Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2813–2824, 2018
https://doi.org/10.5194/gmd-11-2813-2018
Geosci. Model Dev., 11, 2813–2824, 2018
https://doi.org/10.5194/gmd-11-2813-2018
Model description paper
13 Jul 2018
Model description paper | 13 Jul 2018

Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)

Benjamin Fasoli et al.

Related authors

The Utah urban carbon dioxide (UUCON) and Uintah Basin greenhouse gas networks: instrumentation, data, and measurement uncertainty
Ryan Bares, Logan Mitchell, Ben Fasoli, David R. Bowling, Douglas Catharine, Maria Garcia, Byron Eng, Jim Ehleringer, and John C. Lin
Earth Syst. Sci. Data, 11, 1291–1308, https://doi.org/10.5194/essd-11-1291-2019,https://doi.org/10.5194/essd-11-1291-2019, 2019
Short summary

Related subject area

Atmospheric sciences
An aerosol vertical data assimilation system (NAQPMS-PDAF v1.0): development and application
Haibo Wang, Ting Yang, Zifa Wang, Jianjun Li, Wenxuan Chai, Guigang Tang, Lei Kong, and Xueshun Chen
Geosci. Model Dev., 15, 3555–3585, https://doi.org/10.5194/gmd-15-3555-2022,https://doi.org/10.5194/gmd-15-3555-2022, 2022
Short summary
Earth system modeling of mercury using CESM2 – Part 1: Atmospheric model CAM6-Chem/Hg v1.0
Peng Zhang and Yanxu Zhang
Geosci. Model Dev., 15, 3587–3601, https://doi.org/10.5194/gmd-15-3587-2022,https://doi.org/10.5194/gmd-15-3587-2022, 2022
Short summary
Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022,https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022,https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16
Patrick C. Campbell, Youhua Tang, Pius Lee, Barry Baker, Daniel Tong, Rick Saylor, Ariel Stein, Jianping Huang, Ho-Chun Huang, Edward Strobach, Jeff McQueen, Li Pan, Ivanka Stajner, Jamese Sims, Jose Tirado-Delgado, Youngsun Jung, Fanglin Yang, Tanya L. Spero, and Robert C. Gilliam
Geosci. Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-3281-2022,https://doi.org/10.5194/gmd-15-3281-2022, 2022
Short summary

Cited articles

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C., and Hamburg, S. P.: High-resolution air pollution mapping with Google street view cars: exploiting big data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. a
Bush, S. E., Hopkins, F. M., Randerson, J. T., Lai, C.-T., and Ehleringer, J. R.: Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species, Atmos. Meas. Tech., 8, 3481–3492, https://doi.org/10.5194/amt-8-3481-2015, 2015. a
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci. USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007. a
Draxler, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition, Aust. Meteorol. Mag., 47, 295–308, 1998. a
Duren, R. M. and Miller, C. E.: Measuring the carbon emissions of megacities, Nat. Clim. Change, 2, 560–562, https://doi.org/10.1038/nclimate1629, 2012. a
Download
Short summary
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area upstream that influences the air arriving at a given location. We introduce a new framework that makes the STILT model faster and easier to deploy and improves results. We also show how the model can be applied to spatially complex measurement strategies using trace gas observations collected onboard a Salt Lake City, Utah, USA, light-rail train.