Model experiment description paper
05 Jul 2018
Model experiment description paper
| 05 Jul 2018
The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
Claudia Timmreck et al.
Viewed
Total article views: 4,139 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Jan 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,415 | 1,556 | 168 | 4,139 | 454 | 89 | 89 |
- HTML: 2,415
- PDF: 1,556
- XML: 168
- Total: 4,139
- Supplement: 454
- BibTeX: 89
- EndNote: 89
Total article views: 2,859 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Jul 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,510 | 1,210 | 139 | 2,859 | 282 | 73 | 61 |
- HTML: 1,510
- PDF: 1,210
- XML: 139
- Total: 2,859
- Supplement: 282
- BibTeX: 73
- EndNote: 61
Total article views: 1,280 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Jan 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
905 | 346 | 29 | 1,280 | 172 | 16 | 28 |
- HTML: 905
- PDF: 346
- XML: 29
- Total: 1,280
- Supplement: 172
- BibTeX: 16
- EndNote: 28
Viewed (geographical distribution)
Total article views: 3,830 (including HTML, PDF, and XML)
Thereof 3,812 with geography defined
and 18 with unknown origin.
Total article views: 2,601 (including HTML, PDF, and XML)
Thereof 2,587 with geography defined
and 14 with unknown origin.
Total article views: 1,229 (including HTML, PDF, and XML)
Thereof 1,225 with geography defined
and 4 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
36 citations as recorded by crossref.
- A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models T. Aubry et al. 10.1029/2019JD031303
- Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering? D. Visioni et al. 10.1029/2020JD033952
- Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble M. Clyne et al. 10.5194/acp-21-3317-2021
- The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate H. Brenna et al. 10.5194/acp-20-6521-2020
- Large Variations in Volcanic Aerosol Forcing Efficiency Due to Eruption Source Parameters and Rapid Adjustments L. Marshall et al. 10.1029/2020GL090241
- The impact of volcanic eruptions of different magnitude on stratospheric water vapor in the tropics C. Kroll et al. 10.5194/acp-21-6565-2021
- Methodology to obtain highly resolved SO<sub>2</sub> vertical profiles for representation of volcanic emissions in climate models O. Sandvik et al. 10.5194/amt-14-7153-2021
- Unknown Eruption Source Parameters Cause Large Uncertainty in Historical Volcanic Radiative Forcing Reconstructions L. Marshall et al. 10.1029/2020JD033578
- Volcanic Radiative Forcing From 1979 to 2015 A. Schmidt et al. 10.1029/2018JD028776
- How Does a Pinatubo‐Size Volcanic Cloud Reach the Middle Stratosphere? G. Stenchikov et al. 10.1029/2020JD033829
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment L. Rieger et al. 10.5194/gmd-13-4831-2020
- Estimating the Effect of Radiative Feedback Uncertainties on Climate Response to Changes in the Concentration of Stratospheric Aerosols S. Soldatenko 10.3390/atmos11060654
- Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation T. Sukhodolov et al. 10.5194/gmd-14-5525-2021
- Response to Comment on “No consistent ENSO response to volcanic forcing over the last millennium” S. Dee et al. 10.1126/science.abc1733
- Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965 J. Antuña-Marrero et al. 10.5194/essd-13-4407-2021
- Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations D. Visioni et al. 10.5194/acp-21-10039-2021
- The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018 M. Kovilakam et al. 10.5194/essd-12-2607-2020
- Uncertainty and the basis for confidence in solar geoengineering research B. Kravitz & D. MacMartin 10.1038/s43017-019-0004-7
- Decadal Disruption of the QBO by Tropical Volcanic Supereruptions H. Brenna et al. 10.1029/2020GL089687
- Improved tropospheric and stratospheric sulfur cycle in the aerosol–chemistry–climate model SOCOL-AERv2 A. Feinberg et al. 10.5194/gmd-12-3863-2019
- Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data C. Brühl et al. 10.5194/acp-18-12845-2018
- SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0 H. Kokkola et al. 10.5194/gmd-11-3833-2018
- Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6) C. Pascoe et al. 10.5194/gmd-13-2149-2020
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering S. Robrecht et al. 10.5194/acp-21-2427-2021
- Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations D. Visioni et al. 10.5194/acp-22-1739-2022
- Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds S. Dhomse et al. 10.5194/acp-20-13627-2020
- Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment D. Zanchettin et al. 10.5194/gmd-15-2265-2022
- Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints A. Ming et al. 10.1029/2019JD032290
- Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions T. Aubry et al. 10.1038/s41467-021-24943-7
- Modeling the Sulfate Aerosol Evolution After Recent Moderate Volcanic Activity, 2008–2012 C. Brodowsky et al. 10.1029/2021JD035472
- The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume S. Arghavani et al. 10.3390/atmos13010015
- Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0 T. Sukhodolov et al. 10.5194/gmd-11-2633-2018
- Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora L. Marshall et al. 10.5194/acp-18-2307-2018
- Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation L. Marshall et al. 10.1029/2018JD028675
33 citations as recorded by crossref.
- A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models T. Aubry et al. 10.1029/2019JD031303
- Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering? D. Visioni et al. 10.1029/2020JD033952
- Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble M. Clyne et al. 10.5194/acp-21-3317-2021
- The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate H. Brenna et al. 10.5194/acp-20-6521-2020
- Large Variations in Volcanic Aerosol Forcing Efficiency Due to Eruption Source Parameters and Rapid Adjustments L. Marshall et al. 10.1029/2020GL090241
- The impact of volcanic eruptions of different magnitude on stratospheric water vapor in the tropics C. Kroll et al. 10.5194/acp-21-6565-2021
- Methodology to obtain highly resolved SO<sub>2</sub> vertical profiles for representation of volcanic emissions in climate models O. Sandvik et al. 10.5194/amt-14-7153-2021
- Unknown Eruption Source Parameters Cause Large Uncertainty in Historical Volcanic Radiative Forcing Reconstructions L. Marshall et al. 10.1029/2020JD033578
- Volcanic Radiative Forcing From 1979 to 2015 A. Schmidt et al. 10.1029/2018JD028776
- How Does a Pinatubo‐Size Volcanic Cloud Reach the Middle Stratosphere? G. Stenchikov et al. 10.1029/2020JD033829
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment L. Rieger et al. 10.5194/gmd-13-4831-2020
- Estimating the Effect of Radiative Feedback Uncertainties on Climate Response to Changes in the Concentration of Stratospheric Aerosols S. Soldatenko 10.3390/atmos11060654
- Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation T. Sukhodolov et al. 10.5194/gmd-14-5525-2021
- Response to Comment on “No consistent ENSO response to volcanic forcing over the last millennium” S. Dee et al. 10.1126/science.abc1733
- Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965 J. Antuña-Marrero et al. 10.5194/essd-13-4407-2021
- Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations D. Visioni et al. 10.5194/acp-21-10039-2021
- The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018 M. Kovilakam et al. 10.5194/essd-12-2607-2020
- Uncertainty and the basis for confidence in solar geoengineering research B. Kravitz & D. MacMartin 10.1038/s43017-019-0004-7
- Decadal Disruption of the QBO by Tropical Volcanic Supereruptions H. Brenna et al. 10.1029/2020GL089687
- Improved tropospheric and stratospheric sulfur cycle in the aerosol–chemistry–climate model SOCOL-AERv2 A. Feinberg et al. 10.5194/gmd-12-3863-2019
- Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data C. Brühl et al. 10.5194/acp-18-12845-2018
- SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0 H. Kokkola et al. 10.5194/gmd-11-3833-2018
- Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6) C. Pascoe et al. 10.5194/gmd-13-2149-2020
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering S. Robrecht et al. 10.5194/acp-21-2427-2021
- Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations D. Visioni et al. 10.5194/acp-22-1739-2022
- Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds S. Dhomse et al. 10.5194/acp-20-13627-2020
- Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment D. Zanchettin et al. 10.5194/gmd-15-2265-2022
- Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints A. Ming et al. 10.1029/2019JD032290
- Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions T. Aubry et al. 10.1038/s41467-021-24943-7
- Modeling the Sulfate Aerosol Evolution After Recent Moderate Volcanic Activity, 2008–2012 C. Brodowsky et al. 10.1029/2021JD035472
- The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume S. Arghavani et al. 10.3390/atmos13010015
3 citations as recorded by crossref.
- Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0 T. Sukhodolov et al. 10.5194/gmd-11-2633-2018
- Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora L. Marshall et al. 10.5194/acp-18-2307-2018
- Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation L. Marshall et al. 10.1029/2018JD028675
Latest update: 27 May 2022
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model...