Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-2813-2018
https://doi.org/10.5194/gmd-11-2813-2018
Model description paper
 | 
13 Jul 2018
Model description paper |  | 13 Jul 2018

Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)

Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza

Related authors

The Utah urban carbon dioxide (UUCON) and Uintah Basin greenhouse gas networks: instrumentation, data, and measurement uncertainty
Ryan Bares, Logan Mitchell, Ben Fasoli, David R. Bowling, Douglas Catharine, Maria Garcia, Byron Eng, Jim Ehleringer, and John C. Lin
Earth Syst. Sci. Data, 11, 1291–1308, https://doi.org/10.5194/essd-11-1291-2019,https://doi.org/10.5194/essd-11-1291-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2)
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023,https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
A simplified non-linear chemistry transport model for analyzing NO2 column observations: STILT–NOx
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023,https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
The Hydro-ABC model (Version 2.0): a simplified convective-scale model with moist dynamics
Jiangshan Zhu and Ross Noel Bannister
Geosci. Model Dev., 16, 6067–6085, https://doi.org/10.5194/gmd-16-6067-2023,https://doi.org/10.5194/gmd-16-6067-2023, 2023
Short summary
Rapid Adaptive Optimization Model for Atmospheric Chemistry (ROMAC) v1.0
Jiangyong Li, Chunlin Zhang, Wenlong Zhao, Shijie Han, Yu Wang, Hao Wang, and Boguang Wang
Geosci. Model Dev., 16, 6049–6066, https://doi.org/10.5194/gmd-16-6049-2023,https://doi.org/10.5194/gmd-16-6049-2023, 2023
Short summary
A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe
Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, and Philippe Thunis
Geosci. Model Dev., 16, 6029–6047, https://doi.org/10.5194/gmd-16-6029-2023,https://doi.org/10.5194/gmd-16-6029-2023, 2023
Short summary

Cited articles

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C., and Hamburg, S. P.: High-resolution air pollution mapping with Google street view cars: exploiting big data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. a
Bush, S. E., Hopkins, F. M., Randerson, J. T., Lai, C.-T., and Ehleringer, J. R.: Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species, Atmos. Meas. Tech., 8, 3481–3492, https://doi.org/10.5194/amt-8-3481-2015, 2015. a
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci. USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007. a
Draxler, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998. a
Duren, R. M. and Miller, C. E.: Measuring the carbon emissions of megacities, Nat. Clim. Change, 2, 560–562, https://doi.org/10.1038/nclimate1629, 2012. a
Download
Short summary
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area upstream that influences the air arriving at a given location. We introduce a new framework that makes the STILT model faster and easier to deploy and improves results. We also show how the model can be applied to spatially complex measurement strategies using trace gas observations collected onboard a Salt Lake City, Utah, USA, light-rail train.