Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3727-2018
https://doi.org/10.5194/gmd-11-3727-2018
Development and technical paper
 | 
17 Sep 2018
Development and technical paper |  | 17 Sep 2018

Assimilating compact phase space retrievals (CPSRs): comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles

Arthur P. Mizzi, David P. Edwards, and Jeffrey L. Anderson

Related authors

Assimilation of satellite NO2 observations at high spatial resolution using OSSEs
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Y. Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 17, 7067–7081, https://doi.org/10.5194/acp-17-7067-2017,https://doi.org/10.5194/acp-17-7067-2017, 2017
Short summary
Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: a regional chemical transport/ensemble Kalman filter data assimilation system
Arthur P. Mizzi, Avelino F. Arellano Jr., David P. Edwards, Jeffrey L. Anderson, and Gabriele G. Pfister
Geosci. Model Dev., 9, 965–978, https://doi.org/10.5194/gmd-9-965-2016,https://doi.org/10.5194/gmd-9-965-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001129<2884:AEAKFF>2.CO:2, 2001.
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, https://doi.org/10.1175/1520-0493(2003)<0634:ALLSFF>2.0.CO:2, 2003.
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus, 61, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x, 2008.
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009.
Arellano Jr., A. F., Raeder, K., Anderson, J. L., Hess, P. G., Emmons, L. K., Edwards, D. P., Pfister, G. G., Campos, T. L., and Sachse, G. W.: Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission, Atmos. Chem. Phys., 7, 5695–5710, https://doi.org/10.5194/acp-7-5695-2007, 2007.
Download
Short summary
Accurate air quality forecasts are critical to protecting human health and the environment. This paper shows how ensemble assimilation of MOPITT CO compact phase space retrieval (CPSR) profiles in WRF-Chem/DART provides significant improvements in the air quality forecasts over the CONUS when compared to independent remote (IASI CO retrieval profiles) and in situ (IAGOS/MOZAIC) observations. It also extends the CPSR algorithm to assimilation of truncated retrieval profiles.