Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2493-2018
https://doi.org/10.5194/gmd-11-2493-2018
Model description paper
 | 
22 Jun 2018
Model description paper |  | 22 Jun 2018

Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0)

Takuya Kawabata, Thomas Schwitalla, Ahoro Adachi, Hans-Stefan Bauer, Volker Wulfmeyer, Nobuhiro Nagumo, and Hiroshi Yamauchi

Related authors

Relationships Between Surface Fluxes and Boundary Layer Dynamics: Statistics at the Land-Atmosphere Feedback Observatory (LAFO)
Syed Saqlain Abbas, Andreas Behrendt, Oliver Branch, and Volker Wulfmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3878,https://doi.org/10.5194/egusphere-2024-3878, 2024
Short summary
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024,https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Scaling artificial heat islands to enhance precipitation in the United Arab Emirates
Oliver Branch, Lisa Jach, Thomas Schwitalla, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 15, 109–129, https://doi.org/10.5194/esd-15-109-2024,https://doi.org/10.5194/esd-15-109-2024, 2024
Short summary
Soil moisture-atmosphere coupling strength over Central Europe in the recent warming climate
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1725,https://doi.org/10.5194/egusphere-2023-1725, 2023
Short summary
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023,https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary

Cited articles

Adachi, A., Kobayashi, T., Yamauchi, H., and Onogi, S.: Detection of potentially hazardous convective clouds with a dual-polarized C-band radar, Atmos. Meas. Tech., 6, 2741–2760, https://doi.org/10.5194/amt-6-2741-2013, 2013. 
Adachi, A., Kobayashi, T., and Yamauchi, H.: Estimation of raindrop size distribution and rainfall rate from polarimetric radar measurements at attenuating frequency based on the self-consistency principle, J. Meteorol. Soc. Jpn., 93, 359–388, 2015. 
Anagnostou, M. N., Anagnostou, E. N., Vivekanandan, J., and Ogden, F. L.: Comparison of two raindrop size distribution retrieval algorithms for X-band dual polarization observations, J. Hydrometeorol., 9, 589–600, 2008. 
Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y.-R., Henderson, T., Huang, W., Lin, H.-C., Michalakes, J., Rizvi, S., and Zhang, X.: The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, 2012. 
Bauer, H.-S., Schwitalla, T., Wulfmeyer, V., Bakhshaii, A., Ehret, U., Neuper, M., and Caumont, O.: Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test, Tellus A, 67, 25047, https://doi.org/10.3402/tellusa.v67.25047, 2015. 
Download
Short summary
We implemented two observational operators for dual polarimetric radars in two variational data assimilation systems: WRF Var and NHM-4DVAR. The operators consist of a space interpolator and two types of variable converters. The first variable converter emulates polarimetric parameters with model prognostic variables, and the second derives rainwater content from the observed polarimetric parameter. The system worked properly in verification and assimilation tests.