start by defining regions of similar climate-vegetation

::::::::::::::::
climate–vegetation dynamics with the most naive approach:25

the relationship between climate and vegetation can be caught by the weights of a simple regression model, i.e., the regression

coefficients of the predictor variables. Specifically, if one defines a simple linear regression model for a location l, the model

for the lth
::
lth location is given by f (l)(x(l)

i ) = w(l)x
(l)
i , with x

(l)
i being the input data (i.e., one observation) and w(l) being

the weight vector learned for particular location l, which describes the importance of each input variable for the target – see

Fig. 1a. Even though one can assume that these weight vectors can be similar for regions in which the response of vegetation30

to climate is similar, the information from these other regions is not used in the prediction .
:::
(i.e.

:::::
each

::::::::
regression

::
is
:::::::
applied

::
at

::::
each

::::::::
individual

:::::
pixel

::::::::::
separately). This is despite the fact that these locations could be

:::::::::::
subsequently grouped (e.g., based on a

similarity measure
::
of

::::
their

::::::
weight

::::::
vectors) into wider regions of particular climate-vegetation dynamics, i. e., regions in which

vegetation responds to climate in a similar way. Note
:::
that

::::
one

::::
may

::::::
assume

::::
that

:::::
share

:::::::
common

::::::::::::::::
climate–vegetation

:::::::::
dynamics.
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(a) (b)

Figure 1. Graphical representation of two learning approaches. (a) A single-task learning approach in which each pixel is treated separately.

For each pixel l there is an input data set X(l) ∈ RN×d, with N being the number of observations and d being the number of predictors, and

a target vector y(l) ∈ RN . The vector w(l) ∈ Rd represents the weight vector learned by the model. (b) A multi-task learning approach in

which the models of L tasks are simultaneously learned. The input of the method is the data sets X(1),X(2), ...,X(L) of all locations (i.e., all

global land pixels). The corresponding target vectors are denoted with y(1),y(2), ...,y(L). The weight matrix [w(1),w(2), ...,w(L)] ∈ Rd×L

contains the weight vectors for all tasks.

::::
Note

::::
also that the information captured by each weight vector w(l) should be sufficient which means that it is necessary for

the models to have a good generalization performance.

2.3 Exploiting spatial relationships: multi-task learning

Unlike
::
the

:
single-task learning models

::::::::
described

:::::
above,

:
that only take the data of each particular location into account, in MTL5

the model has access to shared
::::
MTL

:::::::
models

::::::
extract information of data sets with similar characteristics from other locations.

As such, it
:::
they

:
can be expected to generalize better and give a high

:::::
higher predictive performance on unseen data. Specifically,

by using the MTL approach, the generalization of the model improves if the dataset of each task is expanded by observations

from highly related tasks. This is crucial, especially in cases where the number of training instances per task is limited. The

basic idea that underlines the MTL modelling approach is the learning of a separate model for each task and not a unique model10

trained on a concatenated set of observations of all tasks. Note that in our spatio-temporal data sets, each location can be seen

as a different task, and that neighbouring (or distant) locations with similar climate-vegetation
:::::::::::::::
climate–vegetation interactions

will tend to have similar (yet not identical) behaviour. In light of this observation, MTL seems to be a quite natural modelling

approach to explore the interaction between climate and vegetation in different locations.

The idea of MTL is not new (Baxter, 1997; Caruana, 1997; Baxter et al., 2000), and it has been applied in many machine-15

learning applications in medical sciences (Bi et al., 2008; Zhang et al., 2012) and computer vision (Zhang et al., 2014). It

has also been used in climate science to improve the way multiple Earth System Models (ESMs) outputs are combined,
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by treating the locations as different tasks
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Subbian and Banerjee, 2013; McQuade and Monteleoni, 2013). In these studies,

the idea is that in neighbouring locations (pixels which are close to each other), similar ESMs tend to have similar perfor-

mance (Subbian and Banerjee, 2013; McQuade and Monteleoni, 2013). A recent study proposed a hierarchy of tasks, in which

at a first level, tasks of each location are trained into an MTL setting, while at a second level, tasks of each variable are sharing

information (Gonçalves et al., 2017). In addition, for modelling spatio-temporal data, Xu et al. (2016) introduced an MTL5

framework in which local models share a common representation based on the spatial autocorrelation. Although this kind of

modelling is becoming more common in climate science ,
:::
(i.e.,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Subbian and Banerjee (2013); McQuade and Monteleoni (2013); Gonçalves et al. (2017); Xu et al. (2016)

:
),
:
it has not been combined (to the best of our knowledge) with clustering approaches in the context of mapping land cover nor

climate-vegetation
:::::::::::::::
climate–vegetation

:
dynamics.

In this work, we focus on MTL methods that can discover the relationship between different tasks (locations) and recover10

strong predictive structures of the vegetation response to climate. These are then used to conform hydro-climatic biomes,

i.e., regions of coherent vegetation behaviour with respect to climate variability (see Sect. 3.3). To this end, we use the same

notation as before by denoting X(l) ∈ RN×d as input data matrix of the predictor variables, y(l) ∈ RN as the target vector

for each location l and w(l) ∈ Rd in which each value corresponds to a weight. We define as [w(1),w(2), ...,w(L)] ∈ Rd×L

the weight matrix of all locations such that the w(l) vector is the lth
::
lth

:
column of the [w(1),w(2), ...,w(L)] matrix -

:
– see15

a graphical representation of the notation in Fig. 1b. Given a loss function L (e.g., the squared error loss), the multi-task

minimization problem is formulated as:

min
w(1),..,w(L)

L∑
l=1

N∑
i=1

L(w(l)x
(l)
i ,y

(l)
i ) + Ω(w(1), ...,w(L)) (1)

where Ω(w(1), ...,w(L)) is a factor which controls the relatedness among the tasks. In our setting, we assume that there is

no prior knowledge about the relationship of the tasks (locations) and we aim to apply a method that can discover these20

relationships.

In literature, there are many MTL methods that are trying to do two things simultaneously: learn a weight matrix [w(1),w(2),

...,w(L)] and another matrix which captures the task relationships simultaneously (Ando and Zhang, 2005; Chen et al., 2009;

Zhou et al., 2011). In real applications, there are scenarios where the tasks of an MTL problem follow a specific structure,

i.e., some tasks are more related whereas some others are unrelated. In order to identify this group structure, researchers have25

developed various methods which have been referred to as clustered multi-task learning (CMTL) methods (Zhou et al., 2011).

For instance, Xue et al. (2007) proposed a method which uses a Dirichlet process-based statistical model to identify similarities

between related tasks, while Jacob et al. (2009) introduced a framework which identifies groups of tasks and performs the

learning at once. In the same direction, Wang et al. (2009) used an inter-task regularization term to take into consideration

tasks which have been grouped in the same cluster in a semi-supervised setting. More recently, Barzilai and Crammer (2015)30

suggested a method which assigns explicitly each task to a specific cluster, building a single model for each task by using linear

classifiers which are combinations of some basis. An alternative approach has been proposed by Zhou et al. (2011) in which

the structure of the task relatedness is unknown and is learned during the training phase. Interestingly, when case-specific
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conditions are fulfilled, this method is equivalent to the method by Ando and Zhang (2005), known as the Alternative Structure

Optimization (ASO), which belongs to the category of MTL methods that assume the existence of a shared low-dimensional

representation among the tasks. The name of the method indicates that an alternating optimization procedure is involved5

during the learning process since the weight matrix and the matrix which captures the shared low-dimensional representation

are learned simultaneously. Typically, in these procedures, the optimization of each part is separately performed while the

other part remains fixed. In our work, we apply the ASO method due to its simplicity and the fact that it does not need a lot of

iterations to capture the information about the task relatedness that is needed. This is very important in our applicationbecause

the
:::::
crucial

:::
for

:::
our

::::::::::
application,

:::::
since

:::
the

::::
large

:
size of the global database we use (Papagiannopoulou et al., 2017a) , puts severe10

limitations to the choice of method. Another aspect is that by learning this low-dimensional representation we can have a visual

inspection of the "most predictive common structures" for each region. In the following section we explain in detail the ASO

method used in our setting.

2.4 Learning predictive structures from multiple tasks

The ASO algorithm proposed by Ando and Zhang (2005) learns common predictive structures from multiple related tasks that15

are assumed to share a low-dimensional feature space. Specifically, by applying this method, one learns one model function

for each individual task and the learned weight vector is decomposed into two parts: (a) a high-dimensional space, and (b) a

shared low-dimensional space based on a feature map learned during the process. This feature map is a matrix which serves

as a link between a high-dimensional space and a low-dimensional space. In our case, L predictor functions {f (l)}Ll=1 are

simultaneously learned by exploiting the shared feature space that underlines all tasks. This low-dimensional feature space is20

expressed in a simple linear form of a low-dimensional feature map Θ across the L tasks. Mathematically, the function f (l)

can be written as:

f (l)(x) = w(l)x
(l)
i = u(l)x

(l)
i +v(l)Θx

(l)
i (2)

with Θ ∈ Rh×d being a parameter matrix with orthonormal row vectors, i.e., ΘΘT = I, where h is the dimensionality of

the shared feature space, and w(l),u(l) and v(l) are the weight vectors for the full feature space, the high-dimensional one25

(initial dimension d), and the shared low-dimensional one (based on the h parameter), respectively. As mentioned before, the

ASO method is equivalent to the CMTL method (Zhou et al., 2011), under a specific condition: that the parameter k, which

symbolizes the number of clusters in the CMTL approach, is equal to the parameter h of the ASO method. This condition

determines the number of clusters that should be used in the clustering phase of our framework, because the objective of ASO

is optimized based on the value of the parameter h. We reconsider this equality
:::::::::
equivalence

:
in Sect. 3.2 where we discuss about30

the number of clusters that should be identified based on our analysis.

Formally, ASO can be formulated as the following optimization problem:

min
{w(l),v(1)},ΘΘT=I

L∑
l=1

( N∑
i=1

L(w(l)x
(l)
i ,y

(l)
i ) +λ(l)

∥∥∥u(l)
∥∥∥2
2

)
(3)
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Figure 2. Graphical representation of the ASO method. The input of the method is the data sets X(1),X(2), ...,X(L) of all locations. The

corresponding target vectors are denoted with y(1),y(2), ...,y(L). The weight vector w(l) ∈ Rd of the full space is decomposed in two

parts; to the weight vector u(l) ∈ Rd of the high-dimensional space and the weight vector v(l) ∈ Rh of the low-dimensional one. The low-

dimensional feature map ΘT ∈ Rd×h is common for all the tasks.

with
∥∥u(l)

∥∥2
2

being the regularization term (u(l) = w(l)−ΘTv(l)) which
:::
that controls the task relatedness among L tasks,

(x
(l)
i ,y

(l)
i ) being the input vector and the corresponding target value of the ith

:
ith

:
observation in a particular location l, and

λ(l) being a pre-defined parameter – see Fig. 2 for the graphical representation of the notation.
:::::
During

:::
the

:::::::
learning

:::::::
process

:::
the5

:::::
weight

::::::
matrix

::::::::::::::::::
[w(1),w(2), ...,w(L)]

:::
and

:::
the

::::::
matrix

:::
Θ,

:::::
which

:::::::
captures

:::
the

::::::
shared

::::::::::::::
low-dimensional

::::::::::::
representation,

:::
are

:::::::
learned

::::::::::::
simultaneously.

::::
The

::::::::::::
regularization

::::
term

:::::::

∥∥u(l)
∥∥2
2
,
:::::
based

:::
on

:::
the

:::::
value

::
of

:::
the

::::::::
parameter

::
λ,

::::::::
penalizes

:::
the

::::::::::
differences

:::::::
between

:::
the

::::::
weights

:::
on

:::
the

:::::
initial

::::::::::::::
high-dimensional

:::::
space

::::
and

:::
the

::::::
weights

:::
on

:::
the

::::::::::::::
low-dimensional

:::::
space

:::::::::::
parameterized

:::
by

:::
Θ.

There are several ways of solving the optimization problem of
:
in
:
Eq. (3) (Ando and Zhang, 2005). Our main purpose is to

extract the shared feature space Θ
:
Θ

:
in order to apply a clustering on the low-dimensional feature space. In this feature space,10

locations with similar predictive structures will be grouped into the same broader region. For this reason, we adopt the Singular

Value Decomposition (SVD)-based ASO algorithm, proposed by Ando and Zhang (2005), which achieves good performance

even on the first iteration of the method. As mentioned before, this is crucial to our application given the large number of tasks

and the high-dimensional data sets. The steps of the SVD-based ASO are presented in Algorithm 1.
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Algorithm 1 SVD-ASO

Input: training data D(l) = {(x(l)
i ,y

(l)
i )}i=1,...,N , where l = 1, ...,L

Parameters: h and λ= {λ(1), ...,λ(L)}

Output: Θ ∈ Rh×d and V = [v(1), ...,v(L)]T ∈ RL×h

Initialize:w(l) = 0, l = 1, ...,L, and Θ to random

repeat

for l = 1 to L do

with fixed Θ and v(l) = Θw(l), solve the optimization problem of Eq. (3) for u(l):

argminu(l)

∑N
i=1L(u

(l)x
(l)
i +(v(l)Θ)x

(l)
i ,y

(l)
i )+λ(l)

∥∥∥u(l)
∥∥∥2
2
)
:::::::::::::::::::::::::::::::::::::::::::::
minu(l)

∑N
i=1L(u

(l)x
(l)
i +(v(l)Θ)x

(l)
i ,y

(l)
i )+λ(l)

∥∥∥u(l)
∥∥∥2
2

w(l) = u(l) +ΘTv(l)

end for

Apply an SVD decomposition on W = [
√
λ(1)w(1), ...,

√
λ(L)w(L)]:

W = V1DV2
T (with diagonals of D in descending order)

Θ = V1
T [: h, :] // update Θ to the first h rows of V1

T

until convergence

The SVD-based ASO method can be interpreted as a dimensionality reduction technique applied to the model space (i.e.,

weights). It should be stressed here that this method must not be confused with principal component analysis (PCA)
::::
PCA, which

is usually employed on the data space (input space of predictors)
::::::::::::::::::::::::::::::::
(Metzger et al., 2012; Ivits et al., 2014). The goal of the ASO5

method is to detect the principal components of the predictive structures
::::::::
parameter

::::::
matrix, while PCA identifies the principal

components of the input data X. The goal of the ASO method can be achieved by considering the models of multiple tasks as

samples of their own distribution. Therefore, these samples can only be formed by using an MTL approach, in which there is

access to the models from the multiple learning tasks.
::::::::
Moreover,

::
in

:::
our

::::::
work,

::
we

::::::::
explicitly

::::::::
consider

:::
the

:::::::
climatic

::::::::
variables

::
as

::::::::
predictors

:::
and

::::
the

::::::::
vegetation

:::::::
variable

:::
as

:::::
target

:::::::
variable,

::::
and

:::
we

::::
learn

:::
the

:::::::::::
relationship

:::::::
between

::::
them

:::
in

:
a
:::::::::
supervised

:::::::
setting.10

::
As

:::::
such,

:::
the

:::::::
regions

:::
that

:::
we

::::::
define

::::
rely

::
on

:::
the

:::::::::::
relationship

:::::::
between

::::::
climate

::::
and

:::::::::
vegetation

::
in

::
a
:::::::::
prediction

::::::
setting,

::::
and

:::
the

::::::::
clustering

::
is

::::::::
calculated

:::::
based

:::
on

::::::::
similarity

::
of

::::
this

::::::::::
relationship

:::
(i.e.

:::
the

::::::
model

:::::::::
coefficients

:::
for

:::::::
different

:::::::::
locations),

:::
see

:::::
Sect.

:::
2.5

::
for

:::::
more

::::::
details.

:::
As

:::::
such,

:::
we

::::
learn

:::::::::::
relationships

:::::::
between

:::::::
climate

:::
and

:::::::::
vegetation

::
in

:
a
::::::::::

supervised
::::::
setting,

:::::::
whereas

::::::::::
PCA-based

:::::::
methods

::::::::::::::::::::::::::::::::
(Metzger et al., 2012; Ivits et al., 2014)

:::
are

::::
fully

::::::::::::
unsupervised.

::
In

:::
our

:::::
study

:::
the

:::::
SVD

::::::::::::
decomposition

::
is
:::::

used
::
as

::::
part

::
of

:::
the

::::::::::
optimization

:::::::::
algorithm,

::::
thus

::
in

::
a
:::::::::
supervised

::::::
setting.

:::
In

:::
this

:::::::
setting,

:::
the

:::::
model

:::::::
weights

:::
are

:::::::::
optimized

:::::
based

::
on

::
a
:::::
given15

::::::
training

:::
set.

:::::::::
Therefore,

:::
the

:::::::::
discovered

:::::::::
structures

:::
are

:::::::
obtained

::::::
during

:::
the

::::::
training

:::::::
process.

:

::
To

::::::
clarify

:::
the

:::::::
notation

::::
used

:::
in

:::
the

::::
ASO

:::::::
method,

:::
we

:::::::::
intuitively

::::::
explain

::::
the

:::::::::::
symbolization

:::
of

:::
the

::::::
method

:::
in

::::::
relation

::
to
::::

our

::::::
specific

:::::::
setting:

:::
the

:::::::
problem

::
of

::::::::
detecting

::::::::
locations

::::
with

::::::
similar

::::::::::::::::
climate–vegetation

::::::::
dynamics.

:::
As

:::::::::
mentioned

:::::
above

::::::
(Sect.

:::
2.2

:::
and

::::
2.3),

:::
the

:::::
input

::::::
features

::::
that

::::::::
constitute

:::
the

::::::::::::
X(l) ∈ RN×d

:::::
matrix

::::::
consist

:::
of

:::
the

::::::
climatic

::::::::
predictor

::::::::
variables,

::::
i.e.,

:::
the

:::::::
extreme

::::::
indices,

::::::
lagged

::::::::
variables,

::::
etc.,

:::::::::
calculated

:::::
based

:::
on

::::
raw

:::::::
climatic

::::
time

:::::
series

::
of

::
a
::::::
certain

:::::::
location

::
l.

:::
The

::::::::::
dimensions

:::
N

:::
and

::
d

:::::::::
correspond

::
to

:::
the

::::::
number

:::
of

:::::::::::
observations,

:::
i.e.,

:::
the

:::::
length

:::
of

::
the

::::
time

:::::
series

::::
and

:::
the

::::::
number

::
of
::::::::
predictor

::::::::
variables,

:::::::::::
respectively.
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:::
The

:::::
target

::::::::
variable

:::
for

:
a
:::::::::

particular
:::::::
location

::
l,
::::::
which

::
is

:::
the

::::::
NDVI

:::::::::
anomalies,

::
is
::::::::::
symbolized

:::::
with

:::::::::
y(l) ∈ RN .

:::
As

:::::
such,

:::
an

:::::::::
observation

:::
of

:
a
::::::
certain

:::::::
location

::
l
::
at

:
a
:::::::::
particular

:::::::::
timestamp

:
i
::
is

:::::::
denoted

::
as

::
a
::::
pair

:::::::::
(x

(l)
i ,y

(l)
i ).

::::
The

::::
goal

::
of

:::
the

:::::
ASO

:::::::
method

:
is
:::

to
::::
learn

:::
the

:::::::
weight

:::::
matrix

:::::::::::::::::::
[w(1),w(2), ...,w(L)],

:::
i.e.,

::
a
:::::
single

::::::
weight

::::::
vector

::::
w(l)

:::
for

:::::
each

:::::::
location

::
l.

::::
This

::::::
weight

::::::
vector5

::::
w(l)

:
is
::::
able

::
to

:::::::
capture

:::
the

::::::::::
relationship

:::::::
between

:::
the

:::::::
predictor

::::::::
variables

:::
and

:::
the

::::::
target,

:::
i.e.,

:::
the

:::::::
climatic

::::::::
variables

:::
and

:::
the

::::::
NDVI

:::::::::
anomalies.

::::::::
Therefore,

:::::::
climatic

:::::::::
predictors

:::
that

:::
are

::::
more

:::::::::
important

::
for

:::::::::
vegetation

::::::::
anomalies

::::::::::
correspond

::
to

:::::
higher

:::::::
absolute

::::::
values

::
in

:::
the

::::::
weight

:::::
vector

:::::
w(l).

:::
As

:
a
::::::
result,

:::::::
locations

:::::
with

::::::
similar

:::::::
weights

:::
are

:::::::::
considered

::
as

:::::::
regions

:::::
where

:::::::::
vegetation

::::::::
responds

::
to

::::::
climate

::
in

:
a
::::::
similar

::::
way.

:::
As

::::::::
described

::
in

::
a

:::::::
previous

::::::::
paragraph

::
of

::::
this

::::::
section,

:::
the

:::::
ASO

::::::
method

:::::::
assumes

::::
that

:::
the

::::::
weight

::::::
vectors

::::
w(l)

::::::
consist

::
of

:::
two

:::::
parts

:::
the

::::
u(l)

:::
and

:::
the

::::::
v(l)Θ.

:::::
These

::::
two

::::
parts

:::
are

:::::::
learned

::::::::::::
simultaneously

:::
in

::::::::
Algorithm

::
1
::
in

:::
an

:::::::::
alternating10

::::::
fashion.

::::
The

::::
first

::::
part,

:::
i.e.,

:::
the

:::::::::
u(l) ∈ Rd

::::::
belongs

:::
to

::
the

:::::::::::::::
high-dimensional

::::::
space,

::
the

::::::
initial

::::
one,

:::::
which

::
is

:::::
equal

::
to

::
d.

::::
This

::::
part

::::::::
expresses

:::
the

:::::::::::::
location-specific

::::
part

::
of

:::
the

::::::
weight

::::::
vector,

::::
i.e.,

:::
the

::::::::
deviation

::
of

::::
each

:::::::::
location’s

::::::
weight

:::::
vector

:::::
from

:::
the

:::::::
weights

::::::
learned

::
in

:
a
:::::
lower

::::::::::
dimensional

::::::
space.

:::
The

::::::
second

::::
part

:::::::
consists

::
of

:::
the

:::::
matrix

::::::::::
Θ ∈ Rh×d

:::
that

:::::::::
represents

::
the

::::
map

:::::
from

:::
the

:::::
initial

::::::::
dimension

::
d
::
to

:::
the

:::::
lower

:::::::::
dimension

::
h
::::
and

:::
the

::::::
weight

::::::
vector

::::::::
v(l) ∈ Rh.

::::
The

::::
map

::::::
matrix

:::
Θ

::
is

:::::::
common

:::
for

:::
all

:::
the

::::::::
locations

:::::
(tasks)

::::
and

:::
can

:::
be

:::::::
learned

:::::
across

:::::
them

::::
due

::
to

:::
the

:::::
MTL

:::::::::
approach.

::::
The

::::::
weight

:::::
vector

::::
v(l)

:::::::::
represents

:::
the

:::::::::
projection

:::
of

:::
the15

:::::
initial

::::::
weights

:::
to

:
a
::::::::::::::
low-dimensional

:::::
space

::
h.

::::::::::
Intuitively,

:::
this

::::::
second

::::
part

::
of

:::
the

::::::
weight

::::::::::::
decomposition

:::::::::
expresses

:::
the

:::::::
coarsest

:::
and

:::::
most

::::::::
important

::::
part

::
of

::::::::
weights,

:::::
since

:
it
:::::::

detects
:::
the

:::::
most

::::::::
important

:::::::::
structures

:::::::
through

:::
the

::::
map

::::::
matrix

:::
Θ.

::::
The

::::::
matrix

::::::::::::::::::::::::
V = [v(1), ...,v(L)]T ∈ RL×h

::::::
denotes

:::
the

::::::::::::
representation

::
of

:::
the

:::::::
models

::
in

:::
the

::::::::::::::
low-dimensional

::::
space

::
h
:::
for

:::
the

::
L

::::::::
locations.

2.5 Land classification: clustering highly-predictive structures

Clustering in machine learning is the task of grouping a set of samples in such a way that those samples which
:::
that belong to20

the same group (cluster) are more similar with respect to a specific criterion than to samples which
:::
that belong to other groups.

Clustering techniques are usually based on a distance (or similarity) measure
:
, which is calculated among the samples and/or

group of samples. There are several clustering approaches and an in-depth review can be found in Xu and Tian (2015).

It is known that in high-dimensional spaces, the distance measures are not able to capture well the differences between pairs

of samples, thus clustering algorithms tend to perform better in lower dimensional spaces. In our setting, we learn the common25

feature map Θ ∈ Rh×d and the V = [v(1), ...,v(L)]T ∈ RL×h matrix, which is the representation of the models in this low-

dimensional space, using the SVD-ASO method – see Sect. 2.4. The V matrix captures the information of the similar predictive

structures among all the tasks, so similar tasks are closer in this low dimensional space and as a consequence, they have a

similar representation (i.e. , similar weights) in this matrix. That way, the clustering techniques based on distance calculations

are applied on the more expressive low-dimensional space, resulting in a better performance. As it has been discussed in our30

previous work (Papagiannopoulou et al., 2017a), global climate-vegetation relationships are complex and non-linear. Here,

if the V representation is expressive enough, the clustering method can group together locations with similar models, i.e.,

locations in which vegetation responds to climate in a similar
::::::::
non-linear way. Thus, it is first necessary to evaluate the quality

of the learned matrix V. The most straight forward way to do so, is by measuring the predictive performance of the MTL model

in terms of e.g.R2. If the predictive power of the model is strong, we can conclude that the V matrix is able to well-capture the

relationships of each task with the highly predictive structures. So, given that the V representation is sufficiently learned from

10



the data, we can apply any kind of clustering algorithm on the low-dimensional representation of matrix V. This approach is5

also known as spectral clustering due to the fact that the clustering algorithm is applied on a reduced feature space, making the

clustering results more robust.

In our application, we use a hierarchical agglomerative clustering approach
::::::::::::
(Ward, 1963) where the number of clusters is not

predefined. In the hierarchical clustering approach, the result is usually depicted as a dendrogram in which the leaves represent

the observations and the inner nodes correspond to the data clusters. The dendrogram branches are proportionally long to the10

value of the intergroup dissimilarity. By defining this hierarchical form of the clustering result, one can define the number of

clusters by cutting down vertically (or horizontally, depending on the view) the dendrogram in a point where the dissimilarity

between the clusters is high and therefore the branches
::
are

:
longer – see Sect. 3.2 for the choice of the optimum number of

clusters in our analysis.

2.6 Experimental setup15

In all the experiments, we use as predictors all the climatic data sets and the features that we have constructed from them as

well as the 12-lagged values of the target variable. A total
:::::::
resulting number of 3,209 predictor variables is included

:::::::
(climate)

:::::::
variables

::
is

::::
used, i.e., d= 3,209 in our setting. These variables constitute the input to our framework, i.e., the X(l), l = 1, ...,L

data sets. As target variable, we use the NDVI seasonal anomalies
::::::::
calculated

:
as in Papagiannopoulou et al. (2017a) ,

:::
and

denoted as y(l), l = 1, ...,L for each location.
::
For

:::::
more

::::::
details

:::::
about

:::
the

::::
data

::::
sets

::
in

:::
our

::::::
setting

::::
see

::::
Sect.

::::
2.1.

:
We examine20

13,072 land pixels where each pixel constitutes a single task in our MTL setting, i.e., L= 13,072. The dataset of each single

task consists of 360 monthly observations
::::
given

:::
our

:::::::
30-year

:::::
study

:::::
period, i.e., N = 360. All the methods have been developed

in Python.

For the STL modeling,
:::::::::
modelling,

::::::::
evaluated

:::
for

::::::::::
comparison,

:
we use the ridge regression for each location independently.

Ridge regression is a linear model which uses an `2 norm regularization term in order to shrink the weight coefficients towards25

zero to
::
and

:
avoid over-fitting. In ridge regression the weight coefficients are fitted by solving the following optimization

problem:

min
w(l)

N∑
i=1

L(w(l)x
(l)
i ,y

(l)
i ) +λ||w(l)||2 (4)

with λ being a regularization parameter tuned using a separate validation set and ||w(l)||2 being a penalty term, i.e., the squared

`2 norm of the weight vector. Note that by splitting the original data set in three parts
:
– (1) training set, (2) validation set, and30

(3) test set ,
:
– we tune the parameters in a set of observations (validation set) that are not included in the final test set and that

way we have a fair comparison
::::::
achieve

:
a
::::
fair

::::::::
evaluation

:
of the model performances

::::::::::
performance. The optimization problems of

the SVD-ASO algorithm are solved by using the
:::::::::::::
Limited-memory

::::::::::::::::::::::::::::::
Broyden-Fletcher-Goldfarb-Shanno

:
(L-BFGS)

:
optimization

algorithm.
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Figure 3. Comparison of the predictive performance between the STL and the MTL approaches. (a) Explained variance (R2) of the NDVI

monthly anomalies based on the MTL approach. (b) Difference in terms of R2 between the MTL and the STL approaches; blue regions

indicate a higher performance by the MTL.
:::
The

:::::
dotted

::::::
regions

::::::::
correspond

::
to

::::
areas

:::::
where

:::
the

::::
MTL

:::::
model

:::::::::
significantly

:::::::::
outperforms

:::
the

::::
STL

:::::
models

:::::
based

::
on

:::
the

:::::::::::::
Diebold-Mariano

:::::::
statistical

:::
test

::::::::::::
(Diebold, 2015)

:
. (c) Comparison of the distributions of the R2 scores in the STL and

in the MTL setting; the blue histogram corresponds to the STL, and the orange one to the MTL approach. (d) Quantification of Granger

causality for the MTL approach, i.e. improvement in terms of R2 by the full MTL model with respect to the R2 of the baseline MTL model

that uses only past values of NDVI anomalies as predictors; positive values indicate Granger causality (Papagiannopoulou et al., 2017a). (e)

Difference in terms of Granger causality between the MTL and the STL approaches; blue regions indicate a higher performance by the MTL.

(f) Comparison of the distributions of the Granger causality in the STL and in the MTL setting; the blue histogram corresponds to the STL,

and the orange one to the MTL approach.
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3 Results and discussion

3.1 Single- versus multi-task learning model5

In a first experiment, we compare the predictive performance of the STL model versus the MTL model. For the STL modelling,

the ridge regression is used. For the MTL modelling, we apply the ASO-MTL model (Ando and Zhang, 2005) described in

Sect. 2. We use a separate validation set to tune the regularization parameter λ for both approaches. For the STL approach, we

tune the λ parameter for each location (task) separately, while for the MTL approach we use the same λ value for all the tasks,

taking into account the average performance across these tasks. For the ASO-MTL method, we have also experimented with10

the value of the h parameter, which is the dimensionality of the shared feature space – see Sect. 3.2 for more details about the

influence of this parameter on the clustering results. Finally, we evaluate the performance of both approaches in terms of R2,

as in Papagiannopoulou et al. (2017a). Figure 3 depicts the result of our comparison. Figure 3a shows the R2 of the ASO-MTL

model while Fig. 3b highlights the difference in predictive performance of the MTL model in comparison with the STL model.

As shown in Fig. 3b, in almost all regions of the world, the predictive performance increases substantially compared to the STL15

approach. In fact, over extensive regions
:::::
(40%

::
of

:::
the

::::
study

:::::
area), more than 10

:
5% of the variability in NDVI is explained by the

spatial structure of the data. In statistical terms, this implies the existence of a hidden structure between the different locations

(tasks), which is informative with respect to our target variable.
:::
The

::::::
dotted

::::::
regions

::
in
::::

Fig.
:::
3b

:::::::::
correspond

::
to
:::::

areas
::::::
where

:::
the

::::
MTL

::::::
model

::::::::::
significantly

:::::::::::
outperforms

:::
the

::::
STL

::::::
models

:::::
based

:::
on

:::
the

::::::::::::::
Diebold-Mariano

:::::::::
statistical

:::
test,

::::::
which

::::::::
compares

::::::
model

:::::::::
predictions

:::::::::::::
(Diebold, 2015)

:
.
:::
For

:::
the

::::::::
statistical

::::
test,

:::
we

:::
use

:::
the

::::
False

:::::::::
Discovery

::::
Rate

::::::::::::::::::::::::::::
(Benjamini and Hochberg, 1995)

::::::
method20

::
to

::::::
correct

:::
the

:::::::
p-values

::
at

::::
level

::::
0.05

:::
due

::
to
:::
the

:::::::::::::::::
multiple-hypothesis

::::::
testing

::::::
setting.

Additionally, Fig. 3a shows that more than 40% of the multi-month
::::
mean

:::::::
monthly

:
vegetation dynamics can be explained

by climate variability in some regions. In particular, in regions such as Australia, Africa and Central and North America
:
, the

predictive power of the model is stronger in terms ofR2, following the same pattern and scoring similarR2 values as the random

forest approach by Papagiannopoulou et al. (2017a). To deepen on the performance difference between the two approaches,25

the R2 scores are presented as two different distributions in Fig. 3c. The blue histogram corresponds to the distribution of the

R2 scores of the STL approach, while the orange one corresponds to the distribution of the R2 scores of the MTL approach.

As
:
it
:
can be observed, the distribution of the R2 scores is shifted to the right for the MTL, meaning that values are typically

greater than those derived from the STL approach. Moreover, the skew towards the left in the blue histogram, with values close

to zero, is an indication of the near-zero performance of the STL models in many locations.
::::
The

::::::::
Wilcoxon

::::::
paired

::::::::
statistical30

:::
test

:::::::::::::
(Demšar, 2006)

:::::::
confirms

::::
that

:::
the

:::::
results

:::
of

:::
the

:::
two

::::::::::
approaches

:::
are

::::::
overall

:::::::::
statistically

:::::::
different

::::::::
(p-value

::
<

:::::
10−9).

:

Since we are ultimately interested in investigating regions of coherent vegetation-climate interactions
::::::
impact

::
of

:::::::
climate

::::::::
variability

:::
on

::::::::
vegetation

::::::::
dynamics, we also evaluate the ability of the MTL model to detect Granger-causal effects of climate on

vegetation. For a detailed description of the Granger causality modelling framework we direct the reader to Papagiannopoulou

et al. (2017a). This point is crucial to understand the extent to which the climatic predictors carry additional information about

the dynamics in vegetation that is not contained in the past vegetation signal itself. The results of applying the Granger causality

analysis using MTL modelling are shown in Figure 3d, which illustrates results of the full MTL model compared to the baseline
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MTL model. This baseline model only uses previous values of NDVI to predict monthly NDVI anomalies (Papagiannopoulou

et al., 2017a). In this figure it becomes clear that climate dynamics Granger-cause monthly vegetation anomalies in most regions5

of the world, and the ability of the MTL model to detect deterministic relationships is evidenced.
:::
This

::
is

::::
also

::::::::
confirmed

:::
by

:::
the

::::::::
Wilcoxon

:::::
paired

:::::::::
statistical

:::
test

:::::::
(p-value

::
<
::::::

10−9).
:
On the other hand, the ability of the STL model to detect Geanger-causal

::::::::::::
Granger-causal

:
relationships is rather limited compered

::::::::
compared to that of the MTL

:::::
model. Figure 3e depicts the result of the

comparison, where in almost all regions the quantification of Granger causality of the MTL approach increases substantially

compared to the one of the STL approach. Analogous to Fig. 3c, Fig. 3f compares the distributions of Granger causality10

(i.e., the difference in predictive performance in terms of R2 between the full and the baseline model) between the STL and

MTL approach. Once again, the blue histogram corresponds to the distribution of Granger causality retrieved using the STL

approach, while the orange corresponds to the results of the MTL approach. The shift to the right of the orange histogram

shows the larger ability of the MTL model to reveal Granger-causality between climate and vegetation. Overall, the results

presented on this section
::::::
Similar

::
to

:::
the

:::::::
previous

:::::::::::
comparison,

:::
the

::::::::
Wilcoxon

:::::
paired

::::::::
statistical

::::
test

:::::::::::::
(Demšar, 2006)

:::::::
confirms

::::
that15

::
the

::::::
results

::
of

:::
the

::::
two

::::::::::
approaches

::
are

:::::::
overall

:::::::::
statistically

::::::::
different

:::::::
(p-value

::
<

::::::
10−9).

::
In

::::::::
summary,

:::::
these

:::::::
findings

:
highlight the

potential of using the low-dimensional feature representation learned from the data to fulfil
:::::
fulfill our final objective, which is

the detection of climate-vegetation regions
:::::::
vegetated

:::::
areas

::::::
holding

::
a
::::::
similar

:::::::
response

::
to
:::::::
climate via a clustering approach.

3.2 Appropriate number of the hydro-climatic biomes

As described in Sect. 2.5, there are multiple approaches that can be used to define the number of classes in a clustering problem.20

In our framework, we define the number of clusters by using a data-driven approach. In our analysis, we choose not to use

information from any pre-defined
::::::
number

::
of
:
vegetation and/or climate classes existing in the literature, since the ultimate goal

is to identify land classes fully independently, and only based on the observed relationship between vegetation and climate. To

this end, we rely on the definition of the number of clusters on the predictive performance of the MTL model. In Sect. 2.3,

it is stated that the ASO-MTL approach shares the objective function of the CMTL method. This only holds if the number of25

clusters (which is a pre-defined parameter in the CMTL method) is equal to the value of the parameter h in the ASO-MTL

method, which is the dimensionality of the common feature space. In light of this equivalence relation, we experimented with

a wide range of values for h in a validation set, aiming to select the value of h that maximises the model performance in terms

of R2. As such, we conclude that the best predictive performance occurs at h= 11, and that the appropriate number of biomes

in the clustering phase equals to 11 – see Sect. S2 of the Supplementary material for more details.30

This analysis provides an indication about the number of clusters that emerge from the data set; the
:::
The results of this

hierarchical clustering (with Euclidean distance) can be visualised in a dendrogram representation
:
,
:::::
which

:::::::
provides

::
an

:::::::::
indication

::::
about

:::
the

:::::::
optimal

::::::
number

::
of

:::::::
clusters

:::
that

:::::::
emerge

::::
from

:::
the

:::
data

:::
set. Figure 4b depicts the dendrogram formed by our framework,

with the vertical cutting line separating the data into 11 clusters. This representation allows
::
for

:
a visual inspection of whether

the choice of the number of
::
11 clusters is in line with the dissimilarities existing in the observations. As one can observe, our

choice is reasonable, since the clusters at this point are quite dissimilar, based on the Euclidean distance metric, compared to
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hypothesized cutting lines either before or after this point. In other words, the branches of the dendrogram are already quite

long at 11 clusters, indicating high dissimilarities between clusters/observations
::
the

::::::::
resulting

::::::
classes.5

3.3 Hydro-climatic biomes

The final objective of this study is the definition of
::
to

:::::::
uncover

:::
the regions in which vegetation responds in a analogous way

to climate anomalies, here referred to as ‘hydro-climatic biomes’. In the previous section, we investigated the appropriate

number of such regions based on the information contained in our database. Figure 4a illustrates the spatial distribution of the

emerging global hydro-climatic biomes. The colours depicted correspond to those of the clusters in the dendrogram of Fig. 4b.10

Further analysis of the dendrogramof Fig. 4b
:::
this

::::::::::
dendrogram, in combination with the spatial distribution of the clusters in

Fig. 4a, shows that our framework can clearly differentiate the bio-climatic behaviour of northern latitude ecosystems from

the one in
:::::
those

::
in

::::
mid-

::::
and southern latitudes. The behaviour of tropical ecoregions is unsurprisingly closer to the behaviour

of sub-tropical ones, while boreal regions sharing the exposure to low temperature anomalies have a more coherent response

to one another, forming the second main branch of the dendrogram. Bearing in mind the results of the Granger causality15

approach by Papagiannopoulou et al. (2017b), as well as the prior knowledge on climate and land use classification, we

define the hydro-climatic biomes as follows: (1) Tropical, (2) Transitional water-driven, (3) Transitional energy-driven, (4)

Sub-tropical energy-driven, (5) Sub-tropical water-driven, (6) Mid-latitude water-driven, (7) Mid-latitude temperature-driven,

(8) Boreal temperature-driven, (9) Boreal water-driven, (10) Boreal water/temperature-driven, (11) Boreal energy-driven. This

nomenclature is broadly based on latitude and main climatic drivers.20

Figure 4c shows the
::::
main

:
10 climate regions of the Köppen-Geiger climate classification, which is based on climatic

conditions defined by precipitation and temperature
:
, and their seasonality. On the other hand, the International Geosphere-

Biosphere Program (IGBP) (Loveland and Belward, 1997) land cover classification, depicted in Fig. 4d, is mostly based on

plant functional types. Without the need to prescribe any land cover or climate classification, and only relying on the spatial

coherence in the vegetation response to climate anomalies, our hydro-climatic biomes in Fig. 4a clearly depict some of the25

main characteristic patterns from these traditional classification schemes. For instance, the region of North Asia is
::::
quite co-

herent in terms of climate
:::::
based

:::
on

:::
the

::
10

:::::::
climate

::::::
classes

:::::
shown

::::
here

:
(Fig. 4c), but quite diverse in terms of vegetation type

(Fig. 4d); the hydro-climatic biomes show a clear distinction in the transition from shrublands (energy driven
:::::::::::
energy-driven) to

coniferous forests (energy- and water-driven). In North America, the more energy-limited ecosystems around
::::
along

:
the coasts

emerge from the water-driven regions inland, and a latitudinal behaviour is also depicted, partly reflecting the transition from30

croplands and grasslands into temperate and boreal forests. Patterns in the tropics clearly differentiate between rainforest and

transitional savannahs, and in South America the different drivers of vegetation dynamics in the Arc of Deforestation lead to

a class change that is not depicted by either
::::::
neither the Köppen-Geiger climate classification nor the IGBP land cover classes.

Finally the patterns found for arid and
:::::
warm semiarid regions (here referred to as ‘sub-tropical water-driven’), and their tran-

sition towards wetter and more vegetated ecosystems
:
, agree with the expectations based on vegetation (Fig. 4d) and climate35

(Fig. 4c).
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Figure 4. Comparison of the different land surface classification schemes. (a) Hydro-climatic biomes derived from the proposed framework.

The region colours correspond to the colours of the clusters that are depicted in the dendrogram. (b) Dendrogram scheme of the clustering

result derived by
::::
from the hierarchical agglomerative clustering on the low-dimensional representation of our model observations. The length

of the dendrogram branches is a function of the inter-cluster dissimilarities. The vertical cutting line marks the data split into 11 clusters.

The denomination of the different classes is supported by the results from Papagiannopoulou et al. (2017b). (c)
:::::::

Simplified
:
Köppen-Geiger

climate classification scheme. (d) IGBP land use classification scheme.
::
(e)

::::::
Climate

:::::
space

:::
(i.e.

::::
mean

::::::
annual

:::::::::
temperature

:::::
versus

::::::::::
precipitation)

::
for

:::
our

:::::::::::
hydro-climatic

::::::
biomes

::
in

:::
Fig.

:::
4a.

::
(f)

::::
Same

::
as

:::
(e)

::
but

:::
for

:::
the

:
K
:
ö
:::::::::
ppen-Geiger

::::::
climate

::::::
classes

:
in
::::

Fig.
::
4c.

:::
(g)

::::
Same

::
as
:::
(e)

:::
but

::
for

:::::
IGBP

:
in
::::
Fig.

::
4d.
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Therefore, the
:::
The

::::::::::
comparison

::
to

::
the

::
K
:
ö
::::::::::
ppen-Geiger

::::
and

:::::
IGBP

::::
maps

::::::
serves

::::
only

::
as

:
a
::::::
general

:::::::::
evaluation

::
or

:::::
proof

::
of

:::::::
concept

::
for

:::
our

:
hydro-climatic

::::::
biomes

::::
map,

:::::
since

::
in

:::
the

:::
end

::::
such

:::::
maps

:::
are

:::::
based

:::
on

:
a
:::::::
different

::::::::
rationale,

::::
and

::::
thus,

::::
there

::
is
:::
no

:::::
intent

::
to

::::::::::
‘outperform’

:::::
these

:::::::::::
classification

::::::::
schemes.

::::::::
However,

:
it
::::
can

::
be

::::::::
observed

::
in

:::
this

::::::::::
comparison

:::
that

:::
the

:::::::::::::
hydro-climatic biomes map

in Fig. 4a combines
:::::::
combine information on climate and vegetation zones by illustrating regions where vegetation similarly5

interacts with the multi-month dynamics in climatic and environmental conditions. As such, the clustering
:::
This

::::::::::
conclusion

:
is
:::::::::

confirmed
:::
by

:::
the

::::::
scatter

:::::
plots

::
in

::::
Figs.

:::::
4e-g.

::::::
Figure

:::
4e

::::::
depicts

::::
our

::::::::::::
hydro-climatic

::::::
biomes

:::
of

::::
Fig.

::
4a

:::
in

::::::
climate

:::::
space

:::
of

::::
mean

::::::
annual

:::::::::::
temperature

::::::
against

:::::::::::
precipitation,

:::::
while

::::
Fig.

:::
4f

:::::
shows

:::
the

:::::
same

:::
but

:::
for

:::
the

:::
K

:
ö

::::::::::
ppen-Geiger

::::::
climate

::::::
classes

:::
of

:::
Fig.

:::
4c.

::
In

::::
Fig.

::
4f,

:::
the

::::
five

::::::
climate

::::::
classes

:::
are

:::::::::::::
well-separated,

::::
since

::::
their

::::::::
definition

::
is
:::::
based

:::
on

::::
these

::::
two

:::::::
climatic

::::::::
variables.

:::
On

::
the

:::::
other

:::::
hand,

::::
Fig.

::
4g

:::::::
depicts

:::
the

:::::
same

::::::::::
information

:::
but

:::
for

:::
the

:::::
IGBP

::::
map

::
of

::::
Fig.

:::
4d.

::
In

::::
this

:::::
figure,

::::::::::
savannahs,

::::::
tropics,

::::
and10

:::::::::
shrublands

::::::
appear

::::
again

::::
well

:::::::::
clustered.

:
It
::::
can

::
be

::::::::
observed

:::
that

:::
the

::::::
scatter

::::
plot

::
of

::::
Fig.

::
4e

::::::
clearly

:::
lie

:::::::
between

:::
the

:::
two

::::::::
previous

:::::::::::
classifications

:::
in

:::::
terms

::
of

:::::::::
clustering.

:::::::
Boreal

::::::
biomes

::::::::::
correspond

::
to

::::
cold

:::::::
climate

:::::::
classes,

:::
the

::::::::::
sub-tropical

::::
and

:::::::::::
mid-latitude

::::::::::
water-driven

::::::
biomes

::::::::::
correspond

::
to

::::
arid

:::::::
regions,

:::::
while

:::
the

:::::::::
transitional

::::::
biomes

::::::::::
correspond

::
to

:::
the

::::::::
savannas

:::
and

:::::::::
croplands.

::::
The

::::::::
clustering of biomes is also consistent with the global distribution of key climatic drivers reported by Papagiannopoulou et al.

(2017b) based on random forests and a Granger-causality framework,
:::::
since

:::::
these

::::::
biomes

:::
are

:::::::::
ultimately

::::::
defined

:::::
based

:::
on

:::
the15

:::::::
response

::
of

:::::::::
vegetation

::
to

:::::::
climatic

::::
and

::::::::::::
environmental

:::::::::
conditions. These common dynamics are identified by latent structures

in our MTL approach. A discussion about ;
::
a

:::::::::
discussion

::
on

:
these latent structures is included in the Supplementary material

(Sect. S3). Moreover, we should note that the approach of spectral clustering applied here, allows for a robust result, as small

perturbations in the data sets do not affect the overall clustering result. This conclusion is confirmed by the fact that even in

the tropical region
::::::
tropical

:::::::
regions,

:
where the uncertainty in the observations is typically larger and the skill of the predictions20

is lower (see Fig. 3), the different clusters are separated in a clear manner. A discussion about the comparison of the four
::::
three

land surface classification schemes (the hydro-climatic biomes, the Köppen-Geiger climate classification ,
:::
and the IGBP land

use classificationand global distribution of key climatic drivers derived by the non-linear Granger-causality framework) based

on the predictive structures
:
) is presented in Sect. S4 of the Supplementary material.

::::::
Results

:::
for

:::::::::
microwave

:::::::::
vegetation

::::::
optical

::::
depth

::::::
(VOD)

:::::::::::::::
(Liu et al., 2011)

::::::::
anomalies

::
as

:::::::::
alternative

::
to

:::::
NDVI

:::::::::
anomalies

:::
are

::::::::
consistent

::
as
::::::
shown

::
in

:::::::::::::
Supplementary

:::::::
material25

:::
Fig.

:::
S7.

:

4
::::::::::
Conclusion

In this paper we introduced a novel framework for identifying regions with similar biosphere-climate dynamics interplay. Our

framework combines a multi-task learning (MTL) modelling approach and a spectral clustering technique, and it is applied to

the
:
a global database of global observational climate records compiled by Papagiannopoulou et al. (2017a). Comparisons to a

typical single-task learning approach, in which each task (in each location) is analysed separately, indicate that learning about

climate-vegetation
:::::::::::::::
climate–vegetation

:
relationships in neighbouring, or even remote, locations can help predict local vegetation

dynamics based on climate
::::::::
variability. Moreover, our approach is able to detect shared hidden predictive structures among the5

tasks that enhance the predictive performance of the models. These predictive structures form the basis to which the clustering

17



algorithm is applied to detect regions where vegetation responds to climate in a similar way. We demonstrate that, without the

need to prescribe any land cover information, our method is able to identify coherent climate-vegetation
:::::::::::::::
climate–vegetation

interaction zones that
::::::
emerge

:::::::
directly

:::::
from

:::
the

:::::::::::::
spatio-temporal

:::::::::
variability

:::
in

:::
the

::::
data.

::::::
These

:::::
zones

:
agree with traditional

global classification maps, such as the Köppen-Geiger climate classification or the IGBP land cover classification. We refer to

these regions as ‘hydro-climatic biomes’. These wider
::::
wide

:
regions can be used in various applications in geosciences, such

as unravelling anomalous relationships between climate and vegetation dynamics
:
at

:::::
local

:::::
scales, defining extreme values of

vegetation response to climate, exploring tipping points and turning points
::::::::::::::::::
(Horion et al., 2016) of ecosystem resilience, and5

benchmarking the dynamic response of vegetation in Earth system models.

Code and data availability. We use the implementation of Python for the L-BFGS optimizer, the singular value decomposition method and

the hierarchical clustering (scikit-learn python library (Pedregosa et al., 2011)). The code for the ASO-MTL method has been uploaded

to our github repository (https://github.com/lhwm/hydro-climatic-biomes). Data used in this manuscript can be accessed using http://www.

SAT-EX.ugent.be as gateway.10
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S1 Importance of a higher-level representation of features

To illustrate the non-linear response of vegetation and explain our choice to use high-level feature representation in our frame-

work, we compare the model performance with and without the use of this high-level representation. Figure S1a shows the

predictive performance of the Alternative Structure Optimization multi-task
:::::::
learning (ASO-MTL) method when the raw vari-

ables as well as the corresponding 6-lagged values are included in the model, i.e., the cumulative variables and the extreme5

indices are not included as predictors. Figure S1b visualizes the difference in predictive performance of the ASO-MTL model

with and without the cumulative variables and the extreme indices as predictors. As one can observe, in regions such as Europe,

North America, southern and northern parts of Asia and parts of South America, the model performance substantially decreases

if these higher-level features are not used in the data representation. In these regions, more than 10% of the variability in NDVI

anomalies is explained by this more complex (non-linear) representation, illustrating the non-linear nature of the relationship10

between climate and vegetation dynamics.

S2 Number of hydro-climatic biomes

Figure S2 shows the median of the predictive performance (R2) for all tasks when the value of the parameter h varies. Note

that for these experiments, the λ parameters remain constant in order to assess only the effect of parameter h on the model per-

formance. As one can observe in Fig. S2, the maximum median value R2 is achieved when h = 11. However, the differences in15

the predictive performance for h= 6, ..,15 are marginal. Therefore, we can conclude that the method gives robust results as the

strongest predictive structures are captured for the first most important components given by the singular value decomposition.

::::
This

:::::::::
conclusion

::
is

:::
also

:::::::::
confirmed

::
by

::::
Fig.

:::
S3,

:::::
where

:::
the

:::::
maps

::::
with

::
9

::::
(Fig.

:::::
S3a),

::
10

:::::
(Fig.

::::
S3b),

:::
11

::::
(Fig.

::::
S3c)

::::
and

::
12

::::
(Fig.

:::::
S3d)

::::::::::::
hydro-climatic

::::::
biomes

:::
are

::::::::
depicted.

::
In

:::
all

:::::::
figures,

:::
the

::::::
tropics,

:::
the

::::::
boreal

:::
and

::::
the

:::
arid

:::::::
regions

:::
are

::::::::::::
well-detected.

::
In

::::::::
addition,

::::::::::
sub-tropical

::::::
regions

::::
and

:::::::::
transitional

::::
ones

:::
are

::::
also

:::::::::
commonly

:::::::
defined

::
in

:::
all

::
of

:::
the

:::::::::::::
aforementioned

:::::::
figures.

::::::::::
Differences

::
in

:::
the20

::::::
borders

::
of

:::
the

::::::::
identified

::::::
regions

:::
are

::::::
noticed

:::::::
between

::::::::::::::::
temperature-driven

:::::
areas

::::
(e.g.,

::::::
Europe

::::
and

:::::
North

::::::::
America).

::
In

::::::::::
transitional
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Figure S1. Comparison of the predictive performance in terms of R2 of the model which does not include the cumulative variables and

the extreme indices with the model which is trained with the full collection of higher-level features (Papagiannopoulou et al., 2017a). (a)

Explained variance (R2) of NDVI anomalies based on the raw data of the climatic variables as well as their 6-lagged values (cumulative

variables and the extreme indices are not included as predictors to the model). (b) Difference in terms of R2 between the model without

cumulative and extreme predictors and the model which includes all the higher-level feature representation in Fig. 3a of the manuscript.
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Figure S2. Assessing the number of biomes: Median of the predictive performance of the ASO-MTL model in terms of R2 when the value

of the h parameter varies. For h= 11 the model scores the maximum value of R2. However, the differences in the predictive performance

for h= 6, [...],15 are marginal.

:::::
water-

::::
and

:::::::::::
energy-driven

:::::::
regions

:::
also

:::::
there

:::
are

:::::
some

:::::::::
differences

::
in
:::
the

::::::::
clusters’

:::::::
borders.

::::::::
However,

:::::
these

::::::::::::
inconsistencies

::::
can

::
be

::::::::
explained

:::
by

:::
the

::::::::
smoother

:::::::::
differences

:::::::
between

:::
the

:::::::
climatic

:::
and

::::::::::::
environmental

:::::::::
conditions

::
in

:::::
these

:::::
areas.
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Figure S3.
::::
Maps

::::
with

:::::::
different

::::::
number

::
of

:::::::::::
hydro-climatic

::::::
biomes.

::
(a)

::
h
::
=

:
9
::::
(i.e.,

:
9
:::::::::::
hydro-climatic

::::::
biomes)

:
,
:::
(b)

:
h
::

=
:::
10,

::
(c)

::
h

:
=
:::
11

::::
(Fig.

::
4a

:
of
:::

the
::::::::::
manuscript),

:::
and

::
(d)

::
h

:
=
:::
12.

S3 Visualization of the most important predictive structures

In Sect. 2.5 of the manuscript, we describe the steps of the SVD-based ASO algorithm, which learns a low-dimensional feature

representation for our tasks based on the relationships between them. The learned matrix Θ maps the high-dimensional space

to a (lower) h-dimensional space, storing the loads of the original weights to the “highly predictive structures”. Thus, the task

models are also projected to this shared lower-dimensional space. This information is stored in the matrix V on which the5

clustering approach is performed. Figure S4 presents the values of the tasks in the first 6 components of the matrix V. Similar

pixel values to the same components mean similar climate-vegetation
:::::::::::::::
climate–vegetation dynamics. There are several remarks

considering Fig. S4: (1) all the 6 components are able to distinguish specific regions according to different criteria such as

regions with temperate and dry climate, regions with cold and dry climate, tropical and dry climate, etc.; (2) pixels which are

grouped into the same region in the final clustering result (Fig. 4a of the manuscript) tend to have similar values in a particular10
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Figure S4. Visualization of the first 6 “principal components" of the predictive structures. The classification of the land surface into the

hydro-climatic biomes is based on the importance of these structures for each location. The color intensity in the map indicates the value

magnitude of each pixel in a particular predictive structure.

predictive structure, and (3) the differences in the values across regions are intense, and in some cases one can recognize the

boundaries of the regions depicted in Fig. 4a of the manuscript.

S4 Visualization of the predictive structures with the different land surface classifications

As in Zscheischler et al. (2012), we conduct a dimensionality reduction to the matrix V which contains the clustering data. We

separately present the results for the Northern and the Southern Hemisphere (ibid.) – see Figs. S5 and S6, respectively. The5

data is projected onto the first 2 principal components
:::::::::
components

:::
of

::
the

::::::
t-SNE

:::::::
method

::::::::::::::::::::::
(Maaten and Hinton, 2008) and visu-

alized based on the Köppen-Geiger clustering (Köppen, 1936)
::::::::::::
hydro-climatic

::::::
biomes

:
(Fig.S5c and S6c

:
a
::::
and

:::
S6a), the IGBP

clustering (Loveland and Belward, 1997)
::
K

:
ö

::::::::::
ppen-Geiger

::::::::
clustering

::::::::::::::
(Köppen, 1936) (Fig.S5d and S6d), the Granger-causality

result which illustrates the main climatic drivers of each region presented in Papagiannopoulou et al. (2017b) (Fig.S5b and

S6b) and the hydro-climatic biomes
::::
IGBP

:::::::::
clustering

:::::::::::::::::::::::::
(Loveland and Belward, 1997) (Fig.S5a and S6a

:
c
:::
and

::::
S6c). We use the10

same color representation as in Fig. 4a of the manuscript. That way we can assess if the learned predictive structures match

well the classes of the different classification schemes.

Considering Fig. S5, one can see that the best-formed clusters are depicted in Fig. S5a, as the clustering has been performed

on this dataset (as expected). Figure S5a is mostly similar to Fig. S5d which c
:
represents the IGBP land use classification; the

tropical regions are well-detected as well as the forest- and the cropland-covered regions. This means that the learned predictive15
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(c)

Figure S5. Data projection to the first 2 principal
:::
two

:::::
t-SNE components for the Northern Hemisphere. Each point represents one pixel of the

global grid and it is colored based on (a) the hydro-climatic biomes,
:
(b) the Granger-causality classification, (c) the Köppen-Geiger climate

classification, and (d
:
c) the IGBP land use classification. For the color-class mapping see Fig. 4 of the manuscript.
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structures are highly relevant to the vegetation type of each region. On the other hand
:
In

:::::::
addition, Fig. S5c

:
b indicates that the

cold, the arid and the tropical regions can be well distinguished by the learned structures whereas the temperate climate is

scattered among the others and is thus harder to identify. Finally, the clustering based on the main drivers, in Fig. S5b, is more

scattered than the others. However, one can clearly distinguish the water-driven regions from the radiation/temperature-driven

ones. This result comes from the fact that the two latter drivers (radiation and temperature) are highly correlated.
::
be

::::::::
identified.

:
5

Figure S6 depicts the same plots for the Southern Hemisphere. As in Zscheischler et al. (2012), overall, the classes identified

by the various classification schemes show a worse match than for the Northern Hemisphere. However, Fig. S6a shows that

the predictive structures can clearly distinguish the sub-tropical water-driven region and the transitional energy/water-driven

regions as well. In addition, the Köppen-Geiger climate classes (Fig. S6c
:
b) of the tropic and the arid regions are also iden-

tified in a certain degree. The IGBP classes, in Fig S6dc, do not form clear clustersin the plot. Finally, one can notice that10

the water-driven class based on Granger causality is well separated since water is the most dominant factor in the Southern

Hemisphere while energy/temperature- driven regions are rather limited.
:
.
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Figure S6. As Fig. S5 but for the Southern Hemisphere.
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Figure S7.
:::::::::::
Hydro-climatic

::::::
biomes

::::
based

::
on

::::::::
vegetation

::::::
optical

::::
depth

:::::
(VOD)

::::
data.

:::
The

:::::
VOD

:::::::
anomalies

::::
used

::
as

::::
target

::::::
variable

::
in

:::
the

:::::::
proposed

:::::::
approach.
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