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Abstract. The Stratospheric Sulfur and its Role in Cli-
mate (SSiRC) Interactive Stratospheric Aerosol Model In-
tercomparison Project (ISA-MIP) explores uncertainties in
the processes that connect volcanic emission of sulfur gas
species and the radiative forcing associated with the result-
ing enhancement of the stratospheric aerosol layer. The cen-
tral aim of ISA-MIP is to constrain and improve interactive
stratospheric aerosol models and reduce uncertainties in the
stratospheric aerosol forcing by comparing results of stan-
dardized model experiments with a range of observations.
In this paper we present four co-ordinated inter-model ex-
periments designed to investigate key processes which in-
fluence the formation and temporal development of strato-
spheric aerosol in different time periods of the observational

record. The Background (BG) experiment will focus on mi-
crophysics and transport processes under volcanically qui-
escent conditions, when the stratospheric aerosol is con-
trolled by the transport of aerosols and their precursors from
the troposphere to the stratosphere. The Transient Aerosol
Record (TAR) experiment will explore the role of small- to
moderate-magnitude volcanic eruptions, anthropogenic sul-
fur emissions, and transport processes over the period 1998–
2012 and their role in the warming hiatus. Two further exper-
iments will investigate the stratospheric sulfate aerosol evo-
lution after major volcanic eruptions. The Historical Erup-
tions SO2 Emission Assessment (HErSEA) experiment will
focus on the uncertainty in the initial emission of recent
large-magnitude volcanic eruptions, while the Pinatubo Em-
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ulation in Multiple models (PoEMS) experiment will provide
a comprehensive uncertainty analysis of the radiative forcing
from the 1991 Mt Pinatubo eruption.

1 Introduction

Stratospheric aerosol is an important component of the
Earth system, which influences atmospheric radiative trans-
fer, composition, and dynamics, thereby modulating the cli-
mate. The effects of stratospheric aerosol on climate are
especially evident when the opacity of the stratospheric
aerosol layer is significantly increased after volcanic erup-
tions. Through changes in the radiative properties of the
stratospheric aerosol layer, volcanic eruptions are a signif-
icant driver of climate variability (e.g. Myhre et al., 2013;
Zanchettin et al., 2016). Major volcanic eruptions inject vast
amounts of SO2 into the stratosphere, which is converted into
sulfuric acid aerosol with an e-folding time of about a month,
which might be prolonged due to OH depletion within the
dense SO2 cloud in the first weeks following a large volcanic
eruption (Mills et al., 2017).

Observations show that the stratospheric aerosol layer
remains enhanced for several years after major eruptions
(SPARC, 2006). Such long-lasting volcanic perturbations
cool the Earth’s surface by scattering incoming solar radi-
ation and warm the stratosphere by the absorption of in-
frared solar and long-wave terrestrial radiation which af-
fect the dynamical structure as well as the chemical com-
position of the atmosphere (e.g. Robock, 2000; Timmreck,
2012). The consequent heating of the stratospheric sulfate
layer, impacts stratospheric dynamics in various ways. It am-
plifies the Brewer–Dobson circulation (BDC) and modifies
the equator-to-pole temperature gradient, driving changes
in geostrophic zonal winds and the propagation of atmo-
spheric waves (e.g. Bittner et al., 2016; Toohey et al., 2014)
and strengthening the polar vortex (e.g. Charlton-Perez et
al., 2013). The heating from continued SO2 injection to
the stratosphere may further disturb or even “shut down”
the quasi-biennial oscillation (QBO) (e.g. Aquila et al.,
2014; Niemeier and Schmidt, 2017). The radiatively driven
changes also influence the transport and the lifetime of long-
lived species (N2O, CH4) (Pitari et al., 2016a; Visioni et al.,
2017). The enhanced stratospheric aerosol layer after large
volcanic eruptions also causes large mean age-of-air varia-
tions on timescales of several years (e.g. Ray et al., 2014;
Muthers et al., 2016; Garfinkel et al., 2017).

As the ocean has a much longer memory than the atmo-
sphere, large volcanic eruptions could have a long-lasting
impact on the climate system that extends beyond the du-
ration of the volcanic forcing (e.g., Zanchettin et al., 2012;
Swingedouw et al., 2017). The chemical and radiative ef-
fects of the stratospheric aerosol are strongly influenced by
its particle size distribution. Heterogeneous chemical reac-

tions, which most notably lead to substantial ozone deple-
tion (e.g. WMO/UNEP, 2007, chap. 3), take place on the
surface of the stratospheric aerosol particles and are de-
pendent on the aerosol surface area density. Aerosol par-
ticle size determines the scattering efficiency of the parti-
cles (e.g. Lacis et al., 1992) and their atmospheric lifetime
(e.g., Pinto et al., 1989; Timmreck et al., 2010). Smaller-
magnitude eruptions than the 1991 Mt Pinatubo eruption can
also have significant impacts on climate. It is now estab-
lished that a series of relatively small-magnitude volcanic
eruptions caused the increase in stratospheric aerosol ob-
served between 2000 and 2010 based on ground and satellite-
borne observations (Vernier et al., 2011b; Neely III et al.,
2013). Studies have suggested that this increase in strato-
spheric aerosol partly counteracted the warming due to in-
creased greenhouse gases over that period (e.g. Solomon et
al., 2011; Ridley et al., 2014; Santer et al., 2015). Small to
moderate volcanic eruptions after 2008 also show an im-
pact on the stratospheric circulation in the Northern Hemi-
sphere, in particular on the pattern of decadal mean age
variability and its trends during 2002–2011 (Diallo et al.,
2017). Since the 2006 SPARC Assessment of Stratospheric
Aerosol Properties Report (SPARC, 2006, herein referred to
as ASAP2006) the increase in observations of stratospheric
aerosol and its precursor gases and in the number of models
which treat stratospheric aerosol interactively has advanced
scientific understanding of the stratospheric aerosol layer and
its effects on the climate (Kremser et al., 2016, herein re-
ferred to as KTH2016). In particular, research findings have
given to the community a greater awareness of the role of
the tropical tropopause layer (TTL) as a distinct pathway
for transport into the stratosphere, of the interactions be-
tween stratospheric composition and dynamics, and of the
importance of moderate-magnitude eruptions in influencing
the stratospheric aerosol loading. In addition, over the last
decade several new satellite instruments producing observa-
tions relevant to the stratospheric aerosol layer have become
operational. For example, we now have a 2002–2012 record
of global altitude-resolved SO2, carbonyl sulfide (OCS)
and aerosol volume density measurements provided by the
Michelson Interferometer for Passive Atmospheric Sound-
ing Environmental Satellite (MIPAS ENVISAT; Höpfner et
al., 2013, 2015; Glatthor et al., 2015; Günther et al., 2018).
Furthermore aerosol extinction vertical profiles are avail-
able from limb-profiling instruments, such as the Scanning
Imaging Absorption Spectrometer for Atmospheric Chartog-
raphy (SCIAMACHY; 2002–2012; Bovensmann et al., 1999;
von Savigny et al., 2015), the Optical Spectrograph and
InfraRed Imager System (OSIRIS; 2001–present; Bourassa
et al., 2007), and the Ozone Mapping and Profiler Suite–
Limb Profiler (OMPS-LP; 2011–present; Rault and Lough-
man, 2013), and from the active sensor lidar measurements
such as the Cloud-Aerosol Transport System (CATS; 2015–
present; Yorks et al., 2015) and Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP; 2006-present; Vernier et
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al., 2009). Existing measurements have become more robust,
for example by homogenizing the observations of aerosol
properties derived from optical particle counter (OPC) and
satellite measurements during stratospheric aerosol back-
ground periods (Kovilakam and Deshler, 2015), which pre-
viously showed large differences (Thomason et al., 2008).
Other efforts include combining and comparing different
satellite data sets (e.g. Rieger et al., 2015). However, some
notable discrepancies still exist between different measure-
ment data sets. For example, Reeves et al. (2008) showed that
aircraft-borne Focused Cavity Aerosol Spectrometer (FCAS)
measurements of the particle size distribution during the
late 1990s yield surface area densities a factor 1.5 to 3 higher
than that derived from Stratospheric Aerosol and Gases Ex-
periment (SAGE-II) measurements.

On the modelling side there has been an increasing amount
of global three-dimensional stratospheric aerosol models de-
veloped within the last years and used by research teams
around the world (KTH2016). The majority of these global
models explicitly simulate aerosol microphysical processes
and treat the full life cycle of stratospheric aerosol, from the
initial injection of sulfur-containing gases and their transfor-
mation into aerosol particles to their final removal from the
stratosphere. Several of these models also include the inter-
active coupling between aerosol microphysics, atmospheric
chemistry, dynamics, and radiation.

Given the improvements in observations and modelling of
stratospheric aerosol since ASAP2006, we anticipate further
advances in our understanding of stratospheric aerosol by
combining the recent observational record with results from
the current community of interactive stratospheric aerosol
models. An Interactive Stratospheric Aerosol Model Inter-
comparison Project (ISA-MIP) has therefore been devel-
oped within the Stratospheric Sulfur and its Role in Cli-
mate (SSiRC) framework. The SPARC activity SSiRC (http:
//www.sparc-ssirc.org, last access: 26 June 2018) was initi-
ated with the goal of reducing uncertainties in the proper-
ties of stratospheric aerosol and assessing its climate forc-
ing. In particular, constraining simulations of historical erup-
tions with available observational data sets gives the poten-
tial to evaluate and substantially improve the accuracy of the
volcanic forcing data sets used in climate models. This will
not only enhance consistency with observed stratospheric
aerosol properties and the underlying microphysical, chemi-
cal, and dynamical processes but also improve their concep-
tual understanding. The use of such new volcanic forcing
data sets has the potential to increase the reliability of the
simulated climate impacts of volcanic eruptions, which have
been identified as a major influence on decadal global mean
surface temperature trends in climate models (Marotzke and
Forster, 2015).

The first international model inter-comparison of global
stratospheric aerosol models was carried out within
ASAP2006 and indicated that model simulations and satel-
lite observations of stratospheric background aerosol extinc-

tion agree reasonably well in the visible wavelengths but
not in the infrared. It also highlighted systematic differ-
ences between modelled and retrieved aerosol size, which
have later been linked to shortcomings in the retrieval meth-
ods with regard to the detection of Aitken mode sized
particles(R < 50 nm) in the lower stratosphere (Thomason et
al., 2008; Reeves et al., 2008; Hommel et al., 2011). While
in ASAP2006, only five global two- and three-dimensional
stratospheric aerosol models were included in the analysis,
there are today more than 15 global three-dimensional mod-
els available worldwide (KTH2016). No large comprehen-
sive model intercomparison has ever been carried out to iden-
tify differences in stratospheric aerosol properties amongst
these new interactive models. The models often show signif-
icant differences in terms of their simulated transport, chem-
istry, and removal of aerosols with inter-model differences
in stratospheric circulation, radiative dynamical interactions,
and exchange with the troposphere likely to play an im-
portant role (e.g. Aquila et al., 2012; Niemeier and Timm-
reck, 2015). The formulation of microphysical processes is
also important (e.g. English et al., 2013), as are differing
assumptions regarding the sources of stratospheric aerosols
and their precursors. A combination of these effects likely
explain the large inter-model differences as seen in Fig. 1
among the global stratospheric aerosol models which par-
ticipated in the Tambora intercomparison, a precursor to the
“consensus volcanic forcings” aspects of the CMIP6 Model
Intercomparison Project on the climatic response to volcanic
forcing (VolMIP; Zanchettin et al., 2016; Marshall et al.,
2018). Even for the relatively recent 1991 Mt Pinatubo erup-
tion, to reach the best agreement with observations, interac-
tive stratospheric models have used a wide range of SO2 in-
jections amounts, from as low at 10 Tg SO2 (Dhomse et al.,
2014; Mills et al., 2016) to as high as 20 Tg SO2 (e.g. Aquila
et al., 2012; English et al., 2013).

Volcanic eruptions are commonly taken as a real-world
analogue for hypothesized geoengineering via stratospheric
sulfur solar radiation management (SS-SRM). Indeed many
of the assumptions and uncertainties related to simulated
volcanic perturbations of stratospheric aerosol are also fre-
quently given as caveats around research findings from mod-
elling studies which seek to quantify the likely effects from
SS-SRM (e.g. National Research Council, 2015), the mech-
anism steps between sulfur injection and radiative cooling
being common to both aspects (Robock et al., 2013). We ex-
pect the analysis of the ISA-MIP experiments to improve our
understanding of model sensitivities to key sources of un-
certainty and to inform the interpretation of coupled climate
model simulations and the next Intergovernmental Panel on
Climate Change (IPCC) assessment. It will also provide a
foundation for co-operation to assess the atmospheric and cli-
mate changes when the next large-magnitude eruption takes
place.

In this paper, we introduce the new model intercomparison
project ISA-MIP developed within the SSiRC framework. In
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Figure 1. Uncertainty in estimates of radiative forcing parameters
for the 1815 eruption of Mt Tambora: global average aerosol op-
tical depth (AOD) in the visible band from an ensemble of simula-
tions with chemistry–climate models forced with a 60 Tg SO2 equa-
torial eruption, from the Easy Volcanic Aerosol (EVA; Toohey et al.,
2016b) module with 56.2 Tg SO2 equatorial eruptions (thick dashed
magenta line), from Stoffel et al. (2015), from Crowley and Unter-
man (2013), and from Gao et al. (2008; aligned so that the erup-
tion starts on April 1815). The estimate for the Pinatubo eruption as
used in the CMIP6 historical experiment is also reported for com-
parison. The black triangle shows latitudinal position and timing
of the eruption. Chemistry–climate models are CESM (WACCM)
(Mills et al., 2016), MAECHAM5-HAM (Niemeier et al., 2009),
SOCOL (Sheng et al., 2015a), UM-UKCA (Dhomse et al., 2014),
and CAMB-UPMC-M2D (Bekki, 1995; Bekki et al., 1996). For
models producing an ensemble of simulations, the line and shad-
ing are the ensemble mean and ensemble standard deviation respec-
tively. Figure from Zanchettin et al. (2016).

Sect. 2 we provide an overview of the current state of strato-
spheric sulfur aerosol modelling and its greatest challenges.
In Sect. 3 we describe the scopes and protocols of the four
model experiments planned within ISA-MIP. A concluding
summary is provided in Sect. 4.

2 Modelling stratospheric aerosol: overview and
challenges

Before we discuss the current state of stratospheric aerosol
modelling and its greatest challenges in detail, we briefly de-
scribe the main features of the stratospheric sulfur cycle. We
are aware of the fact that the stratospheric aerosol layer also
contains organics and inclusions of meteoritic dust (Ebert et
al., 2016) and, after volcanic events, also co-exists with vol-
canic ash (e.g. Pueschel et al., 1994: KTH2016). However,
the focus of the ISA-MIP experiments described here is on
a comparison with measurements of the overall optical and

physical properties of the stratospheric aerosol layer, which
is mainly determined by sulfate.

2.1 The stratospheric aerosol life cycle

The stratospheric aerosol layer and its temporal and spatial
variability are determined by the transport of aerosol and
aerosol precursors in the stratosphere and their modifica-
tion by chemical and microphysical processes (Hamill et al.,
1997; ASAP2006; KTH2016). Volcanic eruptions can inject
sulfur-bearing gases directly into the stratosphere, which sig-
nificantly enhances the stratospheric aerosol load for years.
A number of observations show that stratospheric aerosol in-
creased over the first decade of the 21st century (e.g. Hof-
mann et al., 2009; Vernier et al., 2011b; Ridley et al., 2014).
Although such an increase was attributed to the possible
cause of Asian anthropogenic emission increase (Hofmann
et al., 2009), later studies have shown that small-to-moderate
magnitude volcanic eruptions are likely to be the major
source of this recent increase (Vernier et al., 2011b; Neely III
et al., 2013; Brühl et al., 2015).

Besides major volcanic eruptions, the photochemical ox-
idation of OCS, an insoluble gas mainly inert in the tro-
posphere, is a stratospheric source. Tropospheric aerosols
and aerosol precursors also enter the stratosphere through
the tropical tropopause and through convective updrafts in
the Asian and North American monsoons (Hofmann et al.,
2009; Hommel et al., 2011; Vernier et al., 2011a; Bourassa
et al., 2012; Yu et al., 2015). In the stratosphere, new sul-
fate aerosol particles are formed by binary homogenous nu-
cleation (Vehkamäki et al., 2002), a process in which sulfu-
ric acid vapour (H2SO4(g)) and water vapour condense si-
multaneously to form a liquid droplet. The condensation of
H2SO4(g) onto pre-existing aerosol particles and the coag-
ulation among particles shift the aerosol size distribution to
greater radii. This takes place especially under volcanically
perturbed conditions, when the concentrations of aerosol in
the stratosphere are higher (e.g. Deshler, 2008).

From the tropics, where most of the tropospheric aerosol
enters the stratosphere and the OCS chemistry is most ac-
tive, the stratospheric aerosol particles are transported pole-
ward within the large-scale BDC and removed through grav-
itational sedimentation and cross-tropopause transport in the
extratropical regions. Internal variability associated with the
QBO alters the isolation of the tropical stratosphere and
subsequently the poleward transport of tropical stratospheric
aerosol and modifies its global dispersal, particle size distri-
bution, and residence time (e.g. Trepte and Hitchman, 1992;
Hommel et al., 2015; Pitari et al., 2016b)

In general, under volcanically perturbed conditions with
larger amounts of injected SO2, aerosol particles grow to
much larger radii than in volcanically quiescent conditions
(e.g. Deshler, 2008). The simulation of extremely large vol-
canic sulfur-rich eruptions shows a shift to particle sizes even
larger than observed after the Pinatubo eruption and predicts
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a reduced cooling efficiency compared to moderate eruptions
with moderate sulfur injections (e.g. Timmreck et al., 2010;
English et al., 2013).

2.2 Global stratospheric aerosol models: current status
and challenges

A comprehensive simulation of the spatio-temporal evolu-
tion of the particle size distribution is a continuing challenge
for stratospheric aerosol models. Due to computational con-
straints, the formation of the stratospheric aerosol and the
temporal evolution of its size distribution are usually param-
eterized with various degrees of complexity in global mod-
els. The simplest way to simulate the stratospheric aerosol
distribution in global climate models is the mass-only (bulk)
approach (e.g. Timmreck et al., 1999a, 2003; Aquila et al.,
2012), where only the total sulfate mass is prognostically
simulated and chemical and radiative processes are calcu-
lated assuming a fixed typical particle size distribution. More
complex methods are size-segregated approaches, such as the
modal approach (e.g. Niemeier et al., 2009; Toohey et al.,
2011; Brühl et al., 2012; Dhomse et al., 2014; Mills et al.,
2016), where the aerosol size distribution is simulated us-
ing one or more modes, usually of log-normal shape. The
mean radius of each mode of these size distributions varies
in time and space. Another common approach is the sec-
tional method (e.g. English et al., 2011; Hommel et al., 2011;
Sheng et al., 2015a; for ref prior to 2006 see ASAP2006,
chap. 5), where the particle size distribution is divided into
distinct size sections. Number and width of the size sections
are dependent on the specific model configuration but are
fixed throughout time and space. Size sections may be de-
fined by an average radius, or by an average mass of sulfur,
and are often spaced geometrically.

The choice of methods has an influence on simulated
stratospheric aerosol size distributions and therefore on ra-
diative and chemical effects. While previous model inter-
comparison studies in a box model (Kokkola et al., 2009) or
in a two-dimensional framework (Weisenstein et al., 2007)
were very useful for the microphysical schemes, they could
not address uncertainties in the spatial transport pattern,
e.g. transport across the tropopause and the subtropical trans-
port barrier or regional/local differences in wet and dry re-
moval. These uncertainties can only be addressed in a global
three-dimensional model framework and with a careful vali-
dation with a variety of observational data.

The June 1991 eruption of Mt Pinatubo, with the vast net
of observations that tracked the evolution of the volcanic
aerosol, provides a unique opportunity to test and validate
global stratospheric aerosol models and their ability to simu-
late stratospheric transport processes. Previous model studies
(e.g. Timmreck et al., 1999b; Aquila et al., 2012) highlighted
the importance of an interactive online treatment of strato-
spheric aerosol radiative heating for the simulated transport
of the volcanic cloud. A crucial point is the simulation of

Figure 2. Schematic overview over the processes that influence the
stratospheric aerosol size distribution. The related SSiRC experi-
ments are listed below. BG stands for Background, TAR for Tran-
sient Aerosol Record, HErSEA for Historical Eruption SO2 Emis-
sion Assessment, and PoEMs for Pinatubo Emulation in Multiple
models.

the tropical stratospheric aerosol reservoir (i.e., the tropical
pipe, Plumb, 1996) and the meridional transport through the
subtropical transport barrier. Some models show a very nar-
row tropical maximum in comparison to satellite data (e.g.,
Dhomse et al., 2014) while others show too fast a transport
to higher latitudes and fail to reproduce the long persistence
of the tropical aerosol reservoir (e.g. Niemeier et al., 2009;
English et al., 2013). Sulfate geoengineering studies confirm
the importance of the model-dependent meridional transport
through the subtropical barrier (e.g. Niemeier and Timmreck,
2015; Visoni et al., 2018; Kleinschmitt et al., 2018). Rea-
sons for these differences need to be understood with a multi-
model comparison study, as suggested for example by Tilmes
et al. (2015).

3 The ISA-MIP experiments

Many uncertainties remain in the model representation of
stratospheric aerosol. Figure 2 summarizes the main pro-
cesses that determine the stratospheric sulfate aerosol mass
load, size distribution, and the associated optical proper-
ties. The four experiments in ISA-MIP are designed to ad-
dress these key processes under a well-defined experiment
protocol with prescribed boundary conditions (sea surface
temperatures (SSTs), emissions). All simulations will be
compared to observations to evaluate model performances
and understand model strengths and weaknesses. The ex-
periment Background (BG) focuses on microphysics and
transport (Sect. 3.1) under volcanically quiescent conditions,
when stratospheric aerosol is only modulated by seasonal
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Figure 3. (a) Composite of QBO-induced residual anomalies in the MAECHAM5-SAM2 modelled aerosol mass mixing ratio with respect
to the time of onset of westerly zonal mean zonal wind at 18 hPa. Black contours denote the residual zonal wind. Dashed lines represent
easterlies, contour interval is 5 ms. (b) Same but for the modelled effective radius of aerosols with R≥ 50 nm. Figure from Hommel et
al. (2015).

changes and interannual variability. The experiment Tran-
sient Aerosol Record (TAR) addresses the role of time-
varying SO2 emission, in particular the role of small- to
moderate-magnitude volcanic eruptions and transport pro-
cesses in the upper troposphere–lower stratosphere (UTLS)
over the period 1998–2012 (Sect. 3.2). Two further experi-
ments investigate the stratospheric sulfate aerosol size distri-
bution under the influence of large volcanic eruptions. The
Historical Eruptions SO2 Emission Assessment (HErSEA)
focuses on the uncertainty in the initial emission character-
istics of recent large volcanic eruptions (Sect. 3.3), while
Pinatubo Emulation in Multiple models (PoEMS) provides
an extensive uncertainty analysis of the radiative forcing of
the Mt Pinatubo eruption. In particular the ISA-MIP model
experiments aim to address the following questions:

1. How large is the stratospheric sulfate load under vol-
canically quiescent conditions, and how sensitive is the
simulation of this background aerosol layer to model-
specific microphysical parameterization and transport?
(Sect. 3.1)

2. Can we explain the sources and mechanisms behind the
observed variability in stratospheric aerosol load since
the year 2000? (Sect. 3.2)

3. Can stratospheric aerosol observations constrain uncer-
tainties in the initial sulfur injection amount and altitude
distribution of the three largest volcanic eruptions of the
last 100 years? (Sect. 3.3)

4. What is the confidence interval for volcanic forcing of
the Pinatubo eruption simulated by interactive strato-
spheric aerosol models and to which parameter uncer-
tainties are the predictions most sensitive to? (Sect. 3.4)

Table 1 gives an overview over all ISA-MIP experiments,
which are described in detail below. In general each ex-

periment will include several simulations from which only
a subset is mandatory (Tier1). The modelling groups are
free to choose in which of the experiments they would like
to participate; however, the BG Tier1 simulation is manda-
tory for all groups and the entry card for the ISA-MIP in-
tercomparison. All model results will be saved in a consis-
tent format (netCDF), made available via https://cera-www.
dkrz.de/WDCC/ui/cerasearch/ (last access: 26 June 2018),
and compared to a set of benchmark observations. More
detailed technical information about data requests can be
found in the Supplement and on the ISA-MIP webpage:
http://www.isamip.eu (last access: 26 June 2018).

It is mandatory for participating models to run with inter-
active sulfur chemistry (see review in SPARC ASAP2006)
in order to capture the oxidation pathway from precursors
to aerosol particles, including aerosol growth due to con-
densation of H2SO4. Chemistry–climate models (CCMs)
with full interactive chemistry follow the Chemistry Cli-
mate Initiative (CCMI) hindcast scenario REF-C1 (Eyring et
al., 2013, http://www.met.reading.ac.uk/ccmi/?page_id=11,
last access: 26 June 2018) for the treatment of chemical
fields and emissions of greenhouse gases (GHGs), ozone-
depleting substances (ODSs), and very short-lived sub-
stances (VSLSs). Sea surface temperatures and sea ice extent
are prescribed as monthly climatologies from the MetOffice
Hadley Center Observational Dataset (Rayner et al., 2003).
An overview of the boundary conditions is included in the
Supplement (Table S1). Table S2 reports the inventories to be
used for tropospheric emissions of aerosols and aerosol pre-
cursors. Anthropogenic sulfur emissions and biomass burn-
ing are taken from the Monitoring Atmospheric Composi-
tion and Climate (MACC)-CITY climatology (Granier et al.,
2011). S emissions from continuously erupting volcanoes are
taken into account using Dentener et al. (2006), which is
based on Andres and Kasgnoc (1998). OCS concentrations
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Table 1. General overview of the SSIRC ISA-MIP experiments.

Experiment Focus Number of specific Years Total Knowledge gap to be addressed
experiments per yearsa

experiment

Background Stratospheric sulfur 1 mandatory+ 20 20 (60) 20-year climatology to understand
stratospheric budget in volcanically 2 recommended sources and sinks of stratospheric
aerosol (BG) quiescent conditions background aerosol; assessment of

sulfate aerosol load under
volcanically quiescent conditions

Transient Transient stratospheric 4 mandatory+ 3 optional 15 60 Evaluate models over the period
Aerosol aerosol properties over experiments (75, 105) 1998–2012 with different volcanic
Record the period 1998 to 2012 recommended are 5 (see emission data sets;
(TAR) using different volcanic also Table 4) understand drivers and

emission data sets mechanisms for observed
stratospheric aerosol changes
since 1998

Historic Perturbation of For each (× 3) eruption 4 180 Assess how injected SO2
Eruption SO2 stratospheric aerosol; control, median and recom. 6 (270) propagates through to radiative
Emission from SO2 emission 4 (2× 2) of high/low effects for different historical major
Assessment appropriate for 1991 deep/shallow (see tropical eruptions in the different
(HErSEA) Pinatubo, 1982 El also Table 6) interactive stratospheric aerosol

Chichón, 1963, Agung models;
use stratospheric aerosol
measurements to constrain
uncertainties in emissions and gain
new observationally constrained
volcanic forcing and surface area
density data sets;
explore the relationship between
volcanic emission uncertainties
and volcanic forcing
uncertainties

Pinatubo Perturbed parameter 10 experiments per 3 per 90 (150, Intercompare Pinatubo perturbation
Emulation in ensemble of runs to parameter, where the experimentc 240) to stratospheric-aerosol properties with full
Multiple quantify uncertainty in number of parameters uncertainty analysis over PPE run
Models each model’s refers to the by each model;
(PoEMS)b predictions minimum (3), quantify sensitivity of predicted

reduced (5), or Pinatubo perturbation stratospheric
standard (8) aerosol properties and radiative
parameter set (see effects to uncertainties in injection
also Table 10) settings and model processes;

quantify and intercompare sources
of uncertainty in simulated
Pinatubo radiative forcing for the
different complexity models

a Each model will need to include an appropriate initialization and spin-up time for each ensemble member (∼ 3–6 years depending on model configuration). b As explained in the caption to
Table 11 and Sect. 3.4, models will need to restrict the PoEMS parameter scaling to volcanically enhanced air masses (either via a total-sulfur vmr (volume mixing ratio) threshold or a
passive volcanic SO2 tracer). c Although the Pinatubo enhancement to the stratospheric aerosol layer remained apparent until 1997 (e.g. Wilson et al., 2008), whereas the HErSEA
experiments will continue for longer, the PoEMS analysis will require only 3 post-eruption years to be run, as this gives sufficient time after the peak aerosol to characterize decay timescales
robustly (e.g. ASAP2006, Sect. 5).

are fixed at the surface at a value of 510 pptv (Montzka et al.,
2007; ASAP2006). If possible, dimethyl sulfide (DMS), dust,
and sea salt emissions should be calculated online depending
on the model meteorology. Models considering DMS oxi-
dation should calculate seawater DMS emissions as a func-
tion of wind speed and DMS seawater concentrations. Oth-
erwise, modelling groups should prescribe for these species
their usual emission database for the year 2000. Each group

can specify solar forcing for year-2000 conditions according
to their usual data set.

Modelling groups are encouraged to include a set of pas-
sive tracers to diagnose the atmospheric transport indepen-
dently of emissions, mostly following the CCMI recommen-
dations (Eyring et al., 2013). These tracers are listed in Ta-
ble S3. Models diagnose aerosol parameters as specified in
Tables S4 and S5. Additionally, volume mixing ratios of
specified precursors are diagnosed.

www.geosci-model-dev.net/11/2581/2018/ Geosci. Model Dev., 11, 2581–2608, 2018
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Table 2. List of stratospheric aerosol and SO2 observations available for the BG and TAR time period.

Measurement/platform Time period 1998–2014 Reference

SO2 profile/MLS 2004–2011 Pumphrey et al. (2015)
SO2 profile/MIPAS 2002–2012 Höpfner et al. (2013, 2015)
Aerosol extinction profile, size/SAGE II 1998–2005 Russell and McCormick (1989)
Aerosol extinction profile, size/OSIRIS 2001–2011 McLinden et al. (2012),

Rieger et al. (2015)
Aerosol extinction profile/GOMOS 2002–2021 Vanhellemont et al. (2010)
Aerosol extinction profile/SCIAMACHY 2002–2012 Taha et al. (2011)

von Savigny et al. (2015)
Aerosol extinction profile/CALIOP 2006–2011 Vernier et al. (2009, 2011a, b)
Aerosol extinction or AOD merged products 1998–2011 Rieger et al. (2015)
AOD from AERONET and lidars Ridley et al. (2014)
Surface area density Kovilakam and Deshler (2015)

Eyring et al. (2013)

3.1 Stratospheric background aerosol (BG)

3.1.1 Summary of experiment

The overall objective of the BG experiment is to better under-
stand the processes involved in maintaining the stratospheric
background aerosol layer, i.e. stratospheric aerosol not re-
sulting from direct volcanic injections into the stratosphere.
The simulations prescribed for this experiment are time-slice
simulations for the year 2000 with prescribed SST includ-
ing all sources of aerosols and aerosol precursors except
for explosive volcanic eruptions. The result of BG will be
a multi-model climatology of aerosol distribution, composi-
tion, and microphysical properties in the absence of volcanic
eruptions. By comparing models with different aerosol mi-
crophysics parameterization and simulations of background
circulation with a variety of observational data (Table 2),
we aim to assess how these processes impact the simulated
aerosol characteristics.

3.1.2 Motivation

The total net sulfur mass flux from the troposphere into
the stratosphere is estimated to be about 181 Gg S yr−1

based on simulations by Sheng et al. (2015a) using the
SOCOL-AER model, 1.5 times larger than reported in
ASAP2006 (KTH2016). This estimate, however, could be
highly dependent on the specific characteristics of the model
used, such as the strength of convective systems, scavenging
efficiency, and the occurrence of stratosphere–troposphere
exchange. Therefore, especially in the lower stratosphere, the
simulated distribution of stratospheric background aerosol
could show a very large inter-model variability.

OCS is still considered the largest contributor to the
aerosol loadings in the middle stratosphere. Several stud-
ies have shown that the transport to the stratosphere of tro-
pospheric aerosol and aerosol precursors constitutes an im-
portant source of stratospheric aerosol (KTH2016 and ref-

erences herein) although new in situ measurements indicate
that the cross-tropopause SO2 flux is negligible over Mexico
and Central America (Rollins et al., 2017). Observations of
the Asian Tropopause Aerosol Layer (ATAL; Vernier et al.,
2011a) show that, particularly in the UTLS, aerosol of tropo-
spheric origin can significantly enhance the burden of aerosol
in the stratosphere. This tropospheric aerosol has a more
complex composition than traditionally assumed for strato-
spheric aerosol: Yu et al. (2015), for instance, showed that
carbonaceous aerosol makes up to 50 % of the aerosol load-
ings within the ATAL. The rate of stratospheric–tropospheric
exchange (STE) is influenced by the seasonality of the circu-
lation and the frequency and strength of convective events in
large-scale phenomena such as the Asian and North Amer-
ican monsoon or in small-scale phenomena such as strong
storms. Model simulations by Hommel et al. (2015) also re-
vealed significant QBO signatures in aerosol mixing ratio
and size in the tropical middle stratosphere (Fig. 3). Hence,
the model-specific implementation of the QBO (nudged or
internally generated) could impact its effects on the strato-
spheric transport and, subsequently, on the stratospheric
aerosol layer.

In this experiment, we aim to assess the inter-model vari-
ability of the background stratospheric aerosol layer and
of the sulfur mass flux from the troposphere to the strato-
sphere and vice versa. We will exclude changes in emis-
sions and focus on the dependence of stratospheric aerosol
concentrations and properties on stratospheric transport and
STE. The goal of the BG experiment aims to understand
how the model-specific transport characteristics (e.g. isola-
tion of the tropical pipe, representation of the QBO and the
strength of convective systems) and aerosol parameteriza-
tions (e.g. aerosol microphysics and scavenging efficiency)
affect the representation of the background aerosol.

Geosci. Model Dev., 11, 2581–2608, 2018 www.geosci-model-dev.net/11/2581/2018/
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Table 3. Overview of BG experiments.

Exp-name Specific description/ Period Ensemble Years per Tier
volcanic emission size member

BG_QBO Background simulation Time slice year 2000 monthly 1 20 1
varying with internal or nudged
QBO

BG_NQBO Perpetual easterly phase of the Time slice year 2000 monthly 1 20 2
QBO for the whole simulation varying without QBO

BG_NAT Only natural sources of aerosol Time slice year 2000 monthly 1 20 2
(including biomass burning) varying with internal or nudged

QBO (when possible)

3.1.3 Experiment set-up and specifications

The BG experiment prescribes one mandatory (BG_QBO)
and two recommended (BG_NQBO and BG_NAT) simula-
tions (see Table 3). BG_QBO is a time-slice simulation with
conditions characteristic of the year 20001, with the goal of
understanding sources, sinks, composition, and microphysi-
cal characteristics of stratospheric background aerosol under
volcanically quiescent conditions. The time-slice simulation
should be at least 20 years long, after a spin-up period of at
least 10 years to equilibrate stratospherically relevant quan-
tities such as OCS concentrations and the age of air. The pe-
riod seems to be sufficient to study differences in the aerosol
properties but needs to be extended if dynamical changes,
e.g. in NH winter variability, are to be analysed. Modelling
groups should run this simulation with varying QBO, either
internally generated or nudged to the 1981–2000 period.

If resources allow, each model should perform the sensi-
tivity experiments BG_NQBO and BG_NAT. The specifics
of these two experiments are the same as for BG_QBO,
but BG_NQBO should be performed without varying QBO2

and BG_NAT without anthropogenic emissions of aerosol
and aerosol precursors, as indicated in Table S1. The goals
of these sensitivity experiments are to understand the effect
of the QBO on the background aerosol characteristics and
the contribution of anthropogenic sources to the background
aerosol loading in the stratosphere.

3.2 Transient Aerosol Record (TAR)

3.2.1 Summary of experiment

The aim of the TAR experiment is to investigate the rel-
ative contributions of volcanic and anthropogenic sources
to the temporal evolution of the stratospheric aerosol layer
between 1998 and 2012. Observations show that there is a

1To ensure comparability to the AeroCom simulations (http://
aerocom.met.no/Welcome.html, last access: 26 June 2018).

2Models with an internally generated QBO might nudge the
tropical stratospheric winds.

transient increase in stratospheric aerosol loading, in partic-
ular after the year 2003, with small-to moderate-magnitude
volcanic eruptions contributing significantly to this increase
(e.g. Solomon et al., 2011; Vernier et al., 2011b; Neely III et
al., 2013; Ridley et al., 2014; Santer et al., 2015; Brühl et al.,
2015). TAR model simulations will be performed using spec-
ified dynamics, prescribed sea surface temperature and time-
varying SO2 emissions. The simulations are suitable for any
general circulation or chemistry transport models that simu-
late the stratospheric aerosol interactively and have the capa-
bility to nudge meteorological parameters to reanalysis data.
The TAR protocol covers the period from January 1998 to
December 2012, when only volcanic eruptions have affected
the UTLS aerosol layer with SO2 emissions about an order
of magnitude smaller than Pinatubo. Time-varying surface
emission data sets contain anthropogenic and natural sources
of sulfur aerosol and their precursor species. The volcanic
SO2 emission inventories contain information of all known
eruptions that emitted SO2 into the UTLS during this period.
It comprises the geolocation of each eruption, the amount of
SO2 emitted, and the height of the emissions. SO2 emissions
from continuously degassing volcanoes are also included.

3.2.2 Experiment set-up and specifications

Participating models are encouraged to perform up to seven
experiments, based on five different volcanic SO2 emission
databases (hereafter referred to as VolcDB). Four experi-
ments are mandatory; three others are optional. The vol-
canic experiments are compared to a reference simulation
(TAR_base) that does not use any of the volcanic emission
databases but emissions from continuously degassing volca-
noes. The aim of the reference simulation is to simulate the
non-volcanically perturbed state of the stratospheric aerosol
layer. In contrast to the experiment protocol BG (Sect. 3.1),
here time-varying surface boundary conditions (SST/SIC)
are applied, whereas BG intercompares model simulations
under climatological mean conditions and uses constant
2000 conditions.

www.geosci-model-dev.net/11/2581/2018/ Geosci. Model Dev., 11, 2581–2608, 2018
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An overview of the volcanic emission inventories is given
in Table 4 and in Fig. 4. VolcDB1/2/3 are new compilations
(Bingen et al., 2017; Neely and Schmidt, 2016; Carn et al.,
2016), whereas a fourth inventory (VolcDB4; Diehl et al.,
2012), provided earlier, for the AeroCom community mod-
elling initiative, is optional. The databases use SO2 observa-
tions from different sources and apply different techniques
for the estimation of injection heights and the amount of
emitted SO2. The four inventories are provided in the form
of tabulated point sources, with each modelling group to
translate emitted SO2 mass for each eruption into model lev-
els spanning the upper and lower emission altitudes. To test
the effect of the implementation strategy (point source vs.
cloud), an additional non-mandatory experiment has been set
up: TAR_db1_3D with VolcDB1_3D as corresponding data
set which provides a series of discrete 3-D gridded SO2 in-
jections at specified times. In both versions of VolcDB1, the
integral SO2 mass of each injection is consistent.

We recommend performing one additional non-mandatory
experiment TAR_sub in order to quantify and isolate the ef-
fects of eight volcanic eruptions that either had a statisti-
cally significant effect on, for instance, tropospheric tem-
peratures (Santer et al., 2014, 2015) or emitted signifi-
cant amounts of SO2 over the 1998 to 2012 time period.
This experiment uses a subset of volcanic emissions (Vol-
cDBSUB) that were derived based on the average mass of
SO2 emitted using VolcDB1, VolcDB2, and VolcDB3 for
the following eruptions: 28 January 2005 Manam (4.0◦ S,
Papua New Guinea), 7 October 2006 Tavurvur (4.1◦ S, Papua
New Guinea), 21 June 2009 Sarychev, (48.5◦ N, Kyrill,
UDSSR) 8 November 2010 Merapi (7.3◦ S, Java, Indone-
sia), and 21 June 2011 Nabro (13.2◦ N, Eritrea). In addi-
tion the eruptions of Soufrière Hills (16.4◦ N, Montserrat) on
20 May 2006, Okmok (53.3◦ N, Alaska) on 12 July 2008, and
Kasatochi (52.1◦ N, Alaska) on 7 August 2008 are consid-
ered (Table S6) although these are not discernible in climate
proxies (Kravitz et al., 2010; Santer et al., 2014, 2015).

To summarize the number of experiments to be conducted
within TAR, four are mandatory (TAR_base with no vol-
canic emission, Tar_db1/2/3), one additional one is recom-
mended (TAR_sub), and two others are optional (TAR_db4
and TAR_db1_3D; see Table 5 for an overview).

Volcanic SO2 emission databases

VolcDB1 (Bingen et al., 2017; Brühl, 2018) are updates
from Brühl et al. (2015) using satellite data of MI-
PAS and OMI. For TAR, VolcDB1 has been extended
based on data from Global Ozone Monitoring by Occul-
tation of Stars (GOMOS), SAGE II, Total Ozone Map-
ping Spectrometer (TOMS), and the Smithsonian database.
The VolcDB1_3D data set, for the optional experiment
TAR_db1_3D, contains volume mixing ratio distributions of
the injected SO2 cloud on a T42 Gaussian grid with 90 levels.
The integral SO2 mass for each injection is the same. Vol-

Figure 4. Annual total volcanic sulfur dioxide (SO2) emission from
three different emission data sets between 2003 and 2008 to be used
in the Tier1 MITAR experiments. VolcDB1 (Bingen et al., 2017)
considers only stratospheric SO2 emissions; VolcDB2 (Neely and
Schmidt, 2016) and VolcDB3 (Carn et al., 2016) consider both tro-
pospheric and stratospheric SO2 emission.

cDB2 (Mills et al., 2016; Neely and Schmidt, 2016) contains
volcanic SO2 emissions and plume altitudes for eruptions
that have been detected by satellite instruments including
TOMS, OMI, OMPS, the Infrared Atmospheric Sounding
Interferometer (IASI), the Global Ozone Monitoring Experi-
ment (GOME/2), the Atmospheric Infrared Sounder (AIRS),
the Microwave Limb Sounder (MLS), and the MIPAS in-
strument. The database is compiled based on published es-
timates of the eruption source parameters and reports from
the Smithsonian Global Volcanism Program (http://volcano.
si.edu/, last access: 26 June 2018), NASA’s Global Sul-
fur Dioxide Monitoring website (http://so2.gsfc.nasa.gov/,
last access: 26 June 2018) as well as the Support to Avia-
tion Control Service (http://sacs.aeronomie.be/, last access:
26 June 2018). The tabulated point source database also in-
cludes volcanic eruptions that emitted SO2 into the tropo-
sphere only, as well as direct stratospheric emissions, and has
been used and compared to observations in Mills et al. (2016)
and Solomon et al. (2016).

VolcDB3 uses the most recent compilation of the volcanic
degassing database of Carn et al. (2016). Observations from
the satellite instruments TOMS, the High-resolution Infrared
Sounder (HIRS/2), AIRS, OMI, MLS, IASI, and OMPS are
considered, measuring in the UV, IR, and microwave spectral
bands. Similar to VolcDB1/2, VolcDB3 also includes tropo-
spheric eruptions.

Historically VolcDB4 is an older data set, which relies on
information from TOMS, OMI, the Global Volcanism Pro-
gram (GVP), and other observations from the literature, cov-
ering the time period from 1979 to 2010. In contrast to the
other inventories, VolcDB4 has previously been applied by
a range of models within the AeroCom community (http:
//aerocom.met.no/emissions.html, last access: 26 June 2018;
Diehl et al., 2012; Dentener et al., 2006). Hence, it adds valu-

Geosci. Model Dev., 11, 2581–2608, 2018 www.geosci-model-dev.net/11/2581/2018/
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Table 5. Overview of TAR experiments.

Exp-name Volcanic Specific description Period Years Tier
database per
name member

TAR_base – No sporadically erupting Transient 1998–2012 15 1
volcanic emission monthly varying

TAR_db1 VolcDB1 Volcanic emission data set Transient 1998–2012 15 1
(Brühl et al., 2015 and updates) monthly varying

TAR_db2 VolcDB2 Volcanic emission data set Transient 1998–2012 15 1
(Mills et al., 2016) monthly varying

TAR_db3 VolcDB3 Volcanic emission data set Transient 1998–2012 15 1
(Carn et al., 2016) time varying

TAR_db4 VolcDB4 Volcanic emission data set Transient 1998–2010 13 3
(Diehl et al., 2012) and updates time varying

TAR_sub VolcDBSUB Subset of strongest eight volcanoes; Transient 1998–2012 15 2
averaged SO2 emissions and monthly varying
averaged injection heights from
VolcDB1/2/3

TAR_db1_3D VolcDB1_3D NetCDF version of volcanic Transient 1998–2012 15 3
emission data set VolcDB1 monthly varying
(Brühl et al., 2015, and updates)

Figure 5. Example results from interactive stratospheric aerosol simulations with the UM-UKCA model (Dhomse et al., 2014) of five
different SO2 injection realizations of the 1991 Pinatubo eruption (see Table 8), The model tropical mean extinction in the mid-visible
(550 nm) and near-infrared (1020 nm) is compared to that from SAGE-II measurements. Only two of the five injection realizations inject
below 20 km and the impact on the timing of the peak and general evolution of the aerosol optical properties is apparent. In this model the
growth to larger particle sizes and subsequent sedimentation to lower altitudes is able to explain certain signatures seen in the satellite data
(see also Mann et al., 2015).
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able information to the TAR experiments because it allows
an estimation of how the advances in observational methods
impact modelling results. It should be noted that VolcDB4 al-
ready contains the inventory of Andres and Kasgnoc (1998)
for S emissions from continuously erupting volcanoes and
should not be allocated twice when running this experiment.

Boundary conditions, chemistry, and forcings

To reduce uncertainties associated with model differences in
the reproduction of synoptic and large-scale transport pro-
cesses, models are strongly encouraged to perform TAR ex-
periments with specified dynamics, where meteorological
parameters are nudged to a reanalysis such as the ECMWF
ERA-Interim (Dee et al., 2011). This allows models to rea-
sonably reproduce the QBO and planetary wave structure in
the stratosphere and to replicate as closely as possible the
state of the BDC in the simulation period. Nudging also al-
lows comparing directly to available observations of strato-
spheric aerosol properties (Table 2), such as the extinction
profiles and aerosol optical depth (AOD), and should en-
able the models to simulate the ATAL (Vernier et al., 2011a;
Thomason and Vernier, 2013), which, so far, has been studied
only by very few global models in great detail (e.g. Neely III
et al., 2014; Yu et al., 2015).

3.3 Historical Eruption SO2 Emission
Assessment (HErSEA)

3.3.1 Summary of experiment

This HErSEA experiment will involve each participating
model running a limited ensemble of simulations for each
of the three largest volcanic perturbations to the stratosphere
in the last 100 years: 1963 Mt Agung, 1982 El Chichón, and
1991 Mt Pinatubo.

The main aim is to use a wide range of stratospheric
aerosol observations to constrain uncertainties in the SO2
emitted for each eruption (amount, injection height). Several
different aerosol metrics will be intercompared to assess how
effectively the emitted SO2 translates into perturbations to
stratospheric aerosol properties and simulated radiative forc-
ings across interactive stratospheric aerosol CCMs with a
range of different complexities. Whereas the TAR simula-
tions (see Sect. 3.2) use specified dynamics and are suitable
for chemistry transport models, for this experiment, simu-
lations must be free-running with radiative coupling to the
volcanically enhanced stratospheric aerosol, thereby ensur-
ing the composition–radiation–dynamics interactions associ-
ated with the injection are resolved. We are aware that this
specification inherently excludes chemistry transport models,
which must impose atmospheric dynamics. However, since
the aim is to apply stratospheric aerosol observations in con-
cert with the models to re-evaluate current best estimates of
the SO2 input and in light of the first-order impact the strato-

spheric heating has on hemispheric dispersion from these
major eruptions (e.g. R. E. Young et al., 1994), we assert that
this apparent exclusivity is entirely justified in this case.

As well as analysing and evaluating the individual model
skill and identifying model consensus and disagreement for
these three specific eruptions, we also seek to learn more
about major eruptions which occurred before the era of satel-
lite and in situ stratospheric measurements. Our understand-
ing of the effects from these earlier eruptions relies on de-
riving volcanic forcings from proxies such as sulfate deposi-
tion to ice sheets (Gao et al., 2007; Sigl et al., 2015; Toohey
et al., 2013), from photometric measurements from astro-
nomical observatories (Stothers, 1996, 2001), or from doc-
umentary evidence (Stothers, 2002; Stothers and Rampino,
1983; Toohey et al., 2016a). Although HErSEA has no spe-
cific experiment to understand the relationship between the
ice core sulfate deposition and the stratospheric aerosol layer
enhancements that drive the surface cooling, there is the po-
tential for a systematic inter-model study (e.g. similar to Mar-
shall et al., 2018) to identify how uncertain historic volcanic
forcings derived from ice core sulfate deposition may be.

3.3.2 Motivation

In the days following the June 1991 Pinatubo eruption, satel-
lite SO2 measurements show (e.g. Guo et al., 2004a) that
the peak gas phase sulfur loading was 7 to 11.5 Tg S (or
14–23 Tg SO2). The chemical conversion to sulfuric aerosol
that occurred in the tropical reservoir over the following
weeks and the subsequent transport to mid- and high latitudes
caused a major enhancement to the stratospheric aerosol
layer. The peak particle sulfur loading, through this global
dispersion phase, reached only around half that in the ini-
tial SO2 emission; the maximum particle sulfur loading was
measured as 3.7 to 6.7 Tg S (Lambert et al., 1993; Baran and
Foot, 1994), based on an aqueous sulfuric acid composition
range of 59 to 77 % by weight (Grainger et al., 1993).

Whereas some model studies with aerosol microphysical
processes find consistency with observations for SO2 injec-
tion values of 8.5 Tg S (e.g., Niemeier et al., 2009; Toohey
et al., 2011; Brühl et al., 2015), several recent microphysi-
cal model studies (Dhomse et al., 2014; Sheng et al., 2015a;
Mills et al., 2016) find best agreement for an injected sul-
fur amount at, or even below, the lower end of the range
of the satellite SO2 measurements; see also Fig. 5. Model
predictions are known to be sensitive to differences in as-
sumed injection height (e.g. Sheng et al., 2015b; Jones et
al., 2016), and whether models resolve radiative heating and
“self-lofting” effects also affects subsequent transport path-
ways (e.g. R. E. Young et al., 1994; Timmreck et al., 1999b;
Aquila et al., 2012). Another potential mechanism that could
explain part of the apparent model–observation discrepancy
is that a substantial proportion of the sulfur may have been
removed from the plume in the first months after the erup-
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Table 6. Overview of HErSEA experiments.

Exp-name Specific description/volcanic emission Period Ensemble Years per Tier
size member

HErSEA_Pin_Em_Ism Pinatubo episode, Transient 1991– 3 5 1
SO2 Emission=medium, Inject shallow @ medium-alt. 1995

HErSEA_Pin_Eh_Ism Pinatubo episode, incl. GHGs & 3 5 1
SO2 Emission= high, Inject shallow @ medium-alt. ODSs

HErSEA_Pin_El_Ism Pinatubo episode, (monthly varying 3 5 1
SO2 Emission= low, Inject shallow @ medium-alt. SST &

HErSEA_Pin_Em_Isl Pinatubo episode, sea-ice from 3 5 2
SO2 Emission=medium, Inject shallow @ low-alt. HadISST

HErSEA_Pin_Em_Idp Pinatubo episode, as for CCMI) 3 5 2
SO2 Emission=medium, Inject over deep altitude-range

HErSEA_Pin_Cntrol Pinatubo episode, 3 5 1
No Pinatubo SO2 emission

HErSEA_ElC_Em_Ism El Chichón episode, Transient 1982– 3 5 1
SO2 Emission=medium, Inject shallow @ medium-alt. 1986

HErSEA_ElC_Eh_Ism El Chichón episode, incl. GHGs & 3 5 1
SO2 Emission= high, Inject shallow @ medium-alt.

HErSEA_ElC_El_Ism El Chichón episode, SO2 ODSs (monthly 3 5 1
Emission= low, Inject shallow @ medium-alt. varying SST and

HErSEA_ElC_Em_Isl El Chichón episode, sea-ice from 3 5 2
SO2 Emission=medium, Inject shallow@low-altitude HadISST

HErSEA_ElC_Em_Idp El Chichón episode, as for CCMI) 3 5 2
SO2 Emission=medium, Inject over deep altitude-range

HErSEA_ElC_Cntrol El Chichón episode 3 5 1
no El Chichón SO2 emission

HErSEA_Agg_Em_Ism Agung episode Transient 1963– 3 5 1
SO2 Emission=medium, Inject shallow @ medium-alt. 1967

HErSEA_Agg_Eh_Ism Agung episode, incl. GHGs & 3 5 1
SO2 Emission= high, Inject shallow @ medium-alt. ODSs

HErSEA_Agg_El_Ism Agung episode, (monthly varying 3 5 1
SO2 Emission= low, Inject shallow @ medium-alt. SST and sea-ice

HErSEA_Agg_Em_Isl Agung episode, from HadISST 3 5 2
SO2 Emission=medium, Inject shallow @ low-alt. as for CCMI)

HErSEA_Agg_Em_Idp Agung episode, 3 5 2
SO2 Emission=medium, Inject over deep altitude-range

HErSEA_Agg_Cntrol Agung episode 3 5 1
no Agung SO2 emission

tion due to accommodation onto co-emitted ash/ice (Guo et
al., 2004b) and subsequent sedimentation.

This ISA-MIP experiment will explore these issues fur-
ther, with the participating models carrying out co-ordinated
experiments of the three most recent major eruptions, with
specified common SO2 amounts and injection heights (Ta-
ble 6). This design ensures the analysis can focus on
key inter-model differences such as stratospheric circula-
tion/dynamics, the impacts from radiative dynamical inter-
actions, and the effects of aerosol microphysical schemes.
Analysing how the vertical profile of the enhanced strato-
spheric aerosol layer evolves during global dispersion and
decay will provide a key indicator for why the models differ,
and what the key driving mechanisms are. Furthermore, the
actual response of the BDC and mean age of air to Pinatubo
is poorly constrained by existing reanalysis data (Garfinkel et
al., 2017). While some modelling studies reported a decreas-

ing mean age of air following volcanic eruptions throughout
the stratosphere (Garcia et al., 2011; Garfinkel et al., 2017),
others show an increase in mean age (Diallo et al., 2017).
Moreover, Muthers et al. (2016) found a decreasing mean
age of air in the middle and upper stratosphere and an in-
creasing mean age below, while Pitari et al. (2016a) found a
decreasing mean age at higher levels of 30 hPa in the tropics
and 10 hPa in the middle latitudes after the Pinatubo erup-
tion. The HErSEA experiment in combination with a passive
volcanic tracer might therefore help to better constrain the re-
sponse of the BDC to volcanic eruptions using observations
and help to clarify the uncertainties in the age-of-air changes
after the Pinatubo eruption. For all three major eruptions, we
have identified key observational data sets (Table 7) that will
provide benchmark tests to evaluate the vertical profile, cov-
ering a range of different aerosol metrics.
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Table 7. List of stratospheric aerosol observation data sets from the three large eruptions of the 21st century (Agung, El Chichón, and
Mt Pinatubo). For NDACC archive, see http://www.ndsc.ncep.noaa.gov/data/ (last access: 26 June 2018).

Eruption Measurement/platform References

Pinatubo Extinction/AOD [multi-l]: SAGE-II, AVHRR, Hamill and Brogniez (SPARC, 2006, and references
HALOE, CLAES therein)
Balloon-borne size-resolved concentration profiles Deshler (1994, Kiruna, EASOE), Deshler et al.
(CPC, OPC) (2003)
Impactors on ER2 (AASE2), FCAS, and FSSP on Pueschel et al. (1994), Wilson et al. (1993), Brock et
ER2 (AASE2) al. (1993)
Ground-based lidar; airborne lidar NDACC archive; S. A. Young et al. (1994), Browell
Ship-borne lidar measurements et al. (1993)

Avdyushin et al. (1993); Nardi et al. (1993), Stevens et
al. (1994)

El Chichón Satellite extinction/AOD 1000 nm (SAM-II) Hamill and Brogniez (SPARC, 2006 & references
Balloon-borne particle concentration profiles therein)
Ground-based lidar Hofmann and Rosen (1983, 1987).

NDACC archive

Agung Surface radiation measurements Dyer and Hicks (1965), Pueschel et al. (1972), Moreno
(global dataset gathered in Dyer and Hicks, 1968) and Stock (1964), Flowers and Viebrock (1965)
Balloon-borne measurements Rosen (1964, 1966, 1968), Pittock (1966)
Ground-based lidar, searchlight, and twilight Clemesha et al. (1966), Grams and Fiocco (1967), Kent et
measurements al. (1967), Elterman et al. (1969), Volz (1964, 1965, 1970)
Aircraft measurements Mossop (1963, 1964), Friend (1966)

3.3.3 Experiment set-up and specifications

Each modelling group will run a mini-ensemble of transient
AMIP-type runs for the three eruptions with upper and lower
bound SO2 emissions and three different injection height set-
tings: two shallow (e.g. 19–21 and 23–25 km) and one deep
(e.g. 19–25 km) (see Table 7). The seasonal cycle of the
BDC affects the hemispheric dispersion of the aerosol plume
(e.g. Toohey et al., 2011), and the phase of the QBO is also
known to be a key control for tropical eruptions (e.g. Trepte
and Hitchman, 1992). In order to quantify the contribution
of the tracer transport, it is recommended to additionally ini-
tialize and transport a passive tracer Volc (Table S3). Note
that since the AMIP-type simulations will be transient, pre-
scribing time-varying sea surface temperatures, the models
will automatically match the surface climate state (ENSO,
NAO) through each post-eruption period. Where possible,
models should re-initialize (if they have internally generated
QBO) or use specified dynamics approaches (e.g. Telford et
al., 2008) to ensure the model dynamics are consistent with
the QBO evolution through the post-eruption period. General
circulation models should use GHG concentrations appropri-
ate for the period, and models with interactive stratospheric
chemistry should ensure the loading of ODSs matches that
for the time period.

Table 8 shows the settings for the SO2 injection for each
eruption. Note that experience of running interactive strato-
spheric aerosol simulations shows that the vertical extent of
the enhanced stratospheric aerosol will be different from the
altitude range in which the SO2 is injected. So, these sensi-

tivity simulations will allow us to assess the behaviour of the
individual models with identical settings for the SO2 injec-
tion.

For these major eruptions, where the perturbation is much
larger than in TAR, model diagnostics include AOD and ex-
tinction at multiple wavelengths and heating rates (K day−1)
in the lower stratosphere to identify the stratospheric warm-
ing induced by simulated volcanic enhancement, includ-
ing exploring compensating effects from other constituents
(e.g. Kinne et al., 1992). To allow the global variation in size
distribution to be intercompared, models will also provide a
3-D monthly effective radius, which also includes cumulative
number concentration at several size cuts for direct compari-
son to balloon measurements. Examining the co-variation of
the particle size distribution with variations in extinction at
different wavelengths will be of particular interest in relation
to approaches used to interpret astronomical measurements
of eruptions in the pre in situ era (Stothers, 1996, 2001). A
three-member ensemble will be submitted for each different
injection setting.

3.4 Pinatubo Emulation in Multiple models (PoEMs)

3.4.1 Summary of experiment

The PoEMS experiment will involve each interactive strato-
spheric aerosol model running a perturbed parameter ensem-
ble (PPE) of simulations through the 1991–1995 Pinatubo-
perturbed period. Variation-based sensitivity analysis will
derive a probability distribution function (PDF) for each
model’s predicted Pinatubo forcing, following techniques ap-
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Table 8. Settings to use for initializing the mini-ensemble of interactive stratospheric aerosol simulations for each eruption in the HErSEA
experiment. For Pinatubo the upper range of SO2 emission is based on TOMS/TOVS SO2 observations (Guo et al., 2004a). The SO2
emissions flux ranges and central values (in parentheses) are specifically for application in interactive stratospheric aerosol (ISA) models
rather than any new data compilation. The lower range and the central values are defined according to some recent Pinatubo studies (Dhomse
et al., 2014; Mills et al., 2016; Sheng et al., 2015a) which have identified a modest downward adjustment of initially observed SO2 amounts to
agree with HIRS/ISAMS measurements of peak sulfate aerosol loading (Baran and Foot, 1994). The adjustment assumes either uncertainties
in the satellite measurements or that loss pathways in the first few weeks after these eruptions are either underpredicted (e.g. due to coarse
spatial resolution) or omitted completely (accommodation onto ash/ice) in the ISA models. The El Chichón SO2 central estimate is taken
from Krueger et al. (2008), and an emission range is based on assumed ±33 %, while for Agung the SO2 emission estimate is from Self and
King (1996). For Pinatubo, injection height ranges for the two shallow and one deep realization are taken from Antuña et al. (2002). The
El Chichón values are based on the tropical lidar signal from Fig. 4.34 of Hamill and Brogniez (2006), whereas for Agung we considered the
measurements presented in Dyer and Hicks (1968) including balloon soundings (Rosen, 1964) and ground-based lidar (Grams and Fiocco,
1967).

Eruption Location Date SO2 (Tg) Shallow× 2 Deep

Mt Pinatubo 15◦ N, 120◦ E 15 Jun 1991 10–20 (14) 18–20, 21–23 km 18–25 km
El Chichón 17◦ N, 93◦W 4 Apr 1982 5–10 (7) 22–24, 24–26 km 22–27 km
Mt Agung 8◦ S, 115◦ E 17 Mar 1963 5–10 (7) 17–19, 20–22 km 17–23 km

plied successfully to quantify and attribute sources of uncer-
tainty in tropospheric aerosol forcings (e.g. Carslaw et al.,
2013). The approach will teach us which aspects of the ra-
diative forcing from major eruptions is most uncertain and
will enable us to identify how sensitive model predictions of
key features (e.g. timing and value of peak forcing and de-
cay timescales) are to uncertainties in several model param-
eters. Comparing the time signatures of different underlying
aerosol metrics (mid-visible AOD, effective radius, particle
number) between models, and crucially also against obser-
vations, may also help to reduce the natural forcing uncer-
tainty, potentially thereby making the next generation of cli-
mate models more robust.

3.4.2 Motivation

The sudden global cooling from major eruptions is a key sig-
nature in the historical climate record and a natural global
warming signature occurs after peak cooling as volcanic
aerosol is slowly removed from the stratosphere. Quantita-
tive information on the uncertainty range of volcanic forc-
ings is therefore urgently needed. The amount of data col-
lected by satellite-, ground-, and airborne instruments in
the period following the 1991 eruption of Mount Pinatubo
(see, e.g., Sect. 3.3.2, Table 7) provides an opportunity to
test model capabilities in simulating large perturbations of
stratospheric aerosol and their effect on the climate. Re-
cent advances in quantifying uncertainty in climate models
(e.g. Rougier et al., 2009; Lee at al., 2011) involve running
ensembles of simulations to systematically explore combina-
tions of different external forcings to scope the range of pos-
sible realizations. There are now a large number of general
circulation models (GCMs) with prognostic aerosol mod-
ules, which tend to assess the stratospheric aerosol perturba-
tion through the Pinatubo-perturbed period (see Table 9). Al-

though these different models achieve reasonable agreement
with the observations, this consistency of skill is achieved
with considerable diversity in the values assumed for the ini-
tial magnitude and distribution of the SO2 injection. The SO2
injections prescribed by different models range from 5 to
10 Tg S, and the upper edge of the injection altitude varies
among models from as low as 18 km to as high as 29 km, as
shown in Table 9. Such simulations also differ in the choice
of the vertical distribution of SO2 injection (e.g. uniform,
Gaussian or triangular distributions) and the horizontal in-
jection area (one to several grid boxes). The fact that differ-
ent choices of injection parameters lead to similar results in
different models points to differences in the models’ internal
treatment of aerosol evolution. Accurately capturing micro-
physical processes such as coagulational, growth, and subse-
quent rates of sedimentation has been shown to be important
for volcanic forcings (English et al., 2013), but some studies
(e.g. Mann et al., 2015) identify that these processes inter-
play also with aerosol–radiation interactions, the associated
dynamical effects changing the fate of the volcanic sulfur and
its removal into the troposphere. The PoEMS experiment will
specifically assess this issue by adjusting the rate of specific
microphysical processes in each model simultaneously with
perturbations to SO2 emission and injection height, thereby
assessing the footprint of their influence on subsequent vol-
canic forcing in different complexity aerosol schemes and
the relative contribution to uncertainty from emissions and
microphysics.

3.4.3 Experiment set-up and specifications

For each model, an ensemble of simulations will be per-
formed varying SO2 injection parameters and a selection of
internal model parameters within a realistic uncertainty dis-
tribution. A maximin Latin hypercube sampling strategy will
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Table 9. List of SO2 injection settings used in different interac-
tive stratospheric aerosol model simulations of the 1991 Mount
Pinatubo eruption. ∗ Main peak at 23.5 km, secondary peak at
21 km.

SO2 Study SO2
mass height
(Tg S) (km)

5 Dhomse et al. (2014) 19–27
5 Mills et al. (2016) 18–20
7 Sheng et al. (2015a, b) 17–30
8.5 Timmreck et al. (1999a, b) 20–27
8.5 Niemeier et al. (2009); 24

Toohey et al. (2011)
8.5 Brühl et al. (2015) 18–26∗

10 Pitari and Mancini (2002) 18–25
10 Oman et al. (2006) 19–29
10 Aquila et al. (2012, 2013) 16–18, 17–27
10 English et al. (2013) 15.1–28.5

be used to define parameter values to be set in each PPE
member in order to obtain good coverage of the parame-
ter space. The maximin Latin hypercube is designed such
that the range of every single parameter is well sampled
and the sampling points are well spread through the multi-
dimensional uncertainty space – this is achieved by splitting
the range of every parameter into N intervals and ensuring
that precisely one point is in each interval in all dimensions,
where N is the total number of model simulations, and the
minimum distance between any pair of points in all dimen-
sions is maximized. Figure 6 shows the projection onto two
dimensions of a Latin hypercube built in eight dimensions
with 50 model simulations. The size of the Latin hypercube
needed will depend on the number of model parameters to be
perturbed; the number of simulations to be performed will be
equal to 10 times the number of parameters – 7 per parame-
ter to build the emulator and 3 per parameter to validate the
emulator. All parameters are perturbed simultaneously in the
Latin hypercube.

In order to be inclusive of modelling groups with less
computing time available and of different types of aerosol
schemes, we define three options of experimental design with
different numbers of perturbed parameters and thus simula-
tion ensemble members. The three options involve varying
all eight (standard set), five (reduced set), or three (minimum
set) of the list of uncertain parameters, resulting in ensem-
bles of 80 (standard), 50 (reduced), or 30 (minimum) PPE
members. The parameters to be varied are shown in Table 10
and include variables related to the volcanic injection, such
as its magnitude, height, latitudinal extent, and composition,
and to the life cycle of the volcanic sulfate, such as the sed-
imentation rate, its microphysical evolution, and the SO2 to
SO2−

4 conversion rate.

Figure 6. Illustration of the Latin hypercube sampling method.
Each dot represents the value used in one of the particular simula-
tions with a perturbed parameter ensemble (PPE) with 50 members
(realizations/integrations).

Prior to performing the full PPE, modelling groups are en-
couraged to run “one-at-a-time” (OAT) test runs with each
of the process parameters increased/decreased to its maxi-
mum/minimum value. Submission of these OAT test runs is
encouraged (following the naming convention in Table 11)
because as well as being an important check that the model
parameter scaling is being implemented as intended, the re-
sults will also enable intercomparison of single-parameter ef-
fects between participating models ahead of the full ensem-
ble. When imposing the parameter scalings, the models must
only enact that change in grid boxes with volcanically en-
hanced air masses. This can be determined either via total
sulfur volume mixing ratio threshold suitable for the partic-
ular model or via the “passive tracer Volc” recommended in
Sect. 3.3.3. Restricting the perturbation to the Pinatubo sulfur
will leave pre-eruption conditions and tropospheric aerosol
properties unchanged, ensuring a clean “uncertainty pdf” for
the “volcanic forcing”.

That this restriction to the parameter scalings is opera-
tional is an important preparatory exercise and will need to
have been verified when running the OAT test runs.

Once a modelling group has performed the PPE of simu-
lations as defined by the Latin hypercube a statistical anal-
ysis will be performed. Emulators for each of a selection of
key metrics will be built, following the approach described
by Lee et al. (2011), to examine how the parameters lead to
uncertainty in key features of the Pinatubo-perturbed strato-
spheric aerosol. The emulator builds a statistical model be-
tween the ensemble design and the key model output and
once validated allows sampling of the whole parameter space
to derive a PDF of each key model output.

Variance-based sensitivity analysis will then be used to de-
compose the resulting probability distribution into its sources
providing information on the key sources of uncertainty in
any model output. The two sensitivity indices of interest are
called the main effect and the total effect. The main effect
measures the percentage of uncertainty in the simulated met-
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Table 10. Groups will need to translate the 0–1 latitude-spread parameter into a sequence of fractional injections into all grid boxes between
the equator and 15◦ N. For example for a model with 2.5◦ latitude resolution, the relative injection in the six latitude bins between 0 and
15◦ N would take the form [0, 0, 0, 0, 0, 0, 1] for extent factor= 0 and [0.167, 0.167, 0.167, 0.167, 0.167, 0.167] for extent factor= 1.
Injection ratios for intermediate values of the spread factor would be calculated by interpolation between these two end member cases.

Parameters Minimum Reduced Standard Uncertainty range
set set set

1 Injected SO2 mass X X X 5–10 Tg S
2 Mid-point height of 3 km thick injection X X X 18–30 km
3 Latitudinal extent of the injection X X X Factor 0–1 to varies from one-box

injection at 15◦ N (factor= 0)
to equator-to-15◦ N (factor= 1)

4 Sedimentation velocity X X Multiply model calculated
velocity by a factor 0.5 to 2.

5 SO2 oxidation scaling X X Scale gas phase oxidation of SO2
by a factor 0.5 to 2

6 Nucleation rate of sulfate particles X Scale model calculated rate by a
factor 0.5 to 2.

7 Sub-grid particle formation factor. X Emit fraction of SO2 as sulfuric
acid particles formed at sub-grid
scale (0 to 10 %)

8 Coagulation rate X Scale the model calculated rate
by a factor 0.5 to 2.

Table 11. Overview of PoEMS one-at-a-time (OAT) test runs. Note that when imposing the parameter scaling, the models should only
enact the change in volcanically enhanced air masses (where the total sulfur volume mixing ratio exceeds a threshold suitable for their
model). Perturbing only the volcanically enhanced air masses will ensure, pre-eruption conditions and tropospheric aerosol properties remains
unchanged by the scalings.

Exp-name Specific description/volcanic emission Period Tier

PoEMS_OAT_med SO2 Emission=medium, Inject shallow @ medium-alt. 1
Processes unperturbed.

PoEMS_OAT_P4h SO2 Emission=medium, Inject shallow @ medium-alt. 2
Sedimentation rates doubled

PoEMS_OAT_P4l SO2 Emission=medium, Inject shallow @ medium-alt. 2
Sedimentation rates halved

PoEMS_OAT_P5h SO2 Emission=medium, Inject shallow @ medium-alt. 3
SO2 oxidation rates doubled

PoEMS_OAT_P5l SO2 Emission=medium, Inject shallow @ medium-alt. 3
SO2 oxidation rates halved

PoEMS_OAT_P6h SO2 Emission=medium, Inject shallow @ medium-alt. Transient 3
Nucleation rates doubled 1991–1995

PoEMS_OAT_P6l SO2 Emission=medium, Inject shallow @ medium-alt. 3
Nucleation rates halved

PoEMS_OAT_P7h SO2 Emission=medium, Inject shallow @ medium-alt. 3
% SO2 as primary SO4× 2

PoEMS_OAT_P7l SO2 Emission=medium, Inject shallow @ medium-alt. 3
% SO2 as primary SO4× 0.5

PoEMS_OAT_P8h SO2 Emission=medium, Inject shallow @ medium-alt. 2
Coagulation rates doubled

PoEMS_OAT_P8l SO2 Emission=medium, Inject shallow @ medium-alt. 2
Coagulation rates halved
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ric due to each parameter variation individually. The total ef-
fect measures the percentage of uncertainty in the key model
output due to each parameter, including the additional con-
tribution from its interaction with other uncertain parameters.
The sources of model parametric uncertainty (i.e. the sensi-
tivity indices) will be identified for each model with discus-
sion with each group to check the results. By then comparing
the sensitivity to the uncertain parameters across the range
of participating models, we will learn about how the model’s
differing treatment of aerosol processes and the inherent dy-
namical and chemical processes resolved in the host model
together determine the uncertainty in its predicted Pinatubo
radiative forcings.

The probability distribution of observable key model out-
puts will also be compared to observations in order to con-
strain the key sources of uncertainty and thereby reduce the
parametric uncertainty in individual models. The resulting
model constraints will be compared between models provid-
ing quantification of both parametric uncertainty and struc-
tural uncertainty for key variables such as AOD, effective ra-
dius, and radiative flux anomalies. This sensitivity analysis
will also identify the variables for which better observational
constraints would yield the greatest reduction in model un-
certainties.

4 Conclusions

The ISA-MIP experiments will improve our understanding
of stratospheric aerosol processes, chemistry, and dynamics
and constrain climate impacts of background aerosol “vari-
ability”, small volcanic eruptions, and large volcanic erup-
tions. The experiments will also help to resolve some dis-
agreements amongst global aerosol models, for instance the
difference in volcanic SO2 forcing efficacy for Pinatubo (see
Sect. 3.3.2). The results of this work will help constrain the
contribution of stratospheric aerosols to the early 21st cen-
tury global warming hiatus period, the effects of hypothetical
geoengineering schemes, and other climate processes that are
influenced by the stratosphere. Overall, they provide an ex-
cellent opportunity to answer some of these questions as part
of the greater WCRP SPARC and CMIP6 efforts. For ex-
ample, the CMIP6 Geoengineering Model Intercomparison
Project (GeoMIP, Kravitz et al., 2015) investigates common
ways in which climate models treat various geoengineering
scenarios some of them via sulfate aerosols (e.g. Tilmes et
al., 2015). However, there is a large inter-model spread for
the cooling efficiency of sulfate aerosol, i.e. the normalized
cooling rate per injected unit of sulfur (Moriyama et al.,
2016). ISA-MIP is therefore of special importance for Ge-
oMIP as it could help to understand the reason for these un-
certainties, to better constrain the forcing efficiency and to
improve future scenarios. Furthermore, it is so far not clear
whether the large inter-model spread of the CMIP5 models in
the simulated post-volcanic climate response mostly depends

on uncertainties in the imposed volcanic forcing or on an in-
sufficient representation of climate processes. To discrimi-
nate between the individual uncertainty factors, it is useful to
develop standardized experiments/model activities that sys-
tematically address specific uncertainty factors. Hence, ISA-
MIP, which covers the uncertainties in the pathway from the
eruption source to the volcanic radiative forcing, will com-
plement the CMIP6 VolMIP project (Zanchettin et al., 2016),
which addresses the pathway from the forcing to the cli-
mate response and the feedback by studying the uncertain-
ties in the post-volcanic climate response to a well-defined
volcanic forcing. ISA-MIP also complements the chemistry
climate model initiative (CCMI; Eyring et al., 2013) and
the Aerosol Comparison (AeroCom) initiative (Schulz et al.,
2006) as well as the Aerosol Chemistry Model Intercompari-
son Project (AerChemMIP; Collins et al., 2017) as it concen-
trates on stratospheric aerosol which is not in the focus of all
these activities.

As well as identifying areas of agreement and disagree-
ment among the different complexities of models in top-level
comparisons focussing on fields such as zonal-mean mid-
visible AOD and extinction profiles in different latitudes,
ISA-MIP also intends to explore relationships between key
parameters. For example, how does sulfate deposition to the
polar ice sheets relate to volcanic forcing in the different in-
teractive stratospheric aerosol models that predict the trans-
port and sedimentation of the particles? Or how do model
“spectral extinction curves” evolve through the different vol-
canically perturbed periods and how do they relate to simu-
lated effective radius compared to the theoretical approach to
derive effective radius from Stothers (1997, 2001)? There is
considerable potential to apply the model uncertainty analy-
sis to make new statements to inform our confidence in vol-
canic forcings derived from ice core and astronomical mea-
surements for eruptions before the in situ measurement era.

Code and data availability. The model output from the all sim-
ulations described in this paper will be distributed through the
World Data climate Center https://cera-www.dkrz.de/WDCC/ui/
cerasearch/ with digital object identifiers (DOIs) assigned. The
model output will be freely accessible through this data portal af-
ter registration.
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Appendix A: List of abbreviations

AeroCom Aerosol Comparisons between Observations and Models
AOD Aerosol optical depth
ASAP2006 Assessment of Stratospheric Aerosol properties (SPARC, 2006)
AVHRR Advanced Very High Resolution Radiometer
BDC Brewer–Dobson circulation
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CATS Cloud-Aerosol Transport System
CCM Chemistry–climate model
CCMI Chemistry-Climate Model Initiative
CMIP Coupled Model Intercomparison Project
CMIP5 Coupled Model Intercomparison Project, phase 5
CMIP6 Coupled Model Intercomparison Project, phase 6
ECMWF European Centre for Medium-Range Weather Forecasting
ENSO El Niño–Southern Oscillation
ENVISAT Environmental Satellite
ERA-Interim ECMWF Interim Re-Analysis
EVA Easy Volcanic Aerosol
GCM General circulation model
GHG Greenhouse gases
GOMOS Global Ozone Monitoring by Occultation of Stars
HALOE Halogen Occultation Experiment
ISA-MIP Interactive Stratospheric Aerosol Model Intercomparion Project
IPCC Intergovernmental Panel on Climate Change
MAECHAM5-SAM2 Middle Atmosphere version of the European Center/HAMburg model,

atmospheric GCM (cycle 5) with the Stratospheric Aerosol Model (version 2)
MIPAS Michelson Interferometer for Passive Atmospheric Sounding
NAO North Atlantic Oscillation
NH Northern Hemisphere
OMI Ozone Monitoring Instrument
OMPS Ozone Mapping and Profiler Suite
OMPS-LP Ozone Mapping and Profiler Suite–Limb Profiler
OPC Optical particle counter
OSIRIS Optical Spectrograph and InfraRed Imager System
PDF Probability density function
QBO Quasi-biennial oscillation
SAGE Stratospheric Aerosol and Gas Experiment
SAM II Stratospheric Aerosol Measurement II
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
SPARC Stratosphere–troposphere Processes And their Role in Climate
SSiRC Stratospheric Sulfur and its Role in Climate
SST Sea surface temperature
SIC Sea ice cover
TOMS Total Ozone Mapping Spectrometer
TOVS TIROS Operational Vertical Sounder
VolMIP Model Intercomparison Project on the climate response to Volcanic forcing
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