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Abstract. Assimilation of atmospheric composition re-
trievals presents computational challenges due to their high
data volume and often sparse information density. Assimila-
tion of compact phase space retrievals (CPSRs) meets those
challenges and offers a promising alternative to assimila-
tion of raw retrievals at reduced computational cost (Mizzi
et al., 2016). This paper compares analysis and forecast re-
sults from assimilation of Terra/Measurement of Pollution in
the Troposphere (MOPITT) carbon monoxide (CO) CPSRs
with independent observations. We use MetOp-A/Infrared
Atmospheric Sounding Interferometer (IASI) CO retrievals
and Measurement of OZone, water vapor, carbon monoxide,
and nitrogen oxides by in-service AIrbus airCraft (MOZAIC)
in situ CO profiles for our independent observation compar-
isons. Generally, the results confirm that assimilation of MO-
PITT CPSRs improves the Weather Research and Forecast-
ing model with chemistry coupled to the ensemble Kalman
filter data assimilation from the Data Assimilation Research
Testbed (WRF-Chem/DART) analysis fit and forecast skill
at a reduced computational cost compared to assimilation
of raw retrievals. Comparison with the independent observa-
tions shows that assimilation of MOPITT CO generally im-
proved the analysis fit and forecast skill in the lower tropo-
sphere but degraded it in the upper troposphere. We attribute
that degradation to assimilation of MOPITT CO retrievals
with a possible bias of ∼ 14 % above 300 hPa. To discard

the biased retrievals, in this paper, we also extend CPSRs to
assimilation of truncated retrieval profiles (as opposed to as-
similation of full retrieval profiles). Those results show that
not assimilating the biased retrievals (i) resolves the upper
tropospheric analysis fit degradation issue and (ii) reduces
the impact of assimilating the remaining unbiased retrievals
because the total information content and vertical sensitivi-
ties are changed.

1 Introduction

The adverse impacts of poor air quality on human health
and welfare are well documented, e.g., Harvey (2016) and
Robichaud (2017). Air quality analyses and forecasts, more
generally chemical weather products, are used to help under-
stand and preempt poor air quality events. The accuracy of
such chemical weather products depends in part on the ap-
plication of chemical data assimilation to combine air qual-
ity observations with independent estimates of the air qual-
ity state to produce an “optimal” chemical weather analy-
sis (Robichaud, 2017). Air chemistry observations generally
fall into two categories: in situ and remote. In situ obser-
vations come from direct observational platforms like sam-
plers, and remote observations come from indirect observa-
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tional platforms like satellites. Due to the spatial and tempo-
ral sparsity of in situ observations, air quality managers and
researchers are increasingly relying on satellite observations.
Such observations generally come in the form of “retrievals,”
and their use involves challenges that include (i) low infor-
mation density (the amount of information per retrieval is
small), (ii) large volumes of data, (iii) incorporation of un-
observed information from the retrieval prior, and (iv) corre-
lated observation errors (Mizzi et al., 2016). In the chemical
weather forecasting/data assimilation literature, there have
been several papers that have studied those challenges; see
Joiner and Da Silva (2006), Migliorini et al. (2008), and
Mizzi et al. (2016). Generally, other researchers have dealt
with challenges (i) and (ii) by assimilating all the available
retrievals (e.g., Jiang et al., 2015). They have dealt with chal-
lenge (iii) by assimilating the contribution from the retrieval
priors (e.g., Jiang et al., 2015), and they have dealt with chal-
lenge (iv) by ignoring the error correlations (e.g., Barre et
al., 2015). As discussed in Mizzi et al. (2016), the problem
with their approach for addressing challenges (i) and (ii) is
that it is computationally expensive and inefficient to assimi-
late all the retrievals. Some researchers have tried to address
this by discarding (not assimilating) some of the retrievals in
the vertical profile (Arellano Jr. et al., 2007). A similar strat-
egy is used by some researchers to address biased retrievals;
i.e., they do not assimilate the biased retrievals (Barre et al.,
2015). Some of the results in this paper suggest there are un-
expected adverse impacts from discarding selected elements
and assimilating the remaining elements of a retrieval profile.
Mizzi et al. (2016) introduced the assimilation of “compact
phase space retrievals” (CPSRs) to address challenges (i)
and (ii) without discarding elements of the retrieval profile.
In this paper, we extend the CPSR algorithm to truncated re-
trieval profiles (retrieval profiles where some of the elements
of the profile are not assimilated). However, as discussed
herein, the assimilation of truncated retrieval profiles gives
unexpected results due to role of the averaging kernel in the
retrieval forward operator.

Joiner and Da Silva (2006) was the first paper to address
challenge (iii) – not assimilating the retrieval prior contribu-
tion. They proposed three approaches. In the first, they char-
acterized the retrieval equation:

yr = Ayt+ (I−A)ya+ ε, (1)

where yr is the retrieval profile (column vector, dimension
n – the number of observations in a full retrieval profile), I
is the identity matrix (square matrix, dimension n× n), A is
the averaging kernel (square matrix, dimension n× n, and
rank k, where k < n), ya is the retrieval prior profile (col-
umn vector, dimension n), ε is the measurement error in re-
trieval space (column vector, dimension n) with error covari-
ance Em (square matrix, dimension n× n), and yt is the un-
known true atmospheric profile (column vector, dimension
n) as the sum of two linear transformations. The first trans-
formation was a mapping of yt to retrieval space by A, and

the second was a mapping of ya to retrieval space by I−A.
Then, they projected yr onto the trailing left singular vec-
tors from a singular value decomposition (SVD) of I−A.
In their second approach, they projected yr onto the trailing
left singular vectors from an SVD of the retrieval prior error
as mapped by I−A. Finally, their third approach proposed
a revised retrieval process that eliminated the need for ya.
Those approaches were generally successful and introduced
the idea of assimilating phase space retrievals. The second
paper to address challenge (iii) was Migliorini et al. (2008).
They formed the “quasi-optimal retrieval” (QOR) equation
by subtracting the (I−A) term in Eq. (1) from yr (to remove
the prior contribution). Then, to address challenges (i), (ii),
and (iv), they projected the result onto the leading left singu-
lar vectors from an SVD of Em and discarded those modes
whose ensemble variance was much smaller than the trans-
formed observation error variance. Their approach was gen-
erally successful but did not address why the modes of the
observation error covariance should be related to the modes
of the QOR. Finally, Mizzi et al. (2018) used QORs to ad-
dress challenge (iii) and two phase space transforms to ad-
dress challenges (i), (ii), and (iv). The first was a compres-
sion transform based on the leading left singular vectors of
A. This step enabled compression because A is highly rank
deficient. Since those singular vectors span the range of A
and the QORs are in that range, their respective modes were
mathematically related. The second was a diagonalization
transform to account for the observation error covariance
during the assimilation. Their approach was generally suc-
cessful. The Mizzi et al. (2016) and Migliorini et al. (2008)
algorithms are different. The Migliorini et al. (2008) ap-
proach was motivated by rank deficiency of the observation
error covariance and whether the phase space ensemble error
variance was small relative to the transformed observation er-
ror variance. The Mizzi et al. (2016) approach was motivated
by rank deficiency of the averaging kernel and accounting
for the observation error covariance. The spaces spanned by
the respective transform vectors are different. The Miglior-
ini et al. (2008) vectors spanned observation error covari-
ance space, and the Mizzi et al. (2016) vectors spanned QOR
space. The Migliorini et al. (2008) compression was based on
the relative magnitude of the transformed ensemble error and
observation error variance, and the Mizzi et al. (2016) com-
pression was based on the removal of redundant information
for the QOR.

One aspect of assimilating retrievals not addressed by
Migliorini et al. (2008) or Mizzi et al. (2016) is how to ap-
ply their algorithms when the retrieval profile is truncated.
Such an extension is necessary if one wants to assimilate
only a portion of the retrieval profile. Both methods can be
extended, so one goal of this paper is to document that exten-
sion for CPSRs and evaluate the results.

Mizzi et al. (2016) demonstrated the utility of assimilating
CPSRs by verifying the analysis and forecast results against
the assimilated observations. In this paper, we compare our
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results against both the assimilated and independent obser-
vations. As in Mizzi et al. (2016), we assimilate conven-
tional meteorological observations and Terra/Measurement
of Pollution in the Troposphere (MOPITT) CO retrievals,
but here we also compare our analysis and forecast results
with MetOp-A/Infrared Atmospheric Sounding Interferome-
ter (IASI) CO retrievals and Measurement of OZone, water
vapor, carbon monoxide, and nitrogen oxides by in-service
AIrbus airCraft (MOZAIC) in situ CO profiles. Those com-
parisons are necessary because they provide an indepen-
dent assessment of the improved analysis fit and forecast
skill. The remainder of this paper is organized as follows:
Sect. 2 describes the forecast/data assimilation system to-
gether with the assimilated meteorological and chemistry
observations. Section 3 describes the independent IASI and
MOZAIC observations used in the verification analyses. Sec-
tion 4 presents descriptions of our experiments, retrieval pre-
processing methods, and extension of CPSRs to truncated re-
trieval profiles. Section 5 compares the results of assimilat-
ing MOPITT CO retrievals (full and truncated profiles) with
the IASI and MOZAIC CO observations. Finally, Sect. 6
presents a summary of our results and conclusions.

2 WRF-Chem/DART regional forecasting ensemble
data assimilation system: setup and assimilated
observations

For the experiments reported here, we use the WRF-
Chem/DART regional chemical transport/ensemble Kalman
filter data assimilation system introduced by Mizzi et
al. (2016). WRF-Chem/DART is made up of the Weather
Research and Forecasting (WRF) model with chemistry
(WRF-Chem) (https://www2.acom.ucar.edu/wrf-chem, last
access: 6 September 2018) coupled to the ensemble
Kalman filter data assimilation from the Data Assimila-
tion Research Testbed (DART) (http://www.image.ucar.edu/
DAReS/DART/, last access: 6 September 2018; Anderson
et al., 2009). WRF-Chem is a regional model that predicts
conventional weather together with the transport, mixing,
and chemical transformation of atmospheric trace gases and
aerosols. DART is an ensemble data assimilation system
that uses the ensemble adjustment Kalman filter of Ander-
son (2001, 2003) together with adaptive inflation and local-
ization.

We conduct continuous cycling experiments with 6 h cy-
cling (00:00, 06:00, 12:00, and 18:00 UTC) for the period
1 June 2008, 00:00 UTC, to 9 June 2008, 18:00 UTC. To fa-
cilitate a large number of experiments, we use a reduced en-
semble size of 20 members, a horizontal resolution of 100 km
(101×41 grid points), and an abbreviated 9-day study period
(compared to the 30-day period used in Mizzi et al., 2016).
The reduced study period is not thought to negatively impact
our results because the WRF-Chem/DART spin-up occurs
within the first 48 to 72 h. The WRF-Chem domain extends

from ∼ 176 to ∼ 50◦W and ∼ 7 to ∼ 54◦ N. We use 34 ver-
tical levels with a model top at 10 hPa and ∼ 15 levels below
500 hPa. We use DART adaptive prior covariance inflation
with the recommended settings and DART Gaspari–Cohn lo-
calization with a localization radius half-width of ∼ 300 km
in the horizontal (Anderson, 2008). Vertical localization is
not used. These are the same settings as used by Mizzi et
al. (2016).

The WRF-Chem initial and boundary conditions are de-
rived from the National Oceanic and Atmospheric Ad-
ministration/National Center for Environmental Prediction
(NOAA/NCEP) Global Forecast Model (GFS) 0.5◦ 6 h fore-
casts. The WRF Preprocessing System (WPS) interpolates
the GFS forecasts to our domain and generates the deter-
ministic boundary conditions. We use the WRF Data Assim-
ilation System (WRFDA) (https:www2.mmm.ucar.edu/wrf/
users/docs/user_guide_V3.9/ARWUsersGuideV3.9.pdf, last
access: 6 September 2018; Barker et al., 2012) to generate the
initial meteorological ensemble. The chemistry initial and
boundary conditions are derived from the Model for Ozone
and Related Chemical Tracers: MOZART-4 (MOZART)
forecasts, and WRF-Chem utilities are used to interpolate
those forecasts to our domain and generate the determinis-
tic chemistry boundary conditions. The emissions and initial
chemistry ensembles are generated as described in Mizzi et
al. (2016). The ensemble distributions are Gaussian with a
specified mean and standard deviation. The tails of those dis-
tributions are truncated to include 95 % of the distribution
and exclude outliers. That strategy ensures that the emissions
and initial chemistry variable concentrations are positive def-
inite. We do not include horizontal correlations for the emis-
sion perturbations because they are not relevant to the focus
of this paper.

At each cycle time, depending on the experiment, we as-
similate conventional meteorological and chemistry observa-
tions with DART and advance the analysis ensemble to the
next cycle time with WRF-Chem. The resulting 6 h forecast
ensemble is then used as the first guess in the next assimila-
tion step. Our conventional meteorological observations are
NCEP automated data processing (ADP) upper air and sur-
face observations (PREPBUFR observations), and our chem-
istry observations are MOPITT CO mixing ratio retrieval
profiles. MOPITT is an instrument on the National Aeronau-
tics and Space Administration’s (NASA’s) Earth Observing
System Terra satellite. Its spatial resolution is 22 km at nadir
over a swath width of 640 km. Its thermal infrared (TIR)
measurements are sensitive to CO in the middle and upper
troposphere, while its near-infrared (NIR) measurements are
sensitive to total column CO. MOPITT provides global cov-
erage every 3 to 4 days. MOPITT CO is reported on 10 verti-
cal levels starting at a variable surface pressure level and then
ranging from 900 to 100 hPa every 100 hPa. We assimilate
the MOPITT V5 thermal-infrared/near-infrared (TIR/NIR)
retrieval products described by Deeter et al. (2013). Vali-
dation results suggest that from 400 hPa to the surface the
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MOPITT CO retrievals are accurate to within 5 %. Above
400 hPa, they may have a positive bias of ∼ 14 % (Deeter et
al., 2013, and Martinez-Alonso et al., 2014), that has been
addressed in subsequent MOPITT products (Deeter et al.,
2014).

The horizontal resolution of the MOPITT data is much
greater than that at which we run WRF-Chem. That differ-
ence translates to representativeness errors due to the smaller
spatial scales that are resolved by the satellite but not by
the model. To address those errors, we construct super-
observations as follows: (i) sort the retrievals, retrieval priors,
averaging kernels, and retrieval error covariances into bins
that are ∼ 90 km square, (ii) calculate the bin average for
each of those variables, and (iii) assimilate the bin-average
retrievals. We use an arithmetic average (as opposed to an er-
ror covariance weighted average) when calculating the super-
observations. We do not apply corrections to the retrieval
error covariance super-observations because we are inter-
ested in the assimilation impact of the reported errors and
can apply tuning to those errors and balance the root mean
square error (RMSE)/total spread fit as needed. Other stud-
ies, e.g., Eskes et al. (2003), Miyazaki et al. (2012a, b, 2015),
and Barre et al. (2016), have used similar super-observation
strategies. We do not expect that tuning the observation er-
rors would significantly impact our results because our diag-
nostic analyses showed that the RMSE and total spread were
properly balanced.

3 Independent observations for verification: MOZAIC
in situ and IASI CO retrieval profiles

In the first part of this paper, we compare the analysis and
forecast results from assimilating MOPITT CO with inde-
pendent observations (IASI CO retrievals and MOZAIC in
situ CO profiles). IASI is an instrument on the EUMETSAT
(European Organization for the Exploitation of Meteorolog-
ical Satellites) polar-orbiting MetOp-A satellite (Clerbaux et
al., 2009). It measures temperature, water vapor, fractional
cloud cover, cloud top temperature, ozone, carbon monox-
ide, and methane. IASI has been operating from 2006 to
the present. Its mission is to provide observational support
for numerical weather prediction. IASI measures CO radi-
ances under cloud-free conditions with a horizontal resolu-
tion of 25 km over a swath width of ∼ 2200 km. IASI mea-
surements are sensitive to CO in the middle to lower tropo-
sphere. IASI provides global coverage every 2 days. IASI
CO is reported on 19 altitude levels ranging from the sur-
face to 18 km every 1 km. Validation results suggest that the
CO retrievals are accurate to within 13 %. For more infor-
mation, see https://www.eumetsat.int/ (last access: 6 Septem-
ber 2018).

MOZAIC was a European Research Infrastructure (ERI)
project that collected long-term, global-scale measurements
of atmospheric composition on international commercial air-

line flights from August 1994 to November 2014 (Marenco et
al., 1998). MOZAIC collected in situ measurement of ozone,
water vapor, carbon monoxide, and total nitrogen oxides. The
available data products are geolocated (come with longitude,
latitude, and pressure coordinates) and include simultaneous
meteorological observations. During MOZAIC, data acquisi-
tion was automatically performed on the ascent, descent, and
cruise phases of round-trip international flights between Eu-
rope and the US, Africa, the Middle East, and Asia. For more
information, see http://www.iagos.fr/ (last access: 6 Septem-
ber 2018).

4 Experimental design

We conduct WRF-Chem/DART forecast/assimilation cy-
cling experiments that are similar to those of Mizzi et
al. (2016). The primary differences are the (i) use of super-
observations, (ii) extension of CPSRs to truncated retrieval
profiles, and (iii) use of localization to preclude the as-
similated MOPITT CO observations from impacting any
state variable other than CO. We performed a control ex-
periment where we assimilated only conventional meteo-
rological observations (the MET experiment), and we per-
formed a series of chemical data assimilation experiments.
In those experiments, we studied assimilation results from
four types of retrieval preprocessing strategies: (i) volume
mixing ratio retrievals (VMRRs, the associated experiment
is called the VMRR experiment), (ii) log10(VMRR) re-
trievals (L10VMRRs, the L10VMRR experiment), (iii) com-
pact phase space retrievals (CPSRs, the CPSR experiment),
and (iv) quasi-optimal retrievals (QORs, the QOR experi-
ment). The CPSR and QOR experiments (as applied to as-
similation of full retrieval profiles) were studied by Mizzi
et al. (2016). The VMRR experiment and the L10VMRR
and CPSR experiments as applied to assimilation of trun-
cated retrieval profiles are new. We include the L10VMR
and QOR experiments as applied to retrieval full profiles be-
cause, as discussed in the introduction, our comparison of
those experiments with independent observations (discussed
below in Sect. 5.1) suggests that it may be beneficial to not
assimilate MOPITT CO retrievals in the upper troposphere
due to their possible bias. That concern motivates applica-
tion of the L10VRR and CPSR experiments to the assimi-
lation of truncated retrieval profiles. The rest of this section
describes those experiments. It should be noted that the dif-
ferent retrieval preprocessing methods (making up the differ-
ent experiments) are applied after the customary quality as-
surance/quality control (QA/QC) checks that might discard
entire retrieval profiles. Those forecast/assimilation experi-
ments are summarized in Table 1.
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Table 1. Summary of the WRF-Chem/DART forecast/data assimilation experiments.

Assimilate Assimilate Assimilate Assimilate Assimilate Assimilate
meteorology raw MOPITT MOPITT MOPITT full retrieval retrieval truncated

Experiment observations retrievals CPSRs QORs profiles profiles

MET Yes No No No No No
VMRR Yes Yes No No Yes No
L10VMRR Yes Yes No No Yes No
CPSR Yes No Yes No Yes No
QOR Yes No No Yes Yes No
L10VMRR-RJ3 Yes Yes No No No Yes
CPSR-RJ3 Yes No Yes No No Yes

4.1 The VMRR and L10VMRR experiments

The MOPITT CO retrieval, averaging kernel, and error co-
variance products are reported in units of log10(VMR). The
IASI CO products are in VMR. For ease of comparison and
interpretation, it is convenient to convert the MOPITT data
from L10VMRR to VMRR. While it is possible to convert
the retrievals and error covariance, it is not possible to con-
vert the averaging kernels. Consequently, for the VMRR ex-
periment, the DART forward operator for MOPITT CO con-
verts the state space CO profile from VMRRs to L10VMRRs,
applies the averaging kernel, and then converts the resulting
expected observation (the expected retrieval profile) to VMR.
For the L10VMRR experiment, a conversion is not neces-
sary because the state space CO profile is in log10(VMR).
Conceptually, we expect little difference between the VMRR
and L10VMRR experiments due to an underlying assump-
tion that L10VMRRs have a Gaussian distribution and the
VMRRs have a lognormal distribution (Deeter et al., 2007a).
However, non-linearity of the base-10 exponential operator
that relates the L10VMRRs to the VMRRs and the extent to
which the VMRR distributions are non-Gaussian may intro-
duce differences. So, one goal of the related experiments is to
determine whether those differences are significant. Another
reason is to include preprocessing methods that enable us to
not assimilate selected retrievals so we can compare the as-
similation/forecast results with those from applying CPSRs
to truncated retrieval profiles.

4.2 The QOR experiment

The assimilation of QORs was discussed in Mizzi et
al. (2016). We include QOR assimilation/forecast experi-
ments for completeness and to provide a reference against
which to compare the other retrieval preprocessing experi-
ments. In addition (although not discussed herein), QOR pre-
processing can be applied to truncated retrieval profiles using
the extension discussed in the next section on the CPSR ex-
periment.

QORs are retrieval residuals introduced by Migliorini et
al. (2008). They are derived by writing the retrieval equation

as

yr− (I−A)ya− ε = Ayt, (2)

and transforming Eq. (2) with the left singular vectors from
the SVD of Em divided by the square root of the associated
singular value. If the SVD of Em is Em = φσϕ

T , then the
QOR profile is defined as

σ−1/2φT (yr− (I−A)ya− ε)= σ
−1/2φTAyt, (3)

and the transformed Em is the identity matrix. That transform
is similar to the CPSR diagonalization transform described
in the next section, except Migliorini et al. (2008) applied
the QOR transform to the raw averaging kernel and the raw
error covariance while Mizzi et al. (2016) applied it to the
compressed averaging kernel and the compressed error co-
variance. In our application of QORs, there is no filtering of
the dominant modes. Also, in general, the QOR transform
has no zero singular values because Em is not singular.

4.3 The CPSR experiment and the extension of CPSRs
to assimilation of truncated retrieval profiles

The derivation and assimilation of CPSRs was introduced by
Mizzi et al. (2016). They derived CPSRs by applying two
transforms to Eq. (2): (i) a compression transform based on
the SVD of A, and (ii) a diagonalization transform based on
the SVD of the compressed Em. Their application can be
characterized as CPSRs applied to full retrieval profiles (be-
cause none of the elements in the retrieval profile were dis-
carded) or to square systems (because A is a square matrix).
If we discard one or more elements of yr, then we must also
discard the corresponding rows of A (call the modified forms
ŷr and Â, respectively). The resulting Â is not a square ma-
trix. Note that we must also discard the corresponding rows
and columns of Em, so it remains square but its dimension
is reduced. This application can be characterized as CPSRs
applied to truncated retrieval profiles (because some of the
elements of the retrieval profile have been discarded) or to
rectangular systems (because Â is a non-square rectangular
matrix). The mathematical formalism for CPSRs applied to
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rectangular systems is the same as that for square systems
because Mizzi et al. (2016) used a SVD (as opposed to an
eigenvalue decomposition) in their derivation. In the remain-
der of this section, we extend the derivation of CPSRs from
Mizzi et al. (2016) to rectangular systems.

We begin by conceptually discarding q elements of yr.
Generally, we discard the elements of the full retrieval pro-
file yr that are known to be systematically bad observations.
If we discard multiple elements, they need not be sequential.
The resulting truncated retrieval profile is denoted ŷr and its
dimension is n̂= n− q. We must also discard (i) the corre-
sponding elements of ε to get ε̂ with dimension n̂, (ii) the
corresponding rows of A to get Â with dimension n̂×n, and
(iii) the corresponding rows and columns of Em to get Êm
with dimension n̂×n̂. Without loss of generality, we can drop
thê notation for the remainder of this paper and let yr, ε,
A, and Em represent their respective terms before and after
discarding the retrieval elements that will not be assimilated.
The rest of the derivation is the same as in Mizzi et al. (2016).

First, we apply the compression transform based on the
leading left singular vectors of A. If A= USVT is the SVD
and A0 = U0S0V

T
0 is the truncated SVD where the trailing

singular vectors (those whose singular values are less than
an ad hoc threshold of 1.0× 10−4) are replaced with zero
vectors and the trailing singular values are set to zero, then
the compressed form of Eq. (2) is

UT0
(
yr− (I−A)ya− ε

)
= S0VT0 yt, (4)

and the compressed error covariance is

UT0 EmU0. (5)

In that step, there is no filtering of the dominant modes.
Next, we apply the diagonalization transform. If the SVD
of the compressed error covariance in Eq. (5) is UT0 EmU0 =

869T , then the diagonalized and conditioned form of
Eq. (4) is

6−1/28T UT0
(
yr− (I−A)ya− ε

)
=6−1/28T S0VT0 yt, (6)

and that of Eq. (5) is the identity matrix. Equations (4)–(6)
and the fully transformed error covariance are the same as in
Mizzi et al. (2016) except that unwanted retrieval elements
have been discarded.

Finally, we note that the rank of A and the rank of Â are
generally the same provided the difference between the di-
mension of A and the rank of A is greater than or equal to the
number of discarded elements from the retrieval profile, i.e.,
n− k ≥ q. That statement is not necessarily true, but given
the rank deficiency of A it is usually true. We also note that
the 6−1/28T S0VT0 on the right side of Eq. (6) is the trans-
formed averaging kernel. It represents the sensitivity of the
phase space retrievals (the CPSRs) to the true CO concentra-
tions at each vertical level. Unlike the raw averaging kernel,
which included sensitivities to the null space contributions to

the retrieval (the linearly dependent contributions from the
right side of Eq. 2), the transformed averaging kernel con-
tains only sensitivities for the measurement contributions to
the retrieval (the linearly independent contributions from the
right side of Eq. 2).

5 Results

5.1 Assimilation of full retrieval profiles

In this section, we look at assimilation/forecast results from
the experiments described in Sect. 4. The reader should
note that the CPSR and QOR experiments are the same as
the MOP CPSR and MOP QOR experiments from Mizzi
et al. (2016) except (i) the study period is shorter (9 days
as opposed to 1 month), (ii) we assimilate MOPITT super-
observations, and (iii) we use localization to preclude the
assimilated MOPITT CO observations from impacting any
state variable other than CO.

Figure 1 shows forecast verification statistics (RMSE and
bias) for the different experiments when compared against
the assimilated MOPITT CO retrievals on the left and the
independent IASI CO retrievals on the right. For the MO-
PITT comparison, the MOPITT CO forward operator has
been applied to the WRF-Chem results so the comparison
is made in MOPITT CO retrieval space. Similarly, for the
IASI comparison, the IASI CO forward operator has been ap-
plied so the comparison is made in IASI CO retrieval space.
The left panel can be compared with Fig. 8 from Mizzi et
al. (2016). Qualitatively, that comparison shows that the two
figures are similar. The MET experiment yields the high-
est RMSE and bias, while the CPSR and QOR experiments
yield lower RMSE and bias. Similar results are seen in the
IASI CO comparison. It is interesting that for both compar-
isons (i) the VMRR experiment shows a slight degradation
when compared to the MET experiment, and (ii) the VMRR
and L10VMRR experiments are similar to the MET experi-
ment. We suspect that result (i) is a consequence of the non-
linearity of the base-10 log function and the non-Gaussianity
of the VMRR distributions, and result (ii) is a consequence
of the magnitude of the observation errors used in the VMRR
and L10VMRR experiments (discarding the observation er-
ror cross-covariance produced observation error variances
that are large compared to those produced by the CPSR di-
agonalization transform) and the length of the study period.
We believe the CPSR observation errors are smaller due to
the compression step of the CPSR transform. They cannot
be smaller due to the diagonalization step because that is
a variance maximizing rotation. So, if the compression had
no filtering effect on the errors, the variance resulting from
the diagonalization step would no smaller than that from the
compression step. One consequence of relatively large obser-
vation errors is that it takes more cycles for the assimilation
to show an impact. We have run similar experiments with a
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Figure 1. Forecast (assimilation prior) verification statistics for all experiments in MOPITT retrieval space on the left and IASI retrieval
space on the right. The red curve is root mean square error (RMSE), and the blue curve is bias (model – observation). The experiments are
described in the text and summarized in Table 1.

longer study period and found assimilation impacts. We do
not view that as a deficiency in the experimental design. We
are interested in the assimilation of CPSRs. If they show an
impact during a shorter study period but more conventional
methods that do not account for redundant information or er-
ror correlations fail to show an impact, then that failure iden-
tifies deficiencies in the conventional methods.

Figure 1 generally shows increasing improvement when
moving from the MET to L10VMRR to CPSR and QOR
experiments. As discussed previously, the VMRR and
L10VMRR experiments show little to no improvement over
the MET experiment. In Fig. 1, the CPSR and QOR exper-
iments show comparable skill. That result can also be seen
in Mizzi et al. (2016) by comparing Figs. 3 and 7. There are
two potential explanations. First, we use the retrieval space
retrieval error covariance (Er) as the observation error co-
variance to account for other unquantified error sources, and
Er = (I−A)Ea, where Ea is the retrieval a priori error co-
variance. If the singular vectors of Er are equivalent to those
of A, we would get similar results from the CPSR and QOR
experiments. However, Ea is specified in the retrieval algo-
rithm as a covariance matrix, and generally there is no rea-
son to suspect that the singular vectors of Er are equivalent
to those of A (for MOPITT CO, they are not equivalent be-
cause their respective singular vectors are not orthogonal).
Second, in the QOR experiment, the diagonalization trans-
form rotates the QOR equation so that the observation error
cross-covariance contributions for each mode are included
in their corresponding observation error variance. However,
those modes are linearly dependent in the space defined by
the rotated averaging kernel because the rotated averaging
kernel is still singular. When those linearly dependent modes
are assimilated, there is very little adjustment to the analysis.
Consequently, the CPSR and QOR experiments yield similar
results because (i) the QOR experiment apportions the error
and assimilates the linearly dependent modes (which have
little or no impact), while (ii) the CPSR experiment appor-

tions the error and does not assimilate the linearly dependent
modes. Those results differ from the VMRR and L10VMRR
experiments because the observation error variance used in
the retrieval space experiments does not account for the error
cross-covariance contributions, and the linearly independent
portion of that error is different from that in the CPSR and
QOR experiments.

In Fig. 2, we compare results from the CPSR and MET
experiments with the MOZAIC ascent and descent sound-
ings for Dallas, TX (two soundings composited), Port-
land, OR (four soundings composited), and Philadelphia,
PA (two soundings composited). The MOZAIC sound-
ings from 1 June 2008 (Dallas, TX) were discarded be-
cause they were observed during our spin-up period. Oth-
erwise, out MOZAIC comparisons were not impacted by
forecast/assimilation system spin-up. No other MOZAIC
soundings were available for our study period and domain.
The MOZAIC soundings used in Fig. 2 were generally
not spatially (within several hundred kilometers) or tem-
porally (within 3 h) coincident with the MOPITT observa-
tions. We linearly interpolated the WRF-Chem forecasts to
the MOZAIC observation times and locations and then com-
posited the results. We did not plot the composited MOZAIC
profile below 750 hPa because those data are more repre-
sentative of the lower troposphere over urban areas than
are our model grid and assimilated super-observations. The
MOZAIC comparison results are qualitatively similar to
those from Fig. 1. The CPSR experiment shows that (i) as-
similation of phase space retrievals improves the 6 h forecast
skill in the middle and lower troposphere when compared
to the MET experiment for Dallas, TX, and Portland, OR,
but degrades the skill in the upper troposphere; (ii) assimila-
tion generally degrades skill throughout the troposphere for
Philadelphia, PA; (iii) none of the assimilation impacts are
significant based on the ensemble variability; and (iv) assimi-
lation provides little or no change near the surface. The upper
tropospheric degradation in results (i) and (ii) is related to the
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Figure 2. Comparisons of the CPSR experiment against the IAGOS/MOZAIC in situ CO profiles in ppb composited for 1 June 2008 for
Dallas, TX, in panel (a), 3 and 9 June 2008 for Portland, OR, in panel (b), and 7 June 2008 for Philadelphia, PA, in panel (c). Chem EX
refers to the CPSR experiment. The error bars are based on the ensemble variability.

positive bias in upper tropospheric MOPITT retrievals dis-
cussed earlier. Result (iii) is likely a result of the small sam-
ple size, but given the magnitude of the skill differences in
the middle and upper troposphere and the “near significance”
suggested by some of the error bars, we think there is value in
presenting these results. Result (iv) is somewhat unexpected
because MOPITT retrievals are documented to have sensitiv-
ity to CO in the upper and lower troposphere (Deeter et al.,
2007b). Also, other chemical data assimilation researchers,
e.g., Jiang et al. (2013) and Barre et al. (2015), have reported
near-surface improvements due to assimilation of MOPITT
CO multispectral retrievals. We suspect result (iv) occurs be-
cause MOPITT’s upper tropospheric sensitivities dominate
its lower tropospheric sensitivities in the transformed system.

To test that hypothesis, we plot a histogram of the MO-
PITT degrees of freedom for signal (DOFS) for all terrestrial
profiles in our domain during the study period in Fig. 3. The
MOPITT DOFS is a measure of the amount of independent
observed information in a retrieval profile. If a profile con-
tains independent information from the upper and lower tro-
posphere, its DOFS must be ∼ 2.0. The central histogram of
Fig. 3 shows that the mean, median, and mode of DOFSs
during this period are ∼ 1.5 and that DOFSs greater than
∼ 2.0 are relatively rare (< 5 %). To gain a better under-
standing of the vertical structure of the MOPITT retrieval
information content, we present a composite analysis for
averaging kernel profiles in the neighborhood of different
DOFS values in the lower row of Fig. 3 where panel (a)
is the composite averaging kernels for all DOFS, panel (b)
is for (0.9<DOFS< 1.1, ∼ 10 % of the histogram proba-
bility mass), panel (c) is for (1.4<DOFS< 1.6, ∼ 26 %),
and panel (d) is for (1.9<DOFS< 2.1, ∼ 4 %). Those pan-
els show that the dominant sensitivity appears to be to the
upper troposphere and that as the DOFS approaches 2.0 the
sensitivity to the lower troposphere increases. That sensitiv-
ity distribution could explain the improvement drop off in
the lower troposphere for the MOZAIC comparisons because

Table 2. Average information content for each mode of the aver-
aging kernel for the entire study period. CompAK 1 denotes the
average information in mode 1, CompAK 2 is for mode 2, and so
forth. Trace denotes the total information content. “Full histogram”
means all retrievals were considered. DOFS denotes the degree of
freedom for the signal, and the different DOFS rows identify the
average information content for the different DOFS ranges and av-
eraging kernel modes.

CompAK 1 CompAK 2 CompAK 3 Trace

Full histogram 0.9638 0.4785 0.0099 1.452
0.9≤DOFS≤ 1.1 0.8997 0.1174 0.0006 1.018
1.4≤DOFS≤ 1.6 0.9771 0.5188 0.0059 1.502
1.9≤DOF≤ 2.1 1.016 0.8899 0.0518 1.957

retrievals with sensitivity to the lower troposphere are rela-
tively rare. However, linear dependencies in the composite
averaging kernels of Fig. 3 can mask the significance of the
sensitivities to the lower troposphere in the more common
DOFS categories.

To unmask those sensitivities, Fig. 4 presents a compos-
ite analysis of the different DOFS sensitivities based on the
CPSR compression and diagonalization transforms, and Ta-
ble 2 presents the total and modal information content asso-
ciated with Fig. 4. The upper row of Fig. 4 shows composite
vertical profiles of the leading left singular vectors of the av-
eraging kernel. Those singular vectors (i) span the range of
the averaging kernel (the QOR space), (ii) are ranked such
that the first singular vector explains the greatest amount of
vertical variability in the QOR profile, the second singular
vector explains the next greatest amount of variability, and
so forth, and (iii) have arbitrary sign, so we chose the sign
that has the greatest physical meaning; i.e., we apply a −1.0
scaling to the first and second rows of Fig. 4. Table 2 shows
that for 0.9≤DOFS≤ 1.0 most of the information is in the
first mode, for 1.4≤DOFS≤ 1.5 two-thirds of the informa-
tion is in the first mode and one-third is in the second mode,

Geosci. Model Dev., 11, 3727–3745, 2018 www.geosci-model-dev.net/11/3727/2018/



A. P. Mizzi et al.: Assimilating compact phase space retrievals (CPSRs) 3735

Figure 3. Histogram of MOPITT CO degrees of freedom of signal (DOFS) with blow-up histograms for selected DOFS ranges in
the upper panels. The lower panels show composite MOPITT CO averaging kernel profiles for (a) all DOFS, (b) (0.9≤DOFS≤ 1.1),
(c) (1.4≤DOFS≤ 1.6), and (d) (1.9≤DOFS≤ 2.1). The averaging kernel identifiers are V-xxx where xxx is the approximate pressure level
midpoint in hPa for the associated averaging kernel profile.

and for 1.9≤DOFS≤ 2.1 one-half of the information is in
the first mode and one-half is in the second mode. In Fig. 4,
we retained three singular vectors for completeness, but it
should be remembered the third vector (and sometimes the
second vector) may map information to the null space of
the transformed averaging kernel. The second row of Fig. 4
shows composite vertical profiles for the compressed aver-
aging kernels. These profiles show the vertical sensitivity of
compressed QORs to the true atmospheric state. The bottom
row shows the composite vertical profiles for the compressed
and rotated averaging kernels (the profiles after the full CPSR
transformation). These profiles show the vertical sensitivity
of CPSRs to the true atmospheric state.

Figure 4 shows some interesting results. The upper row of
Fig. 4 shows that for DOFS≈ 1.0 (column b) the first leading

singular vector has positive sensitivity near the surface and
negative sensitivity in the middle to upper troposphere (re-
member that the second and third leading vectors may map
to the null space for DOFS≈ 1.0). As the DOFS increases to
1.5, the first and second leading vectors have positive sensi-
tivity near the surface and weakly negative sensitivity in the
middle to upper troposphere, and for DOFS of 2.0, the first
leading vectors have positive sensitivity throughout the tro-
posphere, while the second leading vectors have positive sen-
sitivity near the surface and negative sensitivity in the middle
to upper troposphere.

After applying the CPSR diagonalization transform, the
DOFS-dependent sensitivity patterns in the second row of
Fig. 4 change, and the final patterns (those of the compressed
averaging kernels) are shown in the bottom row. These pro-
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Figure 4. Composite vertical profiles for the (i) leading left singular vectors of the MOPITT CO averaging kernels in the upper row, (ii) com-
pressed averaging kernels in the middle row, and (iii) rotated and compressed averaging kernels in the lower row. The DOFS ranges are
the same as defined for Fig. 2. For the profile labels, “SingVec x” refers to ranked singular vectors, where x= 1 is the first leading singular
vector, x= 2 is the second leading singular vector, and so forth. “Trans Ak x” refers to the compressed or rotated and compressed averaging
kernel profile associated with the QOR and CPSR mode x, respectively.

files show that for all DOFS (column a) the first leading mode
has its greatest sensitivity near the surface and the sensitiv-
ity decreases to a near-zero positive minimum in the upper
troposphere. Similarly, the second leading mode has it great-
est positive sensitivity near the surface but has strong neg-
ative sensitivity in the upper troposphere. The right three
columns of the second row in Fig. 4 show the dependency
of the vertical sensitivity on the DOFS for the compressed
QORs. As seen with the singular vectors, as the DOFS in-
creases the sensitivity changes from weak positive sensitiv-
ity near the surface and strong negative sensitivity in the
upper troposphere to strong positive sensitivity throughout
the troposphere for the first leading mode and positive sen-
sitivity near the surface and strong negative sensitivity in the
upper troposphere for the second leading mode. Those re-
sults suggest that the MOPITT retrievals (and therefore the
results in Fig. 2) should be sensitive to CO in the lower tro-
posphere/near the surface. However, an interesting thing hap-
pens when we account for the reported retrieval error covari-
ance. The lower row of Fig. 4 shows the compressed and

rotated averaging kernel profiles, which account for that er-
ror covariance. Here, the negative scaling cancels each other
because the SVD has been applied twice. These results show
first that the significance of the leading modes becomes re-
versed due to diagonalization transform and scaling by the
inverse square root of the compressed and rotated error vari-
ance. This does not mean that the third leading mode from the
first two rows of Fig. 4 becomes a dominant mode because it
may still be mapping to the null space; i.e., the leading CPSR
modes (those with the smaller observational error variance)
may be mapping to the null space, and the trailing CPSR
modes are mapping to the domain of the transformed averag-
ing kernel. That suggests that there may be benefit to not as-
similating some of the leading CPSR modes which would be
similar to not assimilating the phase space modes with small
observational error as was done by Migliorini et al. (2008).
The bottom row of Fig. 4 shows that after removing the lin-
ear dependencies and accounting for the observation errors,
the compressed and rotated averaging kernel has its great-
est sensitivity in the upper troposphere for DOFS< 2.0 and
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weakest sensitivity near the surface for DOFS≈ 2.0. That ex-
plains why our comparison of the CPSR experiment with the
MOZAIC observations in Fig. 2 did not show assimilation
impacts near the surface. Other researchers who have assim-
ilated MOPITT CO could not have found this result because
they did not adjust for the averaging kernel linear dependen-
cies or for the observation error covariance (see, e.g., Jiang
et al., 2015, and Barre et al., 2015).

Figures 5 and 6 show contour maps comparing the MET
and CPSR experiments for 9 June 2008, 18:00 UTC (Fig. 5),
as well as the assimilated MOPITT and independent IASI
CO retrievals (Fig. 6). Examination of the forecast maps in
the upper panel and the forecast difference map (CPSR ex-
periment minus MET experiment) in the lower left panel of
Fig. 5 (defined as CPSR EX CO Del-Fcst) shows that assim-
ilation of MOPITT CO retrievals increased the CO concen-
trations over some areas (southern California, southern Baja,
and northern Atlantic east of New England) and decreased
the concentrations over broader areas (central to northeast-
ern United States, southeastern United States, and southern
Gulf of Mexico). Comparison of the MOPITT CO retrievals
in the upper panels of Fig. 6 (the assimilated retrievals) with
Fig. 5 shows that the analysis and forecast impacts are gen-
erally consistent with the observations. Over southern Baja,
the MOPITT observations in Fig. 6 report CO on the order of
50 ppb, while the forecast in Fig. 5 (the assimilation prior) re-
ports CO on the order of 100 ppb. The assimilation increment
shows a CO reduction (consistent with the MOPITT obser-
vations) on the order of 50 ppb. Similarly, the increased CO
in the central United States, over Kansas and Nebraska, and
in the southeastern United States near Georgia, South Car-
olina, and Virginia (highlighted by the analysis increment
map in Fig. 5d) is consistent with relatively low CO in the
prior when compared to the MOPITT observations. Com-
parison of the analysis increments, the assimilated MOPITT
CO retrievals, and the independent IASI CO retrievals (lower
panels of Figs. 5 and 6) confirms that the assimilation of MO-
PITT retrievals generally improved the analysis and forecast
agreement with the IASI retrievals compared to the MET ex-
periment. Over Baja, MOPITT and to a lesser extent IASI in
Fig. 6 report CO on the order of 50 to 75 ppb. The assimi-
lation prior (the CO forecast) in Fig. 5 has CO on the order
of 125 to 150 ppb. The corresponding increment is a CO re-
duction on the order of 50 ppb. The IASI CO map in Fig. 5
also confirms adjustments over Oklahoma, Kansas, and Ne-
braska, and to a lesser extent to the east of Georgia, South
Carolina, and Virginia.

Figure 7 shows horizontal domain average vertical pro-
files for the MET and CPSR experiments compared against
horizontal domain average profiles for MOPITT and IASI.
The WRF-Chem profiles are plotted in retrieval space (after
accounting for the averaging kernel and assimilation prior).
Comparison of the model and MOPITT profiles (Fig. 7a)
shows that the CPSR experiment generally draws the fore-
cast and analysis profiles closer to MOPITT than does the

MET experiment. The error bars are based on the ensemble
uncertainty and suggest that those improvements are signifi-
cant throughout the troposphere. The same comparisons with
the IASI profiles (Fig. 7b) show a different result: (i) in the
upper troposphere (pressure (p) < 250 hPa), the MET exper-
iment draws the forecast and analysis profiles closer to IASI
than does the CPSR experiment, and (ii) for p > 250 hPa,
the CPSR experiment draws the profiles closer to IASI. Here
again, the error bars suggest that those changes are significant
throughout the troposphere. The results from the comparison
with IASI highlight the problem, previously discussed for
the MOZAIC comparisons in Fig. 2, with assimilating the
potentially biased MOPITT CO retrievals. To address that
problem, we propose to discard the biased retrievals and as-
similate the unbiased truncated retrieval profiles with the ex-
tended CPSR method described in Sect. 4.

In summary, this section shows that assimilation of MO-
PITT CO retrievals improves analysis fit and forecast skill
when compared to MOPITT as well as when compared to
the independent (not assimilated) IASI and MOZAIC ob-
servations. It shows that (i) the CPSR experiment improves
the skill when compared to assimilation of raw retrievals
(VMRR and L10VMRR) because the phase space trans-
formation reduces the phase space observation errors, and
(ii) the CPSR and QOR experiments yield similar results be-
cause they account for the observation error cross-covariance
contribution in the same way (the diagonalization transform)
and because the linearly dependent portion of the trans-
formed retrievals does not contribute to the analysis incre-
ment (explicitly with CPSRs and implicitly through the as-
similation algorithm for compressed QORs). It also shows
that the CPSR experiment did not improve the skill in the
lower troposphere near the surface because (i) MOPITT CO
profiles with sufficient DOFS to resolve the lower tropo-
spheric CO signal are relatively rare (for this domain and
study period), and (ii) an analysis of the impact of the CPSR
compression and diagonalization transforms shows that the
upper tropospheric CO signal dominates the MOPITT CO
sensitivities. Finally, this section shows that in the upper tro-
posphere assimilation of biased MOPITT observations intro-
duced analysis and forecast error relative to the IASI obser-
vations.

5.2 Assimilation of truncated retrieval profiles

In this section, we test two methods for assimilating trun-
cated retrieval profiles: (i) assimilating L10VMRR retrievals
after discarding the biased retrievals (the L10VMRR-RJ3 ex-
periment where the RJ3 indicates that we do not assimilate
retrievals above 300 hPa – the upper three levels of the MO-
PITT CO retrieval profile) and (ii) assimilating CPSRs with
the extension to truncated retrieval profiles as described in
Sect. 4.3 (the CPSR-RJ3 experiment). The L10VMRR-RJ3
experiment is included only for comparison purposes. If the
L10VMRR-RJ3 and CPSR-RJ3 experiments give similar re-
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Figure 5. Shaded contours of CO in ppb for the MET and CPSR experiment 6 h forecasts valid at this cycle time in panels (a) and (b),
respectively. Panels (c) and (d) represent the difference between the CPSR and MET forecasts (the CPSR experiment 6 h forecast minus the
MET experiment 6 h forecast) in panels (a) and (c) and the assimilation increment for analysis at this cycle time in panels (b) and (d). All
figures are for ∼ 950 hPa and the 9 June 2008, 18:00 UTC, cycle. The curved rectangle represents the WRF-Chem domain.

sults, then the CPSR-RJ3 approach is preferred because it
is computationally less expensive, removes linear dependen-
cies, and accounts for the observation error covariance.

Figure 8 shows vertical profiles for the L10VMRR-RJ3
and CPSR-RJ3 experiments with results from the full re-
trieval profile assimilation experiments included for refer-
ence. In these experiments, we are assuming that the MO-
PITT retrievals are positively biased in the upper troposphere
and the IASI CO retrievals more accurately reflect the true
atmospheric state. Comparisons against the assimilated MO-
PITT observations in the upper panels show that discarding
the biased observations had the desired effect – in the up-
per troposphere, the L10VMRR-RJ3 experiment removes the
bias and the analysis profile is drawn closer to that of the
MET experiment than in the L10VMRR experiment. Simi-
lar results are seen for the CPSR-RJ3 experiment in the last
two columns of the upper row. Unexpectedly, for both experi-
ments, not assimilating observations in the upper troposphere
had a negative impact in the lower troposphere. A compari-
son with IASI CO retrievals in the lower row of Fig. 8 shows
similar results: (i) the L10VMRR-RJ3 and CPSR-RJ3 re-
trieval space profiles are drawn closer to the IASI profile than
the L10VMRR and CPSR profiles in the upper troposphere,
and (ii) the skill is degraded in the middle and lower tropo-

sphere. We investigate the cause of those lower tropospheric
results later in this section, but first we review the horizontal
impacts of the truncated retrieval assimilation experiments.

Figures 9 and 10 show contour maps for the CPSR-
RJ3 experiment. Figure 9 shows the near-surface impacts,
and Fig. 10 shows the upper tropospheric impacts. The CO
6 h forecast contour maps in the upper row of Fig. 9 confirm
that not assimilating the biased retrievals negatively impacted
the lower troposphere because the assimilation impacts are
small. The forecast difference maps in the lower row show
the impacts in the lower troposphere from assimilating MO-
PITT CO in the upper troposphere. The CPSR-RJ3 experi-
ment does not have those impacts. It has small large-scale CO
decreases over the oceans and eastern United States similar
to but weaker than in the CPSR experiment. Also, the mag-
nitude of positive forecast differences at CO hot spots over
southern California, Baja, and the northeastern United States
has decreased. Figure 10 shows fewer large-scale changes
for the CPSR-RJ3 experiment except for the reductions over
the southeastern United States and Gulf of Mexico. Here, the
CPSR-RJ3 experiment has large reductions in the CO ad-
justments (reducing the bias). Figure 10 provides additional
demonstration that discarding the biased retrievals reduces
the model’s upper tropospheric bias. Unfortunately, we ob-
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Figure 6. The assimilated MOPITT CO retrievals in panels (a) and (b) and the corresponding IASI CO retrievals (not assimilated) in
panels (c) and (d). Panels (a) and (c) are for ∼ 950 hPa, and panels (b) and (d) are for ∼ 850 hPa. All figures are for the 9 June 2008,
18:00 UTC, cycle. The retrievals are in ppb.

Figure 7. Vertical profiles of the time/horizontal domain average CO in ppb from the CPSR and MET experiments for 9 June 2008,
18:00 UTC, in retrieval space. “Forecast” is the assimilation prior, and “analysis” is the assimilation posterior. Panel (a) compares the
forecast/assimilation results against MOPITT CO retrievals (assimilated), and panel (b) compares those results against IASI CO retrievals
(not assimilated). In the legends, Chem EX refers to the CPSR experiment. The error bars are based on the ensemble variability.

tain that result at the expense of reduced improvements in
the lower troposphere.

A verification analysis for the L10VMRR-RJ3 and CPSR-
RJ3 experiments is presented in Fig. 1. The L10VMRR-
RJ3 and CPSR-RJ3 experiments have degraded forecast skill

compared to the full profile assimilation experiments (the
CPSR and QOR experiments), but the CPSR-RJ3 experiment
has slightly improved skill compared to the L10VMRR-RJ3
experiment. That small improvement is likely due to obser-
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Figure 8. Same as Fig. 7 except this figure compares the L10VMRR, L10VMRR-RJ3, CPSR, and CPSR-RJ3 experiments. Panel (a) com-
pares the forecast/assimilation results against MOPITT CO retrievals (assimilated), and panel (b) compares those results against IASI CO
retrievals (not assimilated). In the legends, Chem EX is a placeholder for the L10VMRR-RJ3, L10VMRR, CPSR, and CPSR-RJ3 experiments
depending on the panel.

Table 3. Average total and fractional information content for each
mode of the averaging kernel for the entire study period. CompAK 1
denotes the average fractional information in mode 1, CompAK 2
is for mode 2, and so forth. Trace denotes the total information con-
tent. “Full profile” means all retrievals were assimilated (i.e., none
were discarded). “Reject top three” means that retrievals at pressure
levels < 300 hPa were discarded. “Reject middle three” means that
retrievals between 300 and 600 hPa were discarded. “Reject bottom
three” means that retrievals below 700 hPa were discarded.

CompAK 1 CompAK 2 CompAK 3 Trace

Full profile 0.9638 0.4785 0.0099 1.452
Reject top three 0.7983 0.2851 0.0045 1.088
Reject middle three 0.7254 0.3849 0.0078 1.118
Reject bottom three 0.9335 0.3770 0.0065 1.317

vation error covariance reductions from the CPSR transform
as discussed earlier.

In summary, not assimilating the biased observations had
positive impacts in the upper troposphere and negative im-
pacts in the middle to lower troposphere. We suspect the neg-
ative results occurred for two reasons. Discarding retrievals
and their averaging kernels (i) reduces the total information
content of the assimilated retrievals so that the assimilation
adjustments are small; and (ii) reduces the sensitivity of the
transformed averaging kernel so that the expected retrievals
are less sensitive to the true atmospheric profile. Those re-
ductions combine to reduce the ensemble state variable cor-

relations and consequently the assimilation impacts. To test
explanation (i), we compare the trace of the composited raw
averaging kernel for the CPSR experiment with that for the
CPSR-RJ3 experiment. The results are shown in the first two
rows of Table 3 where “full profile” is from the CPSR exper-
iment, and “reject top three” is from the CPSR-RJ3 experi-
ment. Comparison of those results shows a 25 % reduction in
the trace indicating that the total information content of the
assimilated retrievals for the CPSR-RJ3 experiment is 25 %
less than that for the CPSR experiment. For comparison pur-
poses, Table 3 also shows trace reductions from not assim-
ilating retrievals in the middle troposphere (23 % reduction)
and lower troposphere (9 % reduction). Those results suggest
that most of the information in the MOPITT CO retrievals
is from the upper troposphere, the second greatest amount
is from the middle troposphere, and the smallest amount is
from the lower troposphere. To test explanation (ii), we plot
the compressed and fully transformed averaging kernels in
Fig. 11 where column (a) is for the CPSR experiment and
column (b) is for the CPSR-RJ3 experiment. Figure 11 is
similar to the last two rows of Fig. 4. Recall that the first
row represents the sensitivity of the compressed QORs to the
true CO concentrations, and the second row represents the
sensitivity of the CPSRs to the true CO concentrations. Com-
parison of columns (a) and (b) shows that for the CPSR-RJ3
experiment, the leading mode sensitivities are reduced when
compared to the CPSR experiment. The state variable corre-
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Figure 9. Shaded contours of CO in ppb for the CPSR and CPSR-RJ3 experiment assimilation priors in panels (a) and (b), respectively, and
for the CPSR and MET experiment difference (the CPSR minus the MET experiment, defined as CPSR EX CO Del-Fcst) and the CPSR-RJ3
and MET experiment difference (the CPSR-RJ3 minus the MET experiment, defined as CPSR-RJ3 EX CO Del-Fcst) assimilation priors in
panels (c) and (d), respectively. The CPSR experiments maps in this figure are the same as in Fig. 5 and included for reference. All figures
are for ∼ 950 hPa on 9 June 2008, 18:00 UTC.

lations are proportional to those sensitivities, so the reduced
correlations result in analysis increment reductions. For com-
parison purposes, columns (c) and (d) of Fig. 11 show re-
sults from experiments that discard retrievals in the middle
and lower troposphere. Those profiles, in combination with
Table 2, show that most of the information and sensitivity
is associated with the upper and midtropospheric retrievals.
Discarding upper tropospheric retrievals alters the sensitivity
magnitudes while discarding middle tropospheric retrievals
alters the magnitudes and vertical structure. One interesting
result is that most of the sensitivity loss in column (c) – the
“reject middle three” experiment – appears to be associated
with the CPSR diagonalization transform. That suggests that
the sensitivity loss is dependent on specification of the re-
trieval a priori error covariance.

Those changes occur because as different rows of the aver-
aging kernel are discarded (i) the amount of observed infor-
mation in the modified averaging kernel changes, and (ii) the
vertical structure of the bases for the range and domain of the
modified averaging kernel changes. The impact of changes
in the information content in point (i) were discussed earlier.
The impact of changes to the bases in point (ii) has important
consequences. The leading left singular vectors of the trans-

formed averaging kernel span the range of the transformed
averaging kernel but their vertical structure and possibly their
dimension change when retrievals are discarded. That means
the phase space observations change because the basis vec-
tors used in the compression transform are different, and their
sensitivity to the truncated retrieval profile vector is differ-
ent. Similarly, the leading right singular vectors of the trans-
formed averaging kernel span the domain of the transformed
averaging kernel, but their vertical structure changes when
retrievals are discarded. Those changes occur solely because
the information content of the transformed averaging kernel
is reduced (since the dimension of its domain – the space
where the true CO profiles reside – is unchanged). Those
changes are significant because they alter the elements (or
levels) of the true profile to which the transformed averaging
kernel is sensitive. To summarize, not assimilating elements
of the full retrieval profile alters the levels of the retrieval
profile to which the phase space observations are sensitive.
Discarding those elements also alters the levels of the true
CO profile to which the transformed averaging kernel is sen-
sitive. Those sensitivity changes occur regardless of whether
the assimilation is done in phase space as in the CPSR-RJ3
experiment or in retrieval space as in L10VMRR-RJ3 exper-
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Figure 10. Same as Fig. 9 except for ∼ 300 hPa.

Figure 11. Same as the lower two rows of Fig. 4 except that this figure is for the retrieval discard experiments. Column (a) is for the full
retrieval profile assimilation experiment and is the same as column (a) in Fig. 3. Column (b) is for the “reject top three” experiment in
Table 2. Column (c) is for the “reject middle three” experiment. Column (d) is for the “reject bottom three” experiment. Notice that the range
of the abscissa is reduced from column (a) to columns (b–d).
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iment. Consequently, results from the L10VMRR-RJ3 and
CPSR-RJ3 experiments are similar.

This section shows that CPSRs can be extended to the as-
similation of truncated retrieval profiles but that discarding
upper tropospheric observations for MOPITT significantly
reduces the total information content of the assimilated ob-
servations and the vertical sensitivity of the transformed av-
eraging kernel profiles. Those reductions translate to reduc-
tions in the state variable correlations and commensurate re-
ductions in the analysis increments. We are studying modi-
fication of the CPSR extension to truncated retrieval profiles
to address the non-local impacts.

6 Summary and conclusions

This paper had two goals: (i) compare the results from as-
similating CPSRs with independent observations (we used
MOZAIC in situ observations and IASI CO retrievals as
the independent observations), and (ii) extend CPSRs to the
assimilation of truncated retrieval profiles. The comparison
with independent observations showed that (i) assimilation
of raw retrievals (VMRRs and L10VMRRs) had little impact
on the analysis fit and forecast skill due to the magnitude
of the observation errors and the length of the study period,
and (ii) the assimilation of phase space retrievals (CPSRs and
QORs) improved both fit and skill. Conceptually, we expect
the assimilation of raw retrievals and phase space retrievals
to yield similar results. However, phase space transformation
of the observation error covariance truncated the observa-
tion errors so that the CPSR and QOR experiments produced
closer agreement with the assimilated and independent ob-
servations. This does not mean that the assimilation of raw
retrievals is incorrect. It means only that the reported obser-
vations errors may be too large because they account for er-
rors associated with the retrieval prior and consequently they
require a longer study period to show an assimilation impact
compared to CPSRs.

Comparison of the CPSR experiments with IASI CO re-
trievals and MOZAIC in situ CO observations generally
showed improved agreement in the middle and lower tro-
posphere compared to the MET experiment. For the IASI
comparison, the improvements were significant and extended
from 250 hPa to the surface. For the MOZAIC comparison,
two (Dallas, TX and Portland, OR) of the three (no improve-
ment for Philadelphia, PA) urban areas studied showed im-
provements between 500 and 800 hPa. Below 800 hPa, there
was little to no improvement. Although the assimilation im-
pacts when compared to MOZAIC were not significant, the
lack of a near-surface improvement was unexpected. How-
ever, the DOFS analysis in the discussion of Figs. 3 and 4
showed that there were no near-surface impacts because af-
ter accounting for the observation error covariance, the trans-
formed averaging kernel had very little sensitivity to the near-
surface CO. Other researchers have not found that result be-

cause they have not accounted for the observation error cor-
relations.

Comparison of the CPSR experiment with IASI and
MOZAIC showed degraded skill in the upper troposphere
(above 250 hPa for IASI and above 500 hPa for MOZAIC)
compared to the MET experiment. That degradation was sig-
nificant for IASI but not MOZAIC. It was attributed to the
assimilation of biased retrievals above 300 hPa illustrating
the need to extend the CPSR method to truncated retrieval
profiles. Section 4.3 explained the extension, and Sect. 5.2
compared the L10VMRR-RJ3 (assimilation of truncated
raw retrieval profiles) and CPSR-RJ3 (assimilation of trun-
cated phase space retrieval profiles) experiments where we
did not assimilate the biased MOPITT CO retrievals above
300 hPa. That comparison showed that the L10VMRR-RJ3
and CPSR-RJ3 experiments produced similar results, con-
firming the applicability of the CPSR approach to truncated
retrieval profiles. However, they also highlighted an impor-
tant characteristic of assimilating truncated retrieval profiles.
Excluding the assimilation of some elements of the observa-
tion profiles can significantly alter the (i) information content
of the assimilated observations and (ii) the amplitude of the
averaging kernel sensitivities. Those modifications can com-
bine to reduce the state variable correlations and the corre-
sponding analysis increments. We are researching modifica-
tion of the CPSR extension to truncated retrieval profiles to
address the reduced impact from not assimilating retrievals
from selected levels.

Code and data availability. The current versions of the WRF-
Chem, WRF, WRFVAR, and WPS codes are available from the
WRF download site at http://www2.mmm.ucar.edu/wrf/users/
download/get_sources.html (last access: 6 September 2018).
The current version of the DART code is at available at
https://www.image.ucar.edu/DAReS/DART/DART2_Starting.
php#download (last access: 6 September 2018), and the cur-
rent version of the WRF-Chem/DART branch is available at
http://www.image.ucar.edu/DAReS/DART/DART_download (last
access: 6 September 2018). The WRF-Chem/DART branch is the
same as the DART code except for the inclusion of the WRF-
Chem/DART system. There is no need to download both codes.
Presently, there is no user guide available for WRF-Chem/DART.
However, the authors have prepared a slide presentation that
describes much of the chemical data assimilation script function,
variables, and organization. Interested readers should contact the
first author for a copy of that presentation and assistance with using
WRF-Chem/DART. The large-scale model’s forecast and obser-
vational data used to run the ensemble forecast/data assimilation
cycling experiments described in the paper are generally available
from the respective data distribution sites. That data set has not
been posted to a public site due to its size but is available from the
first author upon request.
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