Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2209-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-2209-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
VEIN v0.2.2: an R package for bottom–up vehicular emissions inventories
Sergio Ibarra-Espinosa
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Universidade de São Paulo, Rua do Matão 1226, São Paulo, SP, Brazil
Rita Ynoue
Department of Atmospheric Sciences, Universidade de São Paulo, Rua do Matão 1226, São Paulo, SP, Brazil
Shane O'Sullivan
Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, SP, Brazil
Edzer Pebesma
Institute for Geoinformatics, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 2, 48149 Münster, Germany
María de Fátima Andrade
Department of Atmospheric Sciences, Universidade de São Paulo, Rua do Matão 1226, São Paulo, SP, Brazil
Mauricio Osses
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Vicuña Mackenna 3939, Santiago, Chile
Related authors
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019, https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
Short summary
Dust storms are thought to be a worldwide societal issue, and numerical modeling is an effective way to help us to predict dust events. Here we present the first comprehensive evaluation of dust emission modules in four commonly used air quality models for northeastern China. The results showed that most of these models were able to capture this dust event and indicated the dust source maps should be carefully selected or replaced with a new one that is constructed with local data.
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024, https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
Short summary
Spatial proxies, such as coordinates and distances, are often used as predictors in random forest models for predictive mapping. In a simulation and two case studies, we investigated the conditions under which their use is appropriate. We found that spatial proxies are not always beneficial and should not be used as a default approach without careful consideration. We also provide insights into the reasons behind their suitability, how to detect them, and potential alternatives.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1739, https://doi.org/10.5194/egusphere-2024-1739, 2024
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1686, https://doi.org/10.5194/egusphere-2024-1686, 2024
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
M. Ludwig, J. Bahlmann, E. Pebesma, and H. Meyer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 135–141, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022, 2022
Mauricio Osses, Néstor Rojas, Cecilia Ibarra, Víctor Valdebenito, Ignacio Laengle, Nicolás Pantoja, Darío Osses, Kevin Basoa, Sebastián Tolvett, Nicolás Huneeus, Laura Gallardo, and Benjamín Gómez
Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022, https://doi.org/10.5194/essd-14-1359-2022, 2022
Short summary
Short summary
This paper presents a detailed estimate of on-road vehicle emissions for Chile, between 1990–2020, and an analysis of emission trends for greenhouse gases and local pollutants. Data are disaggregated by type of vehicle and region at 0.01° × 0.01°. While the vehicle fleet grew 5-fold, CO2 emissions increased at a lower rate and local pollutants decreased. These trends can be explained by changes in improved vehicle technologies, better fuel quality and enforcement of emission standards.
Nicolás Álamos, Nicolás Huneeus, Mariel Opazo, Mauricio Osses, Sebastián Puja, Nicolás Pantoja, Hugo Denier van der Gon, Alejandra Schueftan, René Reyes, and Rubén Calvo
Earth Syst. Sci. Data, 14, 361–379, https://doi.org/10.5194/essd-14-361-2022, https://doi.org/10.5194/essd-14-361-2022, 2022
Short summary
Short summary
This study presents the first high-resolution national inventory of anthropogenic emissions for Chile (Inventario Nacional de Emisiones Antropogénicas, INEMA). Emissions for vehicular, industrial, energy, mining and residential sectors are estimated for the period 2015–2017 and spatially distributed onto a high-resolution grid (1 × 1 km). This inventory will support policies seeking to mitigate climate change and improve air quality by providing qualified scientific spatial emission information.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
A. Joshi, E. Pebesma, R. Henriques, and M. Appel
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5-W3, 43–47, https://doi.org/10.5194/isprs-archives-XLII-5-W3-43-2019, https://doi.org/10.5194/isprs-archives-XLII-5-W3-43-2019, 2019
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019, https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
Short summary
Dust storms are thought to be a worldwide societal issue, and numerical modeling is an effective way to help us to predict dust events. Here we present the first comprehensive evaluation of dust emission modules in four commonly used air quality models for northeastern China. The results showed that most of these models were able to capture this dust event and indicated the dust source maps should be carefully selected or replaced with a new one that is constructed with local data.
Cited articles
Abou Rafee, S. A., Martins, L. D., Kawashima, A. B., Almeida, D. S., Morais, M. V. B., Souza, R. V. A., Oliveira, M. B. L., Souza, R. A. F., Medeiros, A. S. S., Urbina, V., Freitas, E. D., Martin, S. T., and Martins, J. A.: Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model, Atmos. Chem. Phys., 17, 7977–7995, https://doi.org/10.5194/acp-17-7977-2017, 2017.
Albuquerque, T.: Distribuição de tamanho, composição química e identificação das fontes de aerossol atmosférico de São Paulo: Um estudo de caso para o inverno de 2003, Ph.D. thesis, São Paulo: University of São Paulo, 2005.
Andrade, M. D. F., Ynoue, R. Y., Freitas, E. D., Todesco, E., Vara Vela, A., Ibarra, S., Martins, L. D., Martins, J. A., and Carvalho, V. S. B.: Air quality forecasting system for Southeastern Brazil, Front. Environ. Sci., 3, 1–12, https://doi.org/10.3389/fenvs.2015.00009, 2015.
Andrade, M. D. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017.
André, M.: The ARTEMIS European driving cycles for measuring car pollutant emissions, Sci. Total. Environ., 334, 73–84, 2004.
ARTESP: Toll station count data, available at: http://www.artesp.sp.gov.br/ (last access: 31 May 2018), 2012.
Barlow, T., Latham, S., McCrae, I., and Boulter, P.: A reference book of driving cycles for use in the measurement of road vehicle emissions, TRL Published Project Report, 2009.
Bivand, R. and Lewin-Koh, N.: maptools: Tools for Reading and Handling Spatial Objects, available at: http://CRAN.R-project.org/package=maptools (last access: 31 May 2018), r package version 0.8-34, 2015.
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source (GEOS), available at: https://CRAN.R-project.org/package=rgeos (last access: 31 May 2018), r package version 0.3-21, 2016.
Bivand, R., Pebesma, E., and Gomez-Rubio, V.: Applied spatial data analysis with R, Springer, NY, available at: http://www.asdar-book.org/ (last access: 31 May 2018), 2013.
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the Geospatial Data Abstraction Library, available at: https://CRAN.R-project.org/package=rgdal (last access: 31 May 2018), r package version 1.1-10, 2016.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Boulder, C. U.: The NCAR Command Language (NCL) (version 6.4. 0), https://doi.org/10.5065/D6WD3XH5, 2017.
Boulter, P.: Environmental traffic management: A review of factors affecting cold start emissions, Tech. rep., Transport Research Laboratory, Old Wokingham Road, Crowthorne, Berkshire, RG45 6AU, UK, 1997.
Bruni, A. D. C. and Bales, M. P.: Curvas de intensidade de uso por tipo de veículo automotor da frota da cidade de São Paulo, Tech. rep., CETESB, available at: http://cetesb.sp.gov.br/veicular/wp-content/uploads/sites/6/2013/12/curvas-intensidade-uso-veiculos-automotores-cidade-sao-paulo.pdf (last access: 31 May 2018), 2013.
Bureau of Public Roads: Traffic and assignment mannual, Tech. rep., Dept. of Commerce, Urban Planning Division, Washington D.C., 1964.
Carslaw, D. C. and Ropkins, K.: Openair – an R package for air quality data analysis, Environ. Modell. Softw., 27, 52–61, 2012.
CET: Simulação de tráfego para Região Metropolitana de São Paulo, available at: http://www.cetsp.com.br (last access: 31 May 2018), 2014.
CETESB: Emissões Veiculares no Estado de São Paulo, available at: http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/ (last access: 31 May 2018), 2013.
CETESB: Emissões Veiculares no Estado de São Paulo, available at: http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/ (last access: 31 May 2018), 2016.
Chen, R.-H., Chiang, L.-B., Chen, C.-N., and Lin, T.-H.: Cold-start emissions of an SI engine using ethanol–gasoline blended fuel, Appl. Therm. Eng., 31, 1463–1467, 2011.
CONAMA: Programa de controle de emissões veiculares (Proconve), available at: http://www.mma.gov.br/port/conama/res/res86/res1886.html (last access: 21 January 2014), 1986.
Corvalán, R. M. and Vargas, D.: Experimental analysis of emission deterioration factors for light duty catalytic vehicles Case study: Santiago, Chile, Trans. Res. D, 8, 315–322, 2003.
Corvalán, R. M., Osses, M., and Urrutia, C. M.: Hot emission model for mobile sources: application to the metropolitan region of the city of Santiago, Chile, J. Air Waste Manage. Assoc., 52, 167–174, 2002.
Davis, N., Lents, J., Osses, M., Nikkila, N., and Barth, M.: Part 3: Developing countries: development and application of an international vehicle emissions model, Transportation Research Record, J. Trans. Res. Board, 8, 155–165, 2005.
DENATRAN: National Department of Traffic Road, available at: chttp://www.denatran.gov.br/frota2015.htm (last access: 4 February 2016), 2015.
Directive70/220/EEC: Measures to be taken against the emission of gaseous pollutants from diesel engines for use in vehicles, available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0441&from=EN (last access: 31 May 2018), 1991.
EEA: Emission Inventory Report 1990–2011 Under the UNECE Convention on LRTAP, European Environment Agency, Luxembourg, 2013.
EJ-JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), release EDGAR v4.3.1_v2 (1970–2010), available at: http://edgar.jrc.ec.europa.eu (last access: 31 May 2018), 2016.
U.S. EPA: Comprehensive analysis of biodiesel impacts on exhaust emissions, Tech. rep., Draft Technical Report, EPA420-02-001, 2002.
Freitas, E., Martins, L., Silva Dias, P., and Andrade, M. D. F.: A simple photochemical module implemented in RAMS for tropospheric ozone concentration forecast in the metropolitan area of São Paulo, Brazil: Coupling and validation, Atmos. Environ., 39, 6352–6361, 2005.
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011.
González, C., Gómez, C., Rojas, N., Acevedo, H., and Aristizábal, B.: Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city, Atmos. Environ., 152, 279–289, 2017.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, available at: https://CRAN.R-project.org/package=raster (last access: 31 May 2018), r package version 2.5-8, 2016.
Ibarra, S.: Air pollution modeling in São Paulo using bottom-up vehicular emissions inventories, Ph.D. thesis, São Paulo: University of São Paulo, available at: http://www.iag.usp.br/pos/sites/default/files/t_sergio_a_i_espinosa_corrigida.pdf (last access: 31 May 2018), 2017.
Ibarra-Espinosa, S.: vein: Vehicular Emissions Inventories, R package version 0.2.2-25, available at: https://CRAN.R-project.org/package=vein https://github.com/atmoschem/vein (last access: 31 May 2018), 2017.
Ibarra-Espinosa, S. and Pebesma, E.: ibarraespinosa/vein: VEIN v0.2.2 (Version v0.2.2), Zenodo, available at: https://doi.org/10.5281/zenodo.1039236 (last access: 31 May 2018), 2017.
Ibarra-Espinosa, S. and Ynoue, R.: REMI model: Bottom-up emissions inventories for cities with lack of data, J. Earth Sci. Geotech. Eng., 1, 277–288, 2017.
Ibarra-Espinosa, S., Schuch, D., and Dias de Freitas, E.: eixport: An R package to export emissions to atmospheric models, J. Open Source Softw., 3, 607, https://doi.org/10.21105/joss.00607, 2018.
IBGE: Instituto Brasileiro de Geografia e Estatística – Población estimada 2014, available at: http://cod.ibge.gov.br/232IH, last access: 12 December, 2014.
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, The R J., 5, 144–161, available at: http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf (last access: 31 May 2018), 2013.
Koupal, J., Cumberworth, M., Michaels, H., Beardsley, M., and Brzezinski, D.: Design and Implementation of MOVES: EPA's New Generation Mobile Source Emission Model, Ann Arbor, 1001, 48 105, 2003.
Kucharski, R. and Drabicki, A.: Estimating Macroscopic Volume Delay Functions with the Traffic Density Derived from Measured Speeds and Flows, J. Adv. Transp., 2017, 4629792, https://doi.org/10.1155/2017/4629792, 2017.
Lam, W. H. and Xu, J.: Estimation of AADT from short period counts in Hong Kong – A comparison between neural network method and regression analysis, J. Adv. Transp., 34, 249–268, 2000.
Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., and Wolff, S. S.: The past and future history of the Internet, Commun. ACM, 40, 102–108, 1997.
Lents, J., Davis, N., Nikkila, N., and Osses, M.: São Paulo Vehicle Activity Study, Tech. rep., International Sustainable System Research Center, 605 South Palm Street, Suite C, La Habra, CA 90631, USA, 2004.
Ludykar, D., Westerholm, R., and Almen, J.: Cold start emissions at +22, -7 and -20 C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components, Sci. Total Environ., 235, 65–69, 1999.
Manual, H. C.: Highway capacity manual, Washington, DC, p. 11, 2000.
Manzo, S., Nielsen, O., and Prato, C.: Effects of Uncertainty in Speed-Flow Curve Parameters on a Large-Scale Model: Case Study of the Danish National Model, Transportation Research Record: J. Transport. Res. Board, 2429, ,30–37, 2014.
Martins, L. D., Andrade, M. F., Freitas, E. D., Pretto, A., Gatti, L. V., Albuquerque, É. L., Tomaz, E., Guardani, M. L., Martins, M. H., and Junior, O. M.: Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil, Environ. Sci. Technol., 40, 6722–6729, https://doi.org/10.1021/es052441u, 2006.
Mellios, G. and Ntziachristos, L.: EMEP/EEA emission inventory guidebook; Gasoline evaporation from vehicles, Tech. rep., European Environment Agency, Copenhagen, 2016.
Ministério do Meio Ambiente: Primeiro Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários, available at: http://www.mma.gov.br/estruturas/163/_publicacao/163_publicacao27072011055200.pdf (last access: 31 May 2018), 2011.
Miranda, R.: Caracterização físico química e propriedades ópticas de aerossol urbano da região metropolitana de São Paulo, Ph.D. thesis, São Paulo: University of São Paulo, 2001.
MMA: Air Pollution Control Program by Motor Vehicles; PROCONVE/PROMOT, available at: http://www.ibama.gov.br/phocadownload/category/4?download=4793%3Amanual-ingles (last access: 8 September 2015), 2011.
MMA: PROCONVE: PROGRAMA DE CONTROLE DE POLUIÇÃO DO AR POR VEÃ CULOS AUTOMOTORES, available at: http://www.mma.gov.br/estruturas/163/_arquivos/proconve_163.pdf, last access: 8 September, 2015.
Nogueira, T., de Souza, K. F., Fornaro, A., de Fatima Andrade, M., and de Carvalho, L. R. F.: On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the Metropolitan Area of Sao Paulo, Brazil, Atmos. Environ., 108, 88–97, 2015.
Ntziachristos, L. and Boulter, P.: EMEP/EEA emission inventory guidebook; Road Transport: Automobile tyre and break wear and road abrasion, European Environment Agency, Copenhagen, 2009.
Ntziachristos, L. and Samaras, Z.: EMEP/EEA emission inventory guidebook; Road Transport: Passenger cars, Light commercial trucks, Heavy-duty vehicles including buses and Motorcycles, European Environment Agency, Copenhagen, 2016.
Oliveira, M.: Evolução das distribuições de tamanho em massa e número do aerossol atmosférico em São Paulo, Ph.D. thesis, São Paulo: University of São Paulo, 2007.
Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L.: Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 degree × 1 degree grid, National Institute of Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu RIVM), No. RIVM report: 771060 002, 1996.
Paustian, K., Ravindranath, N., and van Amstel, A.: IPCC Guidelines for National Greenhouse Gas Inventories, Tech. rep., 2006.
Pebesma, E.: sf: Simple Features for R, available at: https://github.com/edzer/sfr/ (last access: 31 May 2018), r package version 0.4-3, 2016.
Pebesma, E. and Bivand, R.: Classes and methods for spatial data in R, available at: http://cran.r-project.org/doc/Rnews/ (last access: 31 May 2018), 2005.
Pebesma, E., Mailund, T., and Hiebert, J.: Measurement Units in R, The R J., 8, 486–494, available at: https://journal.r-project.org/archive/2016-2/pebesma-mailund-hiebert.pdf (last access: 31 May 2018), 2016.
Pérez-Martinez, P., Miranda, R., Nogueira, T., Guardani, M., Fornaro, A., Ynoue, R., and Andrade, M.: Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: case study comparison, Int. J. Environ. Sci. Technol., 11, 2155–2168, 2014.
Perugu, H., Wei, H., and Yao, Z.: Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output, Atmos. Environ., 155, 210–230, 2017.
Pulles, T. and Heslinga, D.: The art of emission inventorying, TNO, Utrecht, 2010.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/ (last access: 31 May 2018), 2017.
Rafee, S.: Estudo numerico do impacto das emissoes veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao amazonica, Master's thesis, Londrina: Universidade Tecnologica Federal do Parana, 2015.
Schultz, M. G.: REanalysis of the TROpospheric chemical composition over the past 40 years, Max-Planck Institute for Meteorology, 48, ISSN: 1614-1199, Series: Earth System Science, Hamburg, Germany, 2007.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 3rd Edn., John Wiley & Sons, New Jersey, US, ISBN: 978118947401 2016.
Smit, R., Ntziachristos, L., and Boulter, P.: Validation of road vehicle and traffic emission models – A review and meta-analysis, Atmos. Environ., 44, 2943–2953, 2010.
Snyder, M. G., Venkatram, A., Heist, D. K., Perry, S. G., Petersen, W. B., and Isakov, V.: RLINE: A line source dispersion model for near-surface releases, Atmos. Environ., 77, 748–756, 2013.
Streets, D. G., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S., Tsai, N., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res.-Atmos., 108, D21, https://doi.org/10.1029/2002JD003093, 2003.
Suh, S., Park, C.-H., and Kim, T. J.: A highway capacity function in Korea: measurement and calibration, Transport. Res. A, 24, 177–186, 1990.
U.S. EPA: National Emissions Inventory (NEI), available at: https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei, last access: 31 May 2018.
U.S. EPA: AP42 Compilation of emission factors; Resuspenssion emissions from paved roads, Environment Protection Agency, USA, 2016.
Vara-Vela, A., Andrade, M. F., Kumar, P., Ynoue, R. Y., and Muñoz, A. G.: Impact of vehicular emissions on the formation of fine particles in the São Paulo Metropolitan Area: a numerical study with the WRF-Chem model, Atmos. Chem. Phys., 16, 777–797, https://doi.org/10.5194/acp-16-777-2016, 2016.
Wang, H., Chen, C., Huang, C., and Fu, L.: On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China, Sci. Total Environ., 398, 60–67, 2008.
Wang, X. and Kockelman, K.: Forecasting network data: Spatial interpolation of traffic counts from texas data, Trans. Res. Record: J. Transp. Res. Board, 1, 100–108, 2009.
Weilenmann, M., Favez, J.-Y., and Alvarez, R.: Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories, Atmos. Environ., 43, 2419–2429, https://doi.org/10.1016/j.atmosenv.2009.02.005, 2009.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer New York, available at: https://www.springer.com/us/book/9780387981413 (last access: 31 May 2018), 2009.
Ynoue, R.: Modelagem numérica da formação, crescimento e transporte das partículas inorgânicas secundárias constituintes do aerossol urbano na região metropolitana de São Paulo, Ph.D. thesis, São Paulo: University of São Paulo, 2004.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, 1999.
Short summary
An emissions inventory is a compilation of the mass of pollutants released by different sources. The quantification of vehicular emissions is difficult because these sources are in movement across streets. Also, emissions processes are multiple and complex. In this paper, we present an open-source software for calculating spatial vehicular emissions, including exhaust, evaporation and wear, named VEIN. The software is an R package available at
https://github.com/atmoschem/vein.
An emissions inventory is a compilation of the mass of pollutants released by different sources....