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Abstract. Emission inventories are the quantification of pol-
lutants from different sources. They provide important infor-
mation not only for climate and weather studies but also for
urban planning and environmental health protection. We de-
veloped an open-source model (called Vehicular Emissions
Inventory – VEIN v0.2.2) that provides high-resolution ve-
hicular emissions inventories for different fields of studies.
We focused on vehicular sources at street and hourly levels
due to the current lack of information about these sources,
mainly in developing countries.

The type of emissions covered by VEIN are exhaust (hot
and cold) and evaporative considering the deterioration of
the factors. VEIN also performs speciation and incorpo-
rates functions to generate and spatially allocate emissions
databases. It allows users to load their own emission factors,
but it also provides emission factors from the road transport
model (Copert), the United States Environmental Protection
Agency (EPA) and Brazilian databases. The VEIN model
reads, distributes by age of use and extrapolates hourly traffic
data, and it estimates emissions hourly and spatially. Based
on our knowledge, VEIN is the first bottom–up vehicle emis-
sions software that allows input to the WRF-Chem model.
Therefore, the VEIN model provides an important, easy and
fast way of elaborating or analyzing vehicular emissions in-
ventories under different scenarios. The VEIN results can be
used as an input for atmospheric models, health studies, air
quality standardizations and decision making.

1 Introduction

Emissions inventory is a quantification of pollutants dis-
charged into the atmosphere by different sources (Pulles and
Heslinga, 2010). This quantification is vital for regulatory
and scientific purposes because it allows us to monitor the
state of the Earth’s atmosphere and climate. It also allows us
to create air quality standards, which will protect ecosystems
and human health. For instance, the Intergovernmental Panel
on Climate Change (IPCC) includes a dedicated task force,
separated from the other three working groups, only for the
purpose of greenhouse gas emissions inventory issues (Paus-
tian et al., 2006).

In this instance, there are several emissions inventories that
use different input data and approaches for different scales.
One of the most frequently used inventories is the Emis-
sion Database for Global Atmospheric Research (EDGAR;
Olivier et al., 1996), which provides estimates for the to-
tal emissions worldwide. This inventory uses national statis-
tics that do not provide detailed characterizations of high-
resolution applications. These detailed characterizations are
needed for urban studies. There are also continental emis-
sions inventories, such as the European Monitoring and Eval-
uation Programme (EMEP), which compile emissions from
the parties of the Convention on Long-range and Trans-
boundary Air Pollution (CLRTAP) (EEA, 2013). Moreover,
there is the Regional Emissions inventory in Asia (REAS),
which covers China, Japan and other countries (Streets et al.,
2003). Also, there are nationwide inventories such as the Na-
tional Emissions Inventory (NEI) in the United States, which
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is released every 3 years and is based on data from state, local
and tribal agencies and compiled by the Environmental Pro-
tection Agency (U.S. EPA, 2018). However, there are many
countries and cities that do not include estimates of emissions
for environmental and climate planning.

Vehicular emissions are becoming increasingly important
in urban centers (Andrade et al., 2017) and measurements
have shown that compounds emitted from exhausts can be
highly reactive in the atmosphere, contributing to critical
episodes of photochemical smog (Nogueira et al., 2015).
However, obtaining this type of emissions database can be
complicated, since the sources are moving and the emissions
process is complex with many variables. This can be a chal-
lenge, especially in developing countries, due to the lack of
information about the vehicle type, technology, age, motor
size, fuel, speeds, accelerations, street type, environmental
temperature and humidity, among other aspects. Besides that,
there are other aspects involving the emissions inventory. The
most common aspects are the accuracy and complexity relat-
ing to the exact contribution of the different pollutant sources
and the fact that, in most cases, emissions inventories are usu-
ally seen as a scapegoat when simulations do not match ob-
servation (Pulles and Heslinga, 2010).

Vehicular emissions inventories are classified according to
top–down and bottom–up approaches. Top–down approaches
are based on statistics of vehicle composition, representative
speeds and country balances, while bottom–up approaches
are based on traffic counts, vehicle composition and speed
recording (Ntziachristos and Samaras, 2016). An example of
a bottom–up emissions model is the SPARE-Truck (Spatial
Regression and Output Optimization Truck) (Perugu et al.,
2017), which produces truck activity data at the level of
road sections between junctions or interchanges (hereafter
referred to as “link”) and then estimates emissions using
the U.S. EPA MOtor Vehicle Emission Simulator (MOVES)
(Koupal et al., 2003). The accuracy of the emissions inven-
tory will reflect the representation of the pollutants in the at-
mosphere. It is not always related to the complexity of the
model. For instance, a meta-analysis of several studies on
vehicular emissions (Smit et al., 2010) concluded that there
is no evidence that the more complex models perform bet-
ter than the less complex ones and that emissions estima-
tion techniques must be chosen according the available traf-
fic data. An emissions inventory must be comprehensive, in-
cluding all the important sources and aspects regarding the
emissions.

These complexities were addressed by the Department of
Atmospheric Sciences at the University of São Paulo (USP)
when modeling the atmospheric chemistry over Brazilian
cities using a top–down vehicular emissions inventory with
an online atmospheric model (Andrade et al., 2015). The
Metropolitan Area of São Paulo (MASP), is the most pop-
ulated megacity in Latin America (IBGE, 2014) and its most
important source of pollution comes from the 11 million ve-
hicles that circulate within the region (CETESB, 2013; DE-

NATRAN, 2015; Andrade et al., 2017). Furthermore, half
of all emissions of carbon monoxide (CO), volatile organic
compounds (VOCs) and nitrogen oxides (NOx) in the MASP
are from vehicles that are more than 10 years old (An-
drade et al., 2017). Despite the inventories developed by
(Andrade et al., 2015) being useful, they still suffer from
top–down limitations as they use surrogates to produce spa-
tial and temporal distributions, hence limiting the represen-
tation of the emissions. Therefore, we decided to develop
our own bottom–up vehicular emissions inventory model.
With this model, we aim to generate scientific estimates
and provide useful information to decision makers and ur-
ban/environmental planners.

The main goal of this project was to develop a high
spatial- and temporal-resolution vehicular emissions inven-
tory model, which was named the Vehicular Emissions IN-
ventory (VEIN) model. The VEIN model follows a bottom–
up approach and includes methods from Ntziachristos and
Samaras (2016) and other authors. It is designed for work-
ing with and extrapolating outputs of four-stage travel de-
mands; however, the model is flexible and could be used with
a top–down approach. It allows the classification of vehicles
into several categories, different options of emission factors
and specification of pollutants, and input traffic from traffic
simulations or other network-based sources. The model in-
cludes functions to represent spatial objects and is capable of
producing gridded emissions outputs. It is open source, user-
friendly and available to run in any computational platform
(Mac, Windows, Linux, etc.).

2 VEIN model: methodology to estimate vehicular
emissions

Temporal and spatial disaggregated emissions are estimated
following a general approach of multiplication between ac-
tivities and emission factors (Pulles and Heslinga, 2010), as
shown in Eq. (1).

Emissionpollutant =
∑

activity

(
ARactivity ·EFpollutant, activity

)
, (1)

where Emissionpollutant for any type of pollutant depends on
the activity rate AR and the emission factors EF, which is
the mass of pollutants generated according to the level of ac-
tivity. In the context of vehicular emissions, ARactivity rep-
resents the number of vehicles times the distance (km) that
they travel. EFpollutant, activity is the emission factor (g km−1)
for pollutants of the vehicles.

For a bottom–up estimation of vehicular emissions, a large
number of parameters influence activity (traffic flow, vehicle
composition, speed recording, length of road) and emission
factors (speed or acceleration dependent) (Ntziachristos and
Samaras, 2016). In this instance, the following sections pro-
vide the theory behind the VEIN model regarding traffic data
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arrangement, selection of emission factors, emissions estima-
tion, spatial allocation and inputs for atmospheric models.

2.1 Traffic data

Traffic data required for the VEIN model must be represented
as an hourly amount of vehicles per street.

This traffic data can be provided by traffic simulations, in-
terpolations or by other sources. In the first step, VEIN reads
spatial morning rush hour traffic data from each street of a de-
sired area or city. After reading them, VEIN arranges and or-
ganizes the data by vehicle composition, according to Eq. (2).

F ∗i,j,k =Qi ·VCi,j ·Agej,k, (2)

where F ∗i,j,k is the vehicular flow at street link i for vehicle
type j by age of use k. j defines the vehicular composition
according to their type of use, type of fuel, size of engine
and gross weight, based on the definitions of (Corvalán et al.,
2002). Qi is the traffic flow at street link i. VCi,j is the frac-
tion of vehicles varying according to the type of vehicles j in
the composition for street link i. Agej,k is the age distribution
by vehicular composition j and age of use k. This equation
shows that VC splits the total vehicular flow Q to identify
the vehicular fraction, which varies according to the type of
fuel, size of motor and gross weight. For example, if Q is
light-duty vehicles (LDVs) and we know that 5 % of the Q
are passenger cars (PCs), with an engine of less than 1400 cc,
VC is 0.05. This characterization of the fleet depends on the
amount and quality of the available information. VEIN then
multiplies the traffic with age to obtain the amount of each
type of vehicle by age of use.

Traffic data must be temporally extrapolated because they
are usually available for the morning rush hour. Traffic data
can be estimated from short period traffic count datasets, then
expanded to represent longer timespan, such as annual aver-
age daily traffic (AADT; Wang and Kockelman, 2009; Lam
and Xu, 2000). The next step is to extrapolate the vehicular
flow at street link i, vehicle type j and age of use k, to ob-
tain the vehicular flow for the hour of the week l (Fi,j,k,l ; see
Eq. 3).

Fi,j,k,l = F
∗

i,j,k ·TFj,l, (3)

where Fi,j,k,l is the traffic flow for each link i and type of
vehicle j of the vehicular composition, with the age of use
k for the hour l. TFj,l are the temporal factors varying ac-
cording to each hour of l and type of vehicle j . TF is defined
as a matrix with 24 lines, and the number of columns repre-
sents each day from Monday to Sunday. For instance, if the
user has the output of a travel-demand model for the morn-
ing rush hour and also hourly traffic counts, the information
of the hourly traffic count must be arranged to create a ma-
trix with 24 lines and with the number of columns to each
day. Then, in order to output the travel-demand model for
other hours, TF matrices must be normalized to the hour that

represents the traffic data. This means that TF values for the
morning peak hour must be 1 and the respective proportion
must be assigned to the other hours, which is obtained by
simply dividing the traffic of each hour of the matrix by the
traffic of the morning rush hour. TF values can be obtained
from automatic traffic count stations or other hourly traffic
data to obtain the temporal profile.

The average speed of traffic flow is very important, and it
must be determined for each link and hour. Once the vehicu-
lar flow is identified for each hour, the average speed is then
identified for each hour. This was accomplished by employ-
ing curves from the Bureau of Public Roads (BPR; Bureau
of Public Roads, 1964), as shown in Eq. (4). The process in-
volves calculating speed by dividing the length of road by the
time. The time is calculated using the total traffic expanded
to each street link i and hour l.

Ti,l = Toi ·

(
1+α ·

(
Qi,l

Ci

)β)
(4)

In Eq. (4), Ti is the travel time per street link i at each
hour of the week l. Toi is the travel time under free-flow con-
ditions where maximum speed was used. Qi,l is the traffic
flow at peak hour for each street link i and hour of the week
l. Ci is the capacity of vehicles on street link i. The parame-
ters α and β are adjustments with default values of 0.15 and
4, respectively (Bureau of Public Roads, 1964). It has been
described that speed decreases as the flow increases until it
reaches the capacity of the link, and as the traffic continues to
increase, the speed decreases and travel time increases (Suh
et al., 1990). Capacity is the maximum number of vehicles
during a specific period under prevailing roadway, traffic and
control conditions (Manual, 2000). The values of BPR pa-
rameters are obtained by regressions of speed and volume
traffic recordings and the default values. The default BPR
parameters α 0.15 and β 4 are representative of traffic and
circulation characteristics of the United States. As a conse-
quence, other authors have investigated the determination of
capacity based on local data. For instance, Suh et al. (1990)
used Korean data to reestimate α and β by level of service
(LOS) A, B, C, D and E, from A (less congested) to E (more
congested), finding values of α= 2.72 and β = 6 for LOS D.
In addition, Manzo et al. (2014) estimated the distribution
of α and β with Danish data, and Kucharski and Drabicki
(2017) found values of α= 0.52 and β = 3.47. Consequently,
the user can use different values in the VEIN model instead
of suggested values from the Bureau of Public Roads (1964).
This information is important because it allows the user to
calculate the time to travel during link i at any hour l and,
therefore, to obtain the speed on that length of the road.

However, the information of the capacity is not always
available. When information exists at least for the peak and
free-flow speeds, it is possible to apply a simple average of
both speeds to obtain the average speeds and then distribute
these speeds at different hours.
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2.2 Selection of the emission factors

The emission factors describe the relationship intensity of ac-
tivity and emissions for a given technology (Pulles and Hes-
linga, 2010). In the case of our model, an emission factor is
the mass of pollutant emitted by the vehicular type, technol-
ogy and years of use by traveled distance, as mass of pol-
lutant / distance. VEIN takes into account emission factors
for hot and cold exhaust, evaporative, deterioration and wear
emissions. VEIN allows three types of hot exhaust emission
factors:

1. Speed functions from the COmputer Programme to cal-
culate Emissions from Road Transport (Copert; Ntzi-
achristos and Samaras, 2016), which are stored inter-
nally in the model. This approach can be used if there
is no local emission factors and if there is information
about vehicular speed recordings, simulations or knowl-
edge of the representative speeds.

2. Emission factors from local sources. The values must be
mass per kilometer (g km−1) per specific type of vehi-
cle, including fuel type, size and weight by age of use.
For instance, Brazilian emission factors in the official
emissions inventory report are averaged emissions of
annual emission certification tests by type of vehicle,
fuel type, size and weight (CETESB, 2013), and they
are not speed functions. Nevertheless, this capability
can be utilized with different types of emission factors
such as tunnel studies or dynamometer measurements
which are not speed functions. Appendix B shows an
example of VEIN being used with different emission
factors.

3. Scaled local emission factors with Copert in order to
incorporate speed variation for local factors, as shown
in Eq. (5). This produces a specific speed dependence
on emission factor by age of use for the vehicle.

Copert emission factors are based on emission measurements
made in Europe. This means that there is an inherent fuel
composition associated with these factors. When the user in-
tends to use these factors, they must be corrected with the
local fuel properties as shown by Ntziachristos and Samaras
(2016). However, if the user uses emission factors based on
local measurements, this correction is not necessary.

EFscaled(Vi,l)j,k,m = EF(Vi,l)j,k,m ·
EFlocalj,k,m

EF(Vdci,l)j,k,m
, (5)

where EFscaled(Vi,l)j,k,m is the scaled emission factor and
EF(Vi,l)j,k,m is the Copert emission factor for each street
link i, vehicle from composition k, hour l and pollutant
m. EFlocalj,k,m represents the constant emission factor (not
speed functions). EF(Vdci,l)j,k,m are Copert emission fac-
tors with average speed value of the respective driving cycle
for the vehicular category j . The São Paulo emission fac-
tors data include recordings of the Federal Test Procedure

(FTP-75) driving cycle for LDV with an average speed of
34.12 km h−1, as shown in the report of driving cycles (Bar-
low et al., 2009).

By default, VEIN includes a deterioration factor from
Copert (Ntziachristos and Samaras, 2016). This deterioration
factor depends on accumulated mileage and technology asso-
ciated with Euro standards on vehicles with three-way cata-
lysts. However, it is possible to include other sources, such
as from Corvalán and Vargas (2003).

2.3 Emissions estimation

VEIN estimates type of emissions including hot exhaust
(EH; Eq. 6), cold-start exhaust (EC; Eq. 7), evaporative (EV;
Eq. 8), deterioration factors and speciation. The total vehicu-
lar emission is the sum of all types of emissions.

2.3.1 Hot exhaust emission

The VEIN process of emissions estimation is performed per
street link, vehicle type, hour of week and pollutant. Equa-
tion (6) shows the hot exhaust estimation:

EHi,j,k,l,m = Fi,j,k,l ·Li ·EF(Vi,l)j,k,m ·DFj,k. (6)

In Eq. (6), EHi,j,k,l,m is the emissions for each street link i,
vehicle category from composition k, hour l and pollutantm,
where Fi,j,k,l is the vehicular flow calculated in Eq. (1). Li
is the length of the street link i. EF(Vi,l)j,k,m is the emission
factor of each pollutant m. DFj,k is the deterioration factor
for vehicle of type j and age of use k. Deterioration factors
are emission degradation functions of gasoline vehicles us-
ing catalysts due to accumulated mileage based on European
measurements (Ntziachristos and Samaras, 2016). Neverthe-
less, the users could use their own set of deterioration factors
such as that proposed by Corvalán et al. (2002).

2.3.2 Cold-start emissions

Cold-start emissions are produced during engine startup,
when the engine and/or catalytic converter system has not
reached its normal operational temperature. Consequently,
these emissions occur when a vehicle starts its journey at the
parking location or mostly in residential streets. Several stud-
ies have shown the significant impact of these types of emis-
sions (Chen et al., 2011; Weilenmann et al., 2009). VEIN
also considers cold-start emissions – under this condition,
emissions will be higher, and if the atmospheric tempera-
ture decreases, cold-start emissions will increase regardless
of whether the catalyst has reached its optimum tempera-
ture for functioning (Boulter, 1997). For example, Ludykar
et al. (1999) measured vehicular emissions with the Euro-
pean driving cycle (EDC) at 22, −7 and −20 ◦C, finding that
at lower temperatures, CO increased 5 times, NOx 1 time,
hydrocarbons (HC) 14 times and particulate matter (PM)
46 times, but specific hydrocarbons increased more, such
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as Toluene, which increased 21 times, and PAH, which in-
creased 33 times.

The VEIN model caters to these emissions by using the ap-
proach outlined in Copert (Ntziachristos and Samaras, 2016),
as shown in Eq. (7).

ECi,j,k,l,m = βj ·Fi,j,k,l ·Li ·EF(Vi,l)j,k,m ·DFj.k
·
(
EFcold(tan,Vi,l)j,k,m− 1

)
(7)

This approach adds two terms to Eq. (6). The first term
EFcold (tan,Vi,l)j,k,m −1 is the emission factors for cold-
start conditions at each street link i, vehicle category from
composition k, hour l, pollutantm and monthly average tem-
perature n. Ntziachristos and Samaras (2016) suggest using
monthly average temperature. As the information about the
parking locations is limited, in Eq. (7) we propose assign-
ing the emissions by links. In cases when better information
is available, these emissions should be assigned into parking
locations.

The second term βj is defined as the fraction of mileage
driven with a cold engine/catalyst (Ntziachristos and Sama-
ras, 2016). The VEIN model incorporates a dataset of cold
starts recorded during the implementation of the Interna-
tional Vehicle Emissions (IVE) model (Davis et al., 2005)
in São Paulo (Lents et al., 2004), which provides the hourly
mileage driven with cold-start conditions. The data of start
patterns should be generated by each user with local data. For
instance González et al. (2017) generated a start pattern us-
ing surveys to estimate vehicular emissions with IVE. How-
ever, the user eventually could use the start pattern available
in VEIN only in the absence of other data. Alternatively, the
user could follow the Ntziachristos and Samaras (2016) for
estimating β, which consists in β = 0.6474− 0.02545 ∗ ltrip
− (0.00974− 0.000385 ∗ ltrip) ∗ ta, where ltrip is the average
length of the trip and ta is the average monthly temperature.

2.3.3 Evaporative emissions

Evaporative emissions are important sources of hydrocar-
bons, and these emissions are produced by vaporization of
fuel due to variations in ambient temperatures (Mellios and
Ntziachristos, 2016; Andrade et al., 2017). There are mainly
three types of evaporative emissions: diurnal emissions, due
to increases in atmospheric temperature, which lead to ther-
mal expansion of vapor fuel inside the tank; running losses,
when the fuel evaporates inside the tank due to normal op-
eration of the vehicle; and hot-soak emissions, which occur
when the hot engine is turned off. These methods imple-
mented in VEIN were sourced from the evaporative emis-
sions methods of Copert (Mellios and Ntziachristos, 2016).
This approach is shown in Eqs. (8), (9) and (10).

EVj,k =
∑

s
Ds ·

∑
j

Fj · (HSj,k + dej,k +RLj,k), (8)

where EVj is the volatile organic compound (VOC) evap-
orative emissions due to each type of vehicle j . Ds is the

“seasonal days” or number of days when the mean monthly
temperature is within a determined range: [−5◦, 10 ◦C], [0◦,
15 ◦C], [10◦, 25 ◦C] and [20◦, 35 ◦C]. Fj,k is the number of
vehicles with to the same type j and age of use k. HSj,k , dej,k
and RLj,k are average hot/warm-soak, diurnal and running
loss evaporative emissions (g day−1), respectively, according
to the vehicle type j and age of use k. HSj,k and RLj,k are
obtained using equations also sourced from

HSj,k = xj,k ·(c ·(p ·eshc+(1−p) ·eswc)+(1−c) ·eshfi), (9)

where x is the number of trips per day for the vehicular
type j and age of use k. c is the fraction of vehicles with
fuel return systems. p is the fraction of trips finished with a
hot engine, for example, an engine that has reached its nor-
mal operating temperature and the catalyst has reached its
light-off temperature (Ntziachristos and Samaras, 2016). The
light-off temperature is the temperature at the point when cat-
alytic reactions occur inside a catalytic converter. eshc and
eswc are average hot-soak and warm-soak emission factors
for gasoline vehicles with carburettor or fuel return systems
(g parking−1). eshfi is the average hot-soak emission factors
for gasoline vehicles equipped with fuel injection and non-
return fuel systems (g parking−1).

RLj,k = xj,k ·(c ·(p ·erhc+(1−p) ·erwc)+(1−c) ·erhfi) (10)

x and p have the same meanings as in Eq. (9). erhc and
erwc are average hot and warm running loss emission factors
for gasoline vehicles with carburettor or fuel return systems
(g trip−1), and erhfi is the average hot running loss emission
factors for gasoline vehicles equipped with fuel injection and
non-return fuel systems (g trip−1). It is recommended to esti-
mate the number of trips per day (Mellios and Ntziachristos,
2016), x, as the division between the mileage and 365 times

the length of trip: x =
mileagej
(365 · ltrip)

. However, the mileage of

a vehicle is not constant over the years. Therefore, VEIN
incorporates a dataset of equations to estimate mileage of
different types of vehicles by age of use (Bruni and Bales,
2013). The methods presented in this part correspond to the
evaporative emission factors Tier 2 (Mellios and Ntziachris-
tos, 2016). However, we expect to add Tier 3 methods in fu-
ture versions of VEIN, including hourly distribution parking
patterns. Alternatively, for convenience, the user could trans-
form the units to produce emission factors in grams per kilo-
meter for convenience. For instance, in Eqs. (9) and (10), x
is the number of trips per day, knowing that the mean dis-
tance per trip would allow x to be calculated as the distance
traveled per day.

2.4 Speciation of emissions in chemical subcomponents

Particulate matter and hydrocarbons are a mixture of sev-
eral chemical compounds that play an important role in at-
mospheric chemistry (Seinfeld and Pandis, 2016). VEIN in-
cludes speciation profiles for hydrocarbons and particulate
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matter from Ntziachristos and Samaras (2016) and Ibarra
(2017). These profiles are percentages of the emissions by
vehicle type, fuel, emission standard and other characteris-
tics. Speciations are also included for particulate matter in
black carbon and organic matter; particulate matter fractions
for tire, brake and road wear; non-methanic hydrocarbons
(NMHC); and nitrogen oxides. In this case, the NMHC spe-
ciations from Ibarra (2017) cover emissions from vehicles
consuming gasohol (gasoline with 25 % of ethanol), ethanol
and diesel from exhaust, evaporative and liquid fuel released
to the atmosphere. This speciation is based on measure-
ments made in Brazil during the studies of Rafee (2015),
Ynoue (2004), Albuquerque (2005), Oliveira (2007), Mi-
randa (2001), Vara-Vela et al. (2016) and Andrade et al.
(2015). Hence, it is advisable that users from other na-
tions/locations use suitable data for their local conditions.

2.5 Spatial allocation and databases

VEIN provides functions to generate grids and spatially al-
locate emissions into grids. This is helpful for the visualiza-
tion and generation of inputs for atmospheric models and as
a tool for urban planning. In addition, VEIN includes func-
tions to produce a database of hourly emissions for vehicular
composition by age of use. Section 4.4 provides details and
examples about the emissions grids and databases.

3 VEIN model design

The VEIN model was constructed using the free open-source
R software (R Core Team, 2017). R is a programming lan-
guage and environment for statistical computing and graph-
ics (R Core Team, 2017). It was developed primarily for an-
alyzing data. However, since its capabilities have grown over
time, R has become a flexible language with many differ-
ent areas of application. It includes elements of programming
languages such as Lisp and the syntax of S, as described by
Leiner et al. (1997).

The VEIN R package depends on the package “sp” (Bi-
vand et al., 2013), as it uses several of its classes. VEIN im-
ports some functions from the package “rgeos” (Bivand and
Rundel, 2016), which is an interface for the Geometry open-
source (GEOS) library (https://trac.osgeo.org/geos/, last ac-
cess: 31 May 2018). It also imports functions from “rgdal”
(Bivand et al., 2016), which provides bindings to the Geospa-
tial Data Abstraction Library (GDAL; http://www.gdal.org/,
last access: 31 May 2018). Therefore, these R packages must
be installed prior to using the VEIN package.

VEIN started between 2014 and 2016 as a collection
of several R scripts, initially named R-EMIssions (REMI;
Ibarra-Espinosa and Ynoue, 2017), which later evolved into
an R package. It was developed in R due to the free open-
source advantages and because R allows easier reproducibil-
ity. VEIN is open to scrutiny from its community of users,

thus allowing opportunities for user feedback and improve-
ments. This facilitates widespread use of the model and iden-
tifying any software bugs/errors, with the potential for adding
new capabilities. VEIN has its own functions, but it also in-
corporates other data and functions such as emission factors
and mileage.

VEIN can be installed from the Comprehensive R
Archive Network (CRAN; https://CRAN.R-project.org/
package=vein, last access: 31 May 2018) or from the web-
site Github (https://github.com/atmoschem/vein). In order to
use the VEIN library and run the demo, it is necessary to run
the following scripts in R:

install.packages("vein") #or
library(devtools)
install_github("atmoschem/vein")
library(vein)
demo(VEIN)

The diagram process for estimating emissions is shown in
Fig. 1. The circles in this figure refer to the data and the boxes
refer to the functions inside the model. The VEIN model
diagram starts at the circle for traffic, which represents the
morning rush hour traffic data for each street link. Then the
“age” functions (“age_ldv”, “age_hdv” or “my_ldv”) deter-
mine the vehicular composition by age of use as shown in
Eq. (2). The data “profile” allows us to temporally extrapo-
late traffic data to the other hours, and this allows us to esti-
mate the average vehicular speed at any hour and link using
the function “netspeed”. Emission factor selections start by
adding the deterioration effect with the function “emis_det”
to local, speed-dependent emission factors from Ntziachris-
tos and Samaras (2016), denoted as “speed_ef”, or scaled
emission factors, denoted as scaled_ef in Fig. 1. Besides
including speed-dependent emission factors from Ntziachris-
tos and Samaras (2016), VEIN also includes local emission
factors from CETESB (2016). Once the input data are ready,
the function “emis” estimates hourly emissions for each hour
of the day and day of the week. The function “emis_post”
produces an emissions database by vehicle category or by
street, denoted as “df” and “street” in Fig. 1, respectively.
These emissions are then speciated with the function “speci-
ate”. At this time, the user can create a grid with the function
“make_grid”, which creates a rectangular spatial grid with
format SpatialPolygonsDataFrame used to allocate
emissions spatially with the function “emis_grid”. The func-
tion “emis_wrf” reads the emissions grids and creates a data
frame ready to be used with the NCL script AS4WRF (Vara-
Vela et al., 2016), which creates an input for the WRF-Chem
model (Grell et al., 2005). The user can also use the model
eixport (Ibarra-Espinosa et al., 2018) to create inputs for the
model WRF-Chem or BRAMS (Freitas et al., 2005) using
only R (R Core Team, 2017).
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Figure 1. Representation of the VEIN model. Boxes and circles represent functions and data, respectively.

3.1 Functions and classes

VEIN uses objects of the class “Spatial” (Pebesma and Bi-
vand, 2005), including SpatialLinesDataFrame. To
read geospatial data, there are several packages, such as rgdal
(Bivand et al., 2016) or “maptools” (Bivand and Lewin-Koh,
2015). The main requirement is that the network must be a
SpatialLinesDataFrame, a class of sp (Pebesma and
Bivand, 2005).

We included several functions to arrange traffic data, se-
lect or scale emission factors, as well as estimate and process
emissions in VEIN, as shown in Table 1. These functions im-
plement the equations shown in Sect. 2.

VEIN incorporates eight classes (see Table 1), which are
objects with specific characteristics: methods and units. The
methods are print, summary and plot. They are functions that
return a specific result depending on each class. Another im-
portant characteristic of each class is that they include ex-
plicit units, in an effort to reduce human error and improve
usability. For this task, VEIN imports some functions of the
package “units” (Pebesma et al., 2016), which is an inter-
face in the C library “udunits” from University Corporation
for Atmospheric Research (UCAR). Therefore, this library
must be installed on the system prior to using VEIN. Only
the EmissionFactorsList and EmissionsArray
do not show their units explicitly due to limitations with the
units package. The classes outlined in Table 1 are also con-
structor functions, which means that they can create VEIN
classes and add the respective units. VEIN incorporate con-
structor functions to create classes such as Vehicles or
Emissions. These functions are incorporated inside other
VEIN functions in order for the output of VEIN to have a
class. When the constructor functions are applied to a nu-
meric element, the constructor simply adds the units and the
resulting object has class units. For example, applying the
function EmissionsArray to a numeric vector will add
the units grams per hour to the numeric vector.

4 Estimating MASP vehicular emissions using VEIN
model

This section presents the application of the most important
functions of the VEIN model. These functions obtain an es-
timate of CO emissions from LDV fleets in MASP for 2015
(for a typical non-holiday week).

4.1 Traffic data for MASP

Hourly traffic is a requirement for these data. These data can
only be represented as 1 h of data, which can then be ex-
trapolated with the VEIN functions or as a list of hourly
traffic data for all the covered hours. The present applica-
tion includes a four-stage travel-demand model for MASP
CET (2014) for a morning rush hour loaded into R as a
SpatialLinesDataFrame. It includes peak and free-
flow speeds, along with capacity (maximum amount of ve-
hicles that can circulate in a road per hour) and traffic
flow from LDV and HDVs (heavy-duty vehicles). Figure 2
shows the traffic simulation of LDV at 08:00–09:00 local
time (LT), where urban motorways concentrate the highest
amount of vehicles. The total volume of LDV is 24 708 767
veh h−1 and the number of streets are 34 733, with a mean
of 711 veh h−1 street−1. It is important to note that the VEIN
model provides an extraction of the traffic simulation for the
western part of São Paulo. The traffic simulation for MASP
has a size of 61.6 Mb and the extraction for the western part
of São Paulo 3.1 Mb. We provided the extraction and not the
whole traffic simulation in VEIN to make it faster. This sec-
tion provides codes to run VEIN so that the reader can follow
them with the data provided in the model.

After loading traffic data, the traffic flow was expanded
to each hour of the week with the function “temp_fact”, as
shown in the following scripts. It is also necessary to ex-
trapolate hourly vehicle speeds. Therefore, we created the
function netspeed, which applies the function BPR (Bureau
of Public Roads, 1964) curves, according to Eq. (4). To use
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Table 1. Summary of the VEIN classes, functions and internal data.

Function Description Reference

age_hdv Distribution of HDV by age of use Ministério do Meio Ambiente (2011)
age_ldv Distribution of LDV by age of use Ministério do Meio Ambiente (2011)
age_moto Distribution of motorcycle by age of use Ministério do Meio Ambiente (2011)
ef_evap Evaporative emission factors Mellios and Ntziachristos (2016)
ef_hdv_scaled List of scaled emission factors for HDV Ntziachristos and Samaras (2016)
ef_hdv_speed HDV emission factors Ntziachristos and Samaras (2016)
ef_ldv_cold LDV cold-start emission factors Ntziachristos and Samaras (2016)
ef_ldv_cold_list List of LDV cold-start emission factors Ntziachristos and Samaras (2016)
ef_ldv_scaled List of scaled emission factors for LDV Ntziachristos and Samaras (2016)
ef_ldv_speed LDV emission factors Ntziachristos and Samaras (2016)
ef_wear Tire and brake wear, road abrassion Ntziachristos and Boulter (2009)
EmissionFactors Creates class EmissionFactors (g km−1)
EmissionFactorsList Creates class EmissionFactorsList (g km−1)
Emissions Creates class Emissions (g h−1)
EmissionsArray Creates class EmissionsArray (g h−1)
EmissionsList Creates class EmissionsList (g h−1)
emis Estimation to hour and day of the week
emis_cold Cold-start estimation Ntziachristos and Samaras (2016)
emis_det Deterioration factors Ntziachristos and Samaras (2016)
emis_evap Evaporative estimation Mellios and Ntziachristos (2016)
emis_grid Allocation on rectangular grid
emis_paved Resuspension of paved roads U.S. EPA (2016)
emis_post Post-processing of emissions
emis_wear Estimation of wear emissions Ntziachristos and Boulter (2009)
emis_wrf Creating data frame to NCL AS4WRF Vara-Vela et al. (2016)
Evaporative Creates class Evaporative (g ·d−1)
fe2015 Data of CETESB emission factors CETESB (2016)
fkm Data of mileage functions by vehicle Bruni and Bales (2013)
hot_soak Hot-soak evaporative Mellios and Ntziachristos (2016)
make_grid Rectangular grid
my_age Distribution of vehicles by age of use
net Data of traffic simulation of west São Paulo CET (2014)
netspeed Estimate average speed
pc_profile Data of temporal factors ARTESP (2012)
pc_cold Data of vehicle start pattern Lents et al. (2004)
running_losses Evaporative estimation Mellios and Ntziachristos (2016)
speciate Split by species Ntziachristos and Samaras (2016),

Ibarra (2017)
Speed Creates class Speed (km h−1)
temp_fact Expand hourly traffic
Vehicles Creates class Vehicles (1 h−1)
vkm Determination of vehicle kilometers

BPR, a data frame is required with total traffic at all hours
and the morning rush parameters capacity, peak speed, free-
flow speed and length of the road and with the BPR parame-
ters alpha and beta. The argument “scheme” produces a 24 h
speed data frame, based only on peak and free-flow speed
with a profile of free-flow speeds in the early mornings, peak
speeds, and morning and evening rush hours and the average
at hours in between. If the time lapse for the emissions esti-
mation is longer than a week, the user could simply replicate
the hours until it reaches the desired hours.

data(net)
data(pc_profile)
pcw <- temp_fact(net$ldv+net$hdv,
pc_profile)
speed <- netspeed(pcw, net$ps, net$ffs,
net$capacity, net$lkm, alpha = 1)

To illustrate this, the resulting speeds are observed in
Fig. 3, which shows two different speed maps: one for
08:00 LT (panel a) and the other for 23:00 LT (panel b). This
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Figure 2. Traffic flow simulation for LDV (veh h−1) at 08:00–
09:00 LT for MASP.

figure shows that the highest speeds are found in most of
the streets further away from the MASP center at both times
(08:00 and 23:00 LT). The major difference between the two
panels (a and b), is that late at night, the flow is faster near
the center of MASP. This seems reasonable since the vehic-
ular flow tends to diminish during the night. The average
speeds also show a pattern related to the type of street as
shown in Fig. 4. The type of street comes form São Paulo
traffic simulation; the names of the different types were trans-
lated into English and are as follows. Motorway: roads with
speed limits above 80 km h−1 without physical intersections.
Arterial: roads with a speed limit of 60 km h−1 with inter-
sections such as traffic lights. Collector: roads with a speed
limit of 40 km h−1 that collect and distribute traffic between
arterial roads. Local: roads with a speed limit of 30 km h−1

that access restricted zones. Figure 4 shows that lower speeds
are found during the morning (07:00–10:00 LT) and evening
(17:00–20:00 LT) rush hours. This is important in terms of
air pollution because at lower speeds vehicles emit more pol-
lutants (Ntziachristos and Samaras, 2016). By contrast, max-
imum average speeds for each type of road are obtained dur-
ing night hours and on Sundays at all hours.

After calculating the São Paulo traffic flow average speeds
for each hour of the week and each street link, the age dis-
tribution of the fleet was obtained by type of vehicle. The
“age*” functions (age_ldv, age_hdv and “age_moto”) dis-
tribute the traffic data by the vehicle’s age of use. These func-
tions return a data frame with the number of rows matching
the number of streets, columns representing the amount of
vehicles by age of use and a message indicating the average
age of the fleet. The age* functions are related to Eq. (2),
where they split the vehicular flow at street link Qi by type
of vehicle j and the vehicle’s age of use k. These functions
are based on the survival equations presented in the Brazil-
ian Emissions Inventory Report by the Ministério do Meio
Ambiente (2011) and are parameterized for the VEIN model.

They allow the use of different coefficients to obtain differ-
ent age distributions allowing the representation of different
realities. Furthermore, the function “my_age” distributes the
traffic from an existing dataset, e.g., yearly vehicle licensing.

The following code shows three uses of age* functions.
The first, my_age, uses yearly traffic data from the report
of the São Paulo emissions inventory (CETESB, 2016), ex-
pressed as CETESB_PC based on vehicle sales. The second,
age_ldv, uses default parameters, and the third, age_ldv, uses
b=−0.14.

CETESB_PC <- c(33491,22340,24818,31808,
46458,28574, 24856,28972,37818,49050,
87923,133833, 138441,142682,171029,151048,

115228,98664, 126444,101027,84771,55864,
36306,21079, 20138,17439,7854,2215,656,
1262,476,512, 1181,4991,3711, 5653, 7039,

5839, 4257, 3824,3068)

pc1 <- my_age(x = net$ldv,
y = CETESB_PC, name = "PC")
pc2 <- age_ldv(x = net$ldv,
name = "PC", agemax = 41)
pc3 <- age_ldv(x = net$ldv,
name = "PC", b = - 0.14, agemax = 41)

Figure 5a shows three age distributions, each one has
24 708 767 veh h−1, and each has a different average age.
Each curve represents the São Paulo LDV fleet according to
its age of use, with an estimated average age of 11.09 years
(red line), 15.53 years (blue line) and 15.17 years (green
line). This figure shows that in MASP there are more newer
vehicles than older ones. age* functions also include a log-
ical option named “bystreet”, with a default value equal to
FALSE. When this value is TRUE, age* expects that the co-
efficients a and b for the age* functions are numeric vec-
tors, with length matching the number of streets. This al-
lows different age distributions within the same road net-
work, and this is particularly useful for areas with less in-
formation about the vehicles’ age of use.

4.2 Emission factors

Once we obtain the traffic flow for the desired type of vehi-
cles (in our LDV example), for each hour of the day, for all
(desired) days of the week, for each age distribution and for
each street link, then we can proceed to the emissions calcu-
lation itself.

The VEIN package includes a database entitled “fe2015”
with emission factors for PC and light trucks by age of
use from the São Paulo official vehicular emissions inven-
tory (CETESB, 2016). This inventory was compiled using a
top–down approach, and the pollutants estimated were CH4,
CO, CO2, HC, N2O, NMHC, NOx and PM. These data in-
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Figure 3. Traffic speeds (colored lines; km h−1) for LDV fleet at 08:00 LT (a) and 23:00 LT (b) in MASP.

Figure 4. Traffic average speeds for LDV fleet by type of street (colored lines) at 08:00–09:00 LT in MASP.

clude national and equivalent Euro emission standards by
year and age. The equivalence among Brazilian CONAMA
(1986), MMA (2011), MMA (2015) and the Euro Direc-
tive70/220/EEC (1991) was added to this database in order
to choose the corresponding matching vehicle and emissions
standard. The equivalence can be seen in Table 2.

fe2015 emission factors do not include the deterioration
effect due to the accumulated age of vehicles, and it must be
included. This is done with the deterioration factor function
emis_det, which has the arguments pollutant, size of engine,
Euro standard and mileage in kilometers. VEIN includes a
Brazilian database of mileage functions named “fkm”, which
is a list of functions with each element of the list corre-
sponding to vehicle type. These functions depend on the
vehicle’s age of use, and they originate from the odometer
readings of more than 1.6 · 106 vehicles (Bruni and Bales,
2013). emis_det includes deterioration factors from Ntzi-
achristos and Samaras (2016), which are based on measure-
ments of European vehicles consuming gasoline; however,
most of Brazilian automotive fuel sold has a mixture of bio-
fuels such as ethanol from sugarcane. To our knowledge,
there are no published deterioration factors for Brazilian con-
ditions. Hence, we believe that including deterioration fac-
tors from Ntziachristos and Samaras (2016) is a valid option
in the absence of better data. Another aspect that it is impor-

Table 2. Proposed equivalence of emission standards used in São
Paulo study.

Brazilian Euro
Vehicle standard standard Year

LDV

L – 1 Pre Euro 1988–1991
L – 2 Euro 1 1992–1996
L – 3 Euro 2 1997–2004
L – 4 Euro 3 2005–2011
L – 5 Euro 4 2012–2013
L – 6 Euro 5 2014

HDV

P – 1 Pre Euro 1990–1992
P – 2 Pre Euro 1993
P – 3 Euro 1 1994–1997
P – 4 Euro 2 1998–2003
P – 5 Euro 3 2004–2011
P – 6 Euro 4 –
P – 7 Euro 5 2012

Motorcycle
M – 1 Euro 1 2003–2005
M – 2 Euro 2 2006–2008
M – 3 Euro 3 2009

Based on https:
//www.transportpolicy.net/standard/brazil-light-duty-emissions/, last
access: 31 May 2018.
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tant to mention is that, when improved fuels are consumed
in an older fleet, for instance fuel designed for Euro III tech-
nology in a pre-Euro fleet, this will diminish the emissions in
older fleet. This fuel effect it is being included in the devel-
opment repository of VEIN.

Emission factors for PCs, light commercial vehicles
(LCVs) and motorcycles are called with the function
“ef_ldv_speed”. In the case of trucks and buses, the func-
tion “ef_hdv_speed” is used. The arguments are filters for an
internal database of emission factors which include several
parameters such as fuel, Euro standard, volume of engine and
load, among others. These functions also include a multipli-
cation factor with a default value of 1. Exact spelling is re-
quired when using the arguments. If the argument names are
entered incorrectly, VEIN will not return the emission factor
functions.

The following code shows how to read the emission factors
of the VEIN databases fe2015, “pc_profile” and fkm, in or-
der to incorporate the deterioration effect into the CETESB
(2016) emission factors. The age of LDV shown in Fig. 5a
has a length of 41 years. This means that it needs 41 emis-
sion factors, one per each age of use. We used a 41-year dis-
tribution because we want to have a realistic representation
of the vehicles in circulation by age of use, despite the old-
est vehicles having a small number. However, the user could
use a different age distribution, such as 50 years. This al-
low us to obtain emissions by the age of use of the vehicles;
hence, VEIN can be used as a fast tool for scrapping poli-
cies and other applications. It calls the function emis_det,
which requires the accumulated mileage, obtained from the
list of mileage equations fkm. Fig. 5c)shows the emission
factors from CETESB with and without deterioration by age
of use. We are using deterioration factors from Ntziachris-
tos and Samaras (2016) that affect only vehicles with a cat-
alytic system. The base year of this emissions estimation is
2015, and vehicles with catalytic systems started in 1992 in
Brazil (23 years before 2015). Therefore, the vehicles that
entered the market before 1992 do not include deterioration.
The emission factors dataset fe2015 includes emission fac-
tors for vehicles with only 36 years of use, but the vehicular
distribution calculated in the last script has 41 years of use.
Therefore, we repeated the oldest emission factors to have
41 emission factors. Here we are assuming that the emission
factors of vehicles with 36 years of use are the same as for
the vehicles with 41 years of use. The last line of the fol-
lowing script calculates the deteriorated emission factors of
passenger cars by age of use.

data(fe2015)
data(fkm)
pckm <- fkm[[1]](1:24)
pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000,
eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000,

eu = "I", km = pckma[12:24])
co1 <- fe2015[fe2015$Pollutant == "CO", ]

co1[37:41, ] <- co1[36, ]
cod <- c(co1$PC_G[1:24] * c(cod1, cod2),
co1$PC_G[25:nrow(co1)])

Once the deterioration effect was added to the Brazilian
emission factors (CETESB, 2016), they were scaled to ac-
count for speed with the function “ef_ldv_scaled”. This func-
tion is used to multiply emission factors from ef_ldv_speed
with a constant.

The new emission factor (dependent on speed) has the
same value as the local emission factor, which is evaluated
at the reference speed of the measurement 34.12 km h−1 for
FTP-75. The default speed value is 34.12 km h−1, but this
value must change correspondingly to the speed of the driv-
ing conditions. To use this function, it is necessary to scale
emission standards of local emission factors with Euro stan-
dards. In the following code, “Euro_LDV” is a vector indi-
cating Euro standard by age of use.

lef <- ef_ldv_scaled(co1, cod, v = "PC",
cc = "<=1400", f = "G", p = "CO",
eu = co1$Euro_LDV)

4.3 Emission estimation

After inputting the database of vehicles and their respective
emission factors, VEIN is ready to use the emis function. The
VEIN package uses several emis functions according to the
type of emission being estimated. The emis function assem-
bles data and outputs from other VEIN functions and esti-
mates the emissions for the number of hours and days in the
week. This function reads the morning rush hour traffic data
by age of vehicle use and extrapolates it with the profile data
frame, as previously explained. It reads the emission factors
stored in a list with length matching the age distribution of
the vehicle category and then reads the list of speeds. This
function returns the emissions at each street in an array with
four dimensions: (1) number of streets; (2) maximum age of
age distribution; (3) hours (usually 24); and (4) days (usually
7). For convenience, there are defined default values for this
function: hour – 24; day – 7; array – TRUE. The values can
be changed as necessary.

For example, the estimation of the traffic simulations
shown in Fig. 2 has 34 733 streets, a fleet with a 41-year age
distribution, 24 h of the day, and 7 days of the week. There-
fore, it will produce an emissions array with the dimensions
34 733, 41, 24 and 7. The vehicle fleet used to produce the
age distribution is shown in green in Fig. 5a, and it is 41 years
in length.

E_CO <- emis(veh = pc1, lkm = net$lkm,
ef = lef, speed = speed,
profile = pc_profile)
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Figure 5. (a) Distribution of LDV composition by age of use, (b) temporal factor for expanding morning rush hour traffic data and (c) CO
emission factors used in the estimation presented in this paper.

This emissions array output for 34 733 streets and a vehi-
cle fleet with a 41-year age distribution, 24 h and 7 days of
the week, has the size of 1.8 Gb. Hence, it is recommended to
use the function emis_post and then delete the original emis-
sions array. The arguments include the emissions array, type
of vehicle, size or weight, fuel, pollutant, and the boolean ar-
gument “by”. The emis_post function was created to preserve
the most important information in the emissions array, to use
less memory size and to be compatible with the packages
sp (Pebesma and Bivand, 2005) and “ggplot2” (Wickham,
2009). VEIN outputs could also be used with the package
“openair” (Carslaw and Ropkins, 2012). emis_post returns a
data frame, but the argument by determines the shape of the
data frame. When by has the value “veh”, it returns a data
frame with an aggregation of the emissions array by each ve-
hicle’s age of use with the following columns: vehicle name,
emission (in grams), vehicle type, size, fuel, pollutant, age,
hour and day. This output allows the user to visualize hourly
emissions at each day of the week, as shown in Fig. 6. Higher
emissions are found in the morning and evening rush hours
from Monday to Friday. Saturday has peak higher emissions
at noon and Sunday has the lowest emissions.

VEIN enables the user to identify which type of vehicle
emits more by age of use. This is particularly useful for envi-
ronmental authorities, who aim to reduce local traffic emis-
sions and restrict the circulation of highly emitting vehicles.
Figure 6 shows the CO emissions of gasoline fueled LDV by
the vehicle’s age of use. The average age of these vehicles is
15.17 years, as shown by the green curve in Fig. 5a. The total
number of vehicles is 24 708 767 veh h−1 (08:00–09:00 LT
on a Monday). The total CO emissions is 233 095 t yr−1, con-
sidering a year of 52 weeks, but the emissions are concen-
trated for the LDV between 20 and 23 years of use. The ve-
hicles in this age interval represent 14.76 % of the fleet, emit-
ting 63.79 % (148 712 t yr−1) of the total emissions. In other
words, 15 % of the fleet emit more than 60 % of the CO. Be-
tween 1992 and 1996, the emissions standard was Proconve
L2, equivalence with Euro 1 (see Table 2), and the catalytic
system was also introduced in Brazil. Therefore, the high
emissions are due to vehicles with a deteriorated catalytic
converter. This information is useful for reducing air pollu-

tion, thus supporting the aims of environmental planners and
local authorities.

4.4 Post estimation

The spatial dimensions of the emissions estimation is an
important feature of VEIN because it allows the represen-
tation of the streets with spatial vectors. This is accom-
plished by using the function emis_post with the argument
by equal to “streets_narrow” or “streets_wide”. Both op-
tions return a data frame with different characteristics, which
can be converted into spatial vectors. When by is equal to
streets_narrow, it returns a data frame with four columns: ID,
indicating the number of rows; emissions; hour and day of
the week. The number of rows in the data frame is the orig-
inal number of selected streets multiplied by the hours and
days of the week. For example, when there are 34 733 streets,
24 h and 7 days of the week, it returns a data frame with
5 835 144 rows having a size of 133.6 Mb. This option is use-
ful to visualize the temporal behavior of specific streets with
ggplot2 (Wickham, 2009) or “ggmap” (Kahle and Wickham,
2013), for instance.

In most cases, users will be particularly interested when
the argument by is equal to streets_wide. This produces a
data frame with the number of rows matching the number of
streets for the domain and the number of columns as hours.
Figure 7 shows the CO emissions for LDV at each street
on a Friday at 19:00 LT. The following code shows how to
produce hourly emissions by street and then add these emis-
sions back into the SpatialLinesDataFrame net. This
is possible because the number of rows in E_CO_STREETS
is equal and it matches the number of rows in net.

E_CO_STREETS <- emis_post(arra = E_CO,
pollutant = "CO", by = "streets_wide")
net@data <- cbind(net@data, E_CO_STREETS)

The emissions shown in Fig. 7 are concentrated in two
streets: a motorway and a trunk street in the northern part
of the emissions map. This image was generated with the
function spplot in the package sp.

It also shows a rectangular grid, which can be used for
allocating the emissions. The allocation of emissions into
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Figure 6. (a) CO emissions (g h−1) per hour of the day and day of the week (colored and shaped lines) for LDV from MASP; (b) CO
emissions (t yr−1) according to the age of use of the LDV from MASP.

Figure 7. CO emissions (colored lines; g h−1) for LDV on Friday
19:00 LT over MASP.

the grid is very important for visualization and for inputs to
air quality models. We included a simple function to cre-
ate a rectangular grid in VEIN. The function was named,
make_grid, which has the arguments, “width”, “height” and
a boolean argument “polygon” for determining the type of
output. When the argument polygon is TRUE, it returns a
SpatialPolygonsDataFrame, and when it is FALSE,
it returns a SpatialGridDataFrame. The units of width
and height depend on the coordinate reference systems of the
data.

The allocation of emissions in each grid cell is
produced by a spatial interception between the emis-
sions at each street and the polygon grid. Firstly, the
SpatialLinesDataFrame object with emission must
contain a column with the length of the street. The length is
calculated with the function “gLength” in the package rgeos
(Bivand and Rundel, 2016). Secondly, it is performed at the
intersection between the SpatialLinesDataFrame of
emissions and the grid SpatialPolygonsDataFrame.
The intersection is performed by importing the function “in-

tersect” in the package “raster” (Hijmans, 2016). The grid
must have a column with the ID for each cell. Thirdly, it
calculates, in another column, the length of the street in the
resulting SpatialPolygonsDataFrame. Then it multi-
plies the emissions with the proportion of the new and old
length of the street. This allows proportional emissions in
each grid cell. Fourthly, it aggregates the emissions by the
ID of the grid and adds these emissions by grid ID into the
grid. The results are given in an emissions grid with the for-
mat SpatialPolygonsDataFrame. These calculations
can be performed automatically by the function emis_grid.

The function make_grid is suitable in mid-size or small
cities when the resolution is approximately 1 km. When deal-
ing with larger cities and higher resolution, it is recom-
mended to use other tools because make_grid would take
up too much time. This difficulty will be overcome in a fu-
ture version of VEIN with dependencies on the package sf
(Pebesma, 2016). In the following code, we show the use of
the function make_grid only for example purposes. It is rec-
ommended that the function emis_post be used with the ar-
gument “by= streets_wide”, in order to return a data frame
with hourly emissions for each street. This output can be used
with the functions emis_grid to create an emissions grid map,
as shown in Fig. 8. This is helpful when the user plans to use
the data to construct inputs for air quality models. The fol-
lowing code applies with the demo inside the VEIN model.

g <- make_grid(spobj = net, width =
0.00976,height = 0.00976, polygon = T)
E_CO_g <- emis_grid(spobj = net, g = g,
sr = "+init=epsg:31983", type =
"lines")

Figure 8a shows the resulting emissions of CO in a grid
with class SpatialPolygonsDataFrame built for a
grid with a resolution of 1 km representing the base year
2015. This emissions grid was built using the package sf
(process shown in Appendix A). Figure 8b shows the CO
emissions grid of road transport from EDGAR for the same
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area and base year 2010 (EJ-JRC/PBL, 2016), which is the
latest available year.

4.5 Speciation

Atmospheric simulations of ozone require knowledge about
the VOC compounds and particulate matter speciation,
which are necessary for solving the different chemical mech-
anisms. For example, a São Paulo study of ozone concentra-
tions that used models BRAMS/SPM (Freitas et al., 2005)
and WRF/Chem (Grell et al., 2005) involved detailed VOC
speciation (Andrade et al., 2015). It is important to mention
that there is evidence to prove that reducing black carbon
emissions would help lower the global radiative forcing and
improve population health (Bond et al., 2013). Hence, the
speciation of emissions is important and VEIN provides this
information. The VEIN function speciate splits VOC and PM
into their constituents. The arguments of these functions are
emissions estimation, type of speciation, type of vehicle, fuel
and Euro standard. There are four types of PM speciation:
“bcom” because it splits PM in black carbon and organic
matter (Ntziachristos and Samaras, 2016), “tire”, “brake” and
“road” (Ntziachristos and Boulter, 2009). However, there is
currently only one type of VOC speciation for MASP, the
“iag” (Ibarra, 2017). The name of the speciation iag comes
from the initials of the Institute of Astronomy, Geophysics
and Atmospheric Sciences of the University of São Paulo.
The speciation iag is based on measurements made by stu-
dents of this institute. The speciation iag splits the VOC
emissions for the Carbon Bond Mechanism Z (CMB-Z; Za-
veri and Peters, 1999). If the user intends to use other mecha-
nisms, then the user needs to know how to speciate the VOCs
and PM based on the user’s own data. This means that the
user must know the percentages needed to split the pollutants
and use them in the argument k of any VEIN function for the
emission factor of the respective type of vehicle and then use
them to estimate the emissions of that fraction of vehicles.
For example, if the user knows that 5 % of COV emissions
for LDV consuming diesel are xylenes, then the user must
use the function ef_ldv_speed or ef_ldv_scaled (or its own
local emission factors) with the argument k= 5/100. The ar-
gument k is simply a factor added to the resulting emission
function. Finally, the user must aggregate the emissions by
pollutant.

4.6 Input of atmospheric models

Meteorological factors influence the chemical process of pol-
lutants in the atmosphere. Therefore, their transport and be-
havior in the atmosphere must be predicted by a model that
includes the meteorological components (“in-line” coupling
of meteorology and chemistry), such as the Weather Re-
search and Forecasting Chemistry model (WRF-Chem; Grell
et al., 2005). This model has been widely used around the
world since its inception (2005 to 2006).

WRF-Chem requires gridded emission fluxes as input
data. There are tools to assimilate top–down emissions in-
ventories, such as EDGAR (Olivier et al., 1996) and REanal-
ysis of the TROpospheric chemical composition (RETRO;
Schultz, 2007), using the software PREP-Chem (Freitas
et al., 2011). These tools are very important to the modeling
community; however, their spatial resolutions are very lim-
ited. VEIN includes functions to generate WRF-Chem inputs
from the emissions grid with any desired resolution in the
following way. VEIN estimates emissions of different pollu-
tants at each street and also produces emissions grids needed
to do the regional modeling. This is performed through the
spatial intersection between emissions at streets and a poly-
gon grid with the required resolution. The resulting grid has
total emissions in each grid cell proportional to the length of
the streets inside each cell.

Figure 8 shows a comparison for VEIN (Fig. 8a) and
EDGAR (Fig. 8b), using an emissions inventory for the CO
in MASP. One may note that CO is spatially well represented
for VEIN by comparison with EDGAR. Furthermore, VEIN
offers much more detail about the emission of this pollutant,
which occurs mainly on urban motorways due to the high
volume of traffic on these roads. The total CO emissions us-
ing VEIN are 1.73× 10−6 (kg m−2 s−1), considering the first
second of a typical Monday at 00:00 LT, and EDGAR gives
emissions of 8.46× 10−8 (kg m−2 s−1). Therefore, VEIN es-
timates are 20.50 times higher than EDGAR. This difference
could be higher if compared with the morning rush hour of
VEIN. However, it is important to mention that the estimate
with VEIN for this paper is illustrative, and that more de-
tailed emissions inventories should be made when comparing
it to others. For example, the inventory for this paper includes
estimates only for LDVs assuming that all are PCs. It does
not include other types of vehicles as the total amount of ve-
hicles were not calibrated with fuel consumption. Ntziachris-
tos and Samaras (2016) recommends comparing bottom–up
estimates with fuel consumption in order to calibrate inputs
of emissions inventory (traffic data in this case). These differ-
ences highlight the need for development, intercomparison
and uncertainty evaluation of emission estimates. These re-
sults are very useful for many scientific and standardization
purposes such as health effects in air pollution studies, urban
planning and strategies to cut greenhouse gas emissions.

The VEIN model provides functions to transform the
emissions grids into inputs for the model Assimilating An-
thropogenic Emissions (AS4WRF) (Vara-Vela et al., 2016).
AAS4WRF consists of an NCL (Boulder, 2017) script that
reads the wrfinput file and an emissions text file produced
by VEIN to create a WRF-Chem input file. The VEIN model
provides the function emis_wrf to automatically create a data
frame in the correct format with the columns longitude, lati-
tude, ID of grid cell, pollutants, local time and GMT time in
the format POSIXct. The arguments of emis_wrf are “sdf”,
which is a list of SpatialPolygonsDataFrames; each
are given per pollutant. “nr” indicates how many times the
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Figure 8. CO emissions (kg m−2 s−1) in MASP for (a) Monday at 00:00:00 LT, estimated with VEIN; (b) the emissions of road transport
for the same area from EDGAR.

hours of estimations will be repeated. “dmyhm” indicates
the day, month, year, hour and minute of the first hour of
emissions in local time. “tz” is the time zone, and “utc” in-
dicates the difference in hours between local and GMT time.
“islist” indicates whether the first argument, df, is a list (is-
list=TRUE) or a data frame (islist=FALSE). The output of
VEIN emissions are in grams per hour, and they need to be
converted to mol.

ldf <- list("co" = E_CO_g)
df_wrf <- emis_wrf(ldf, nr = 1,
dmyhm = "04-08-2014 00:00", tz =
"America/Sao_Paulo", utc = -3,
islist = TRUE)

The authors created another model called eixport (Ibarra-
Espinosa et al., 2018) for producing emission inputs to atmo-
spheric models. One of the characteristics is creating WRF-
Chem input files in NetCDF format inside R (see https:
//CRAN.R-project.org/package=eixport, last access: 31 May
2018). Other models considered in eixport are BRAMS-SPM
(Freitas et al., 2005) and R-LINE (Snyder et al., 2013).

5 Discussion and conclusions

In this paper we introduce the development of the Vehicular
Emission INventory (VEIN model v0.2.2), an open-source
model, to produce high-resolution spatial and hourly emis-
sion estimation. VEIN is a tool suited to application in com-
plex environmental science studies, including regional atmo-
spheric modeling. It generates inputs for air quality models
in order to forecast air pollutant concentrations or for stud-
ies of greenhouse gas emissions from vehicular sources. It
can be used to study the relationship between emissions and
health effects. VEIN can be used as a tool for urban planning
in order to estimate vehicular emissions due to interventions
at road networks in most cities. It was written in an R pack-

age that includes several methods for estimating vehicular
emissions in a harmonized way.

VEIN provides functions to easily produce inputs of re-
gional air quality models such as WRF-Chem (Grell et al.,
2005) and BRAMS/SPM (Freitas et al., 2005). In Fig. 8,
the comparison between VEIN and EDGAR (EJ-JRC/PBL,
2016) of CO emissions shows that emissions are heavily
concentrated in few streets with a high volume of traffic.
EDGAR emissions do not provide this level of detail, and
they are lower than VEIN estimates. Furthermore, the highest
spatial resolution of EDGAR is 0.1 ◦ (approximately 12 km)
and it is possible to have a better resolution with VEIN.
Based on these factors, it can be concluded that EDGAR is
suitable for modeling air pollution in larger domains with-
out considering meteorological mesoscale interactions, in-
cluding feedbacks. However, with progressing computational
advances, it would be possible to perform air pollution mod-
eling for larger domains with a higher resolution and level
of detail. VEIN can produce these necessary inputs with a
bottom–up approach.

VEIN currently experiences some limitations. The first
limitation is the availability of activity data. VEIN needs at
least 1 h of traffic data for each street considered in the esti-
mation. These data can based on traffic simulation or traffic
counts; however, most cities do not count this type of data in
developing countries. In this case, new data should be gen-
erated with traffic counts and interpolations. In addition, the
widespread use of applications for smartphones such as Waze
(R) or Uber (R), among others, produce traffic data that even-
tually could be used as activity data for estimating vehicu-
lar emissions. For example, currently Google Traffic (https:
//developers.google.com/maps/coverage, last access: 31 May
2018) covers several countries and these data could provide
valuable information to estimate vehicular emissions in cities
with non-traffic simulation or traffic counts. It is expected
that new features will be added in future versions of VEIN.
One very promising feature will be the migration of the spa-
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tial dependencies into the new package, sf (spatial features)
(Pebesma, 2016). This package provides S3 classes for han-
dling spatial data faster than its predecessor, the package sp
(Pebesma and Bivand, 2005).

The emission factors are another aspect of VEIN that
can be enhanced in future versions. They could be sourced
from several emissions studies, such as tunnel studies (Pérez-
Martinez et al., 2014; Martins et al., 2006), or others based on
traffic situations whereby emissions are sourced from driv-
ing cycles (ARTEMIS for example, André, 2004) or other
experimental campaigns (Corvalán and Vargas, 2003). The
International Vehicular Emissions (IVE) is a top–down ve-
hicular emission model that has been used in different coun-
tries to estimate vehicular emissions (González et al., 2017;
Wang et al., 2008). It could be possible to derive emission
factors from IVE and estimate their corresponding emissions
in VEIN, in order to use the capabilities of VEIN.

VEIN’s purpose is to serve as a tool for air quality research
and environmental management. Since air quality models
need detailed emissions species, VEIN was created with the
function speciate. VEIN will add several new speciations to
these functions, such as those in the EMEP/EEA guidelines
(Ntziachristos and Samaras, 2016). In the case of Brazil,
there are several studies of tropospheric ozone, which use
the speciation of VOC emissions as input (Vara-Vela et al.,
2016; Abou Rafee et al., 2017).

Code and data availability. VEIN is available at the Comprehen-
sive R Archive Network (CRAN) https://CRAN.R-project.org/
package=vein (last access: 31 May 2018) and github https://
github.com/atmoschem/vein (last access: 31 May 2018); Changelog
is available at https://github.com/atmoschem/vein/blob/master/
NEWS.md (last access: 31 May 2018). The software version Ve-
hicular Emissions INventories (VEIN) v0.2.2 was developed using
the R programming language v3.4.1. For further information about
the VEIN package, contact the developer Sergio Ibarra-Espinosa
at sergio.ibarra@usp.br. Datasets included emission factors fe2015
and mileage functions fkm from the Environmental Agency of São
Paulo (CETESB). In addition, emission and deterioration factors
are provided in the form of lookup tables from Copert (Ntziachris-
tos and Samaras, 2016). These include hot emission factors for
light-duty vehicles (LDVs), heavy-duty vehicles (HDVs), cold start,
evaporative factors, cold starts and resuspension and perform speci-
ations. Emission factor functions are included for U.S. EPA/AP42
(U.S. EPA, 2002) estimations with default parameters. There are
also two datasets to perform the example functions, a data frame
to extrapolate morning peak hour vehicle traffic data to each hour
of the week (pc_profile), and a vehicle start pattern (“pc_cold”)
to be used for cold-start estimation. Moreover, VEIN includes a
traffic simulation for the western region of São Paulo City named
“net”. Software required: VEIN imports functions of the packages
sp, sf, rgeos, rgdal, raster and units, which require libraries GDAL
(>= 2.0.0), GEOS (>= 3.4.0) and UDUNITS-2.
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Appendix A: Intercept grid and street emissions

Development versions of VEIN already include support for
sf including the procedure shown in this Appendix.

library(vein)
library(sf)
# Converting objects into "sf" and
projecting to UTM zone 23S - EPSG:31983
g_sf <- st_as_sf(spTransform(g,
CRSobj = "+init=epsg:31983"))
net_sf <- st_as_sf(spTransform(net,
CRSobj = "+init=epsg:31983"))
# Calculating initial length of net_sf
net_sf$LKM <- st_length(st_cast(net_sf[
st_dimension(net_sf) == 1,]))
# Intersecting net and grid
net_sf_g <- st_intersection(net_sf, g_sf)

# Calculating new length of net_sf
net_sf_g$LKM2 <- st_length(st_cast(
net_sf_g[st_dimension(net_sf_g) ==1,]))
# Checking dimensions
dim(net_sf_g)
# Converting from sf to data.frame
net_sf_gg <- as.data.frame(net_sf_g)
# Eliminating column ’geometry’
net_sf_gg <- net_sf_gg[,-171]
# Obtaining proportional emissions
of 168 hours of the week
net_sf_gg[,1:168] <- net_sf_gg[,1:168] *

as.numeric(net_sf_gg
$LKM2/net_sf_gg$LKM)
# Agregating emissions by id of grid
dfm <- aggregate(cbind(net_sf_gg[, 1:168]),

by = list(net_sf_gg$id),

sum, na.rm = TRUE)
# naming columns of data-frame dfm
names(dfm) <- c("id", paste0("h", 1:168))

# Creating data-frame for id of grid
gx <- data.frame(id = g$id)
# merging data-frames
gx <- merge(gx, dfm, by="id", all.x = T)
# Generating spatial grid and
converting to "Spatial"
E_CO_g <- as(st_sf(gx,
geometry = g_sf$geometry), "Spatial")
# Converting to WGS84 lat lon
E_CO_g <- spTransform(E_CO_g,
"+init=epsg:4326")

Appendix B: Examples using VEIN with different
emission factors

B1 Activity data

data(net)
data(pc_profile)
data(fe2015)
pc1 <- age_ldv(x = net$ldv, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs,
net$capacity, net$lkm, alpha = 1)

B2 Emission factors

B2.1 Copert emission factors (without correction of
deterioration and fuel effects)

euro <- c(rep("V", 5), rep("IV", 5),
rep("III", 5), rep("II", 5),

rep("I", 5), rep("PRE", 15))
lef1 <- lapply(1:40, function(i) {
ef_ldv_speed(v = "PC", t = "4S",
cc = "<=1400", f = "G",

eu = euro[i], p = "CO",
show.equation = FALSE) })

B2.2 Local emission factors of passenger cars using
gasoline, constant by age of use

co1 <- fe2015[fe2015$Pollutant=="CO", ]
lef2 <- EmissionFactorsList(co1$PC_G)

B2.3 Scaled emission factors

lef3 <- ef_ldv_scaled(dfcol = co1$PC_G,
v = "PC", t = "4S", cc = "<=1400",
f = "G",p = "CO", eu=co1$Euro_LDV)

B3 Estimations

E_COv1 <- emis(veh = pc1,lkm = net$lkm,
ef = lef1, speed = speed,

profile = pc_profile)
E_COv2 <- emis(veh = pc1,lkm = net$lkm,
ef = lef2, speed = speed,

profile = pc_profile)
E_COv3 <- emis(veh = pc1,lkm = net$lkm,
ef = lef3, speed = speed,

profile = pc_profile)
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