Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1421-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1421-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0
Derek P. Tittensor
CORRESPONDING AUTHOR
United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
Department of Biology, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, N.S., B3H 4R2, Canada
Tyler D. Eddy
Department of Biology, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, N.S., B3H 4R2, Canada
Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
Heike K. Lotze
Department of Biology, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, N.S., B3H 4R2, Canada
Eric D. Galbraith
Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
Institut de Ciència i Tecnologia Ambientals (ICTA) and Department of Mathematics, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
William Cheung
Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
Manuel Barange
Fisheries and Aquaculture Policy and Resources Division, Food and Agriculture Organisation of the United Nations (FAO), 00153 Rome, Italy
Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13 DH, UK
Julia L. Blanchard
Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point. TAS. 7004, Private Bag 129, Hobart, TAS 7001, Australia
Laurent Bopp
Institut Pierre-Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, CNRS/CEA/UVSQ, CE Saclay, Orme des Merisiers, 91191 Gif sur Yvette, France
Andrea Bryndum-Buchholz
Department of Biology, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, N.S., B3H 4R2, Canada
Matthias Büchner
Potsdam Institute for Climate Impact Research, Telegrafenberg A56, 14473 Potsdam, Germany
Catherine Bulman
CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania 7001, Australia
David A. Carozza
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, H3A 0E8, Canada
Villy Christensen
Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC, V6T 1Z4, Canada
Marta Coll
Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain
Institut de Recherche pour le Développment, UMR MARBEC & LMI ICEMASA, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
Ecopath International Initiative (EII), 08193 Barcelona, Spain
John P. Dunne
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540, USA
Jose A. Fernandes
Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13 DH, UK
AZTI, Herrera Kaia, Portualdea z/g, 20110 Pasaia (Gipuzkoa), Spain
Elizabeth A. Fulton
CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania 7001, Australia
Centre for Marine Socioecology, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
Alistair J. Hobday
CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania 7001, Australia
Centre for Marine Socioecology, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
Veronika Huber
Potsdam Institute for Climate Impact Research, Telegrafenberg A56, 14473 Potsdam, Germany
Simon Jennings
Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Lowestoft, NR33 0HT, UK
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
International Council for the Exploration of the Sea, H. C. Andersens Blvd 44–46, 1553 København V, Denmark
Miranda Jones
Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
Patrick Lehodey
CLS, 11 rue Hermes 31520, Ramonville Saint Agne, France
Jason S. Link
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543, USA
Steve Mackinson
Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Lowestoft, NR33 0HT, UK
Olivier Maury
IRD (Institut de Recherche pour le Développement) – UMR 248 MARBEC (IRD-IFREMER-CNRS-Université Montpellier), av Jean Monnet CS 30171, 34203 Sète cedex, France
University of Cape Town, Dept. of Oceanography – International Lab. ICEMASA Private Bag X3, Rondebosch 7701, Cape Town, South Africa
Susa Niiranen
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden
Ricardo Oliveros-Ramos
Instituto del Mar del Perú (IMARPE). Gamarra y General Valle s/n Chucuito, Callao, Perú
Tilla Roy
Institut Pierre-Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, CNRS/CEA/UVSQ, CE Saclay, Orme des Merisiers, 91191 Gif sur Yvette, France
ECOCEANA (Ecosystem, Climate and Ocean Analysis), 57 Rue Archereau, 75019 Paris, France
Jacob Schewe
Potsdam Institute for Climate Impact Research, Telegrafenberg A56, 14473 Potsdam, Germany
Yunne-Jai Shin
IRD (Institut de Recherche pour le Développement) – UMR 248 MARBEC (IRD-IFREMER-CNRS-Université Montpellier), av Jean Monnet CS 30171, 34203 Sète cedex, France
University of Cape Town, Marine Research (MA-RE) Institute, Department of Biological Sciences, Private Bag X3, Rondebosch 7701, South Africa
Tiago Silva
Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Lowestoft, NR33 0HT, UK
Charles A. Stock
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540, USA
Jeroen Steenbeek
Ecopath International Initiative (EII), 08193 Barcelona, Spain
Philip J. Underwood
United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
Jan Volkholz
Potsdam Institute for Climate Impact Research, Telegrafenberg A56, 14473 Potsdam, Germany
James R. Watson
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97330, USA
Nicola D. Walker
Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Lowestoft, NR33 0HT, UK
Related authors
No articles found.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Eric D. Galbraith, Abdullah Al Faisal, Tanya Matitia, William Fajzel, Ian Hatton, Helmut Haberl, Fridolin Krausmann, and Dominik Wiedenhofer
Earth Syst. Dynam., 16, 979–999, https://doi.org/10.5194/esd-16-979-2025, https://doi.org/10.5194/esd-16-979-2025, 2025
Short summary
Short summary
The technosphere – including buildings, infrastructure, and all other non-living human creations – is a major part of our planet, but it is not often considered as an integrated part of Earth system processes. Here we propose a refined definition of the technosphere, intended to help with integration. We also characterize the functional end uses, map the global distribution, and discuss the catalytic properties that underlie the exponential growth of the trillion tonne technosphere.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Vivek Seelanki, Wei Cheng, Phyllis J. Stabeno, Albert J. Hermann, Elizabeth J. Drenkard, Charles A. Stock, and Katherine Hedstrom
EGUsphere, https://doi.org/10.5194/egusphere-2025-1229, https://doi.org/10.5194/egusphere-2025-1229, 2025
Short summary
Short summary
Both physical and ecosystem properties of the ocean are rapidly changing. These changes anticipating ecosystem responses to environmental change and effectively managing marine. The model-based predictions and their performance in the historical states of the ocean must be carefully evaluated against observations. In this study a coupled ocean and sea-ice simulation during 1993–2018 using observations. We focus on the Bering Sea shelf, which is the largest productive ecosystem in the U.S.
Mathieu A. Poupon, Laure Resplandy, Jessica Garwood, Charles Stock, Niki Zadeh, and Jessica Y. Luo
Ocean Sci., 21, 851–875, https://doi.org/10.5194/os-21-851-2025, https://doi.org/10.5194/os-21-851-2025, 2025
Short summary
Short summary
Zooplankton diel vertical migration (DVM) shapes ocean biogeochemical cycles. We present a new DVM model that reproduces migration depths observed in the North Atlantic Ocean. We show that chlorophyll shading contributes to reducing zooplankton migration depth and mainly controls its spatial and temporal variability. Thus, high chlorophyll concentrations may limit carbon sequestration caused by zooplankton migration despite the general abundance of zooplankton migration in these environments.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025, https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in a temperature overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may be key in mitigating the long-term impacts of temperature stabilization and overshoot.
Alban Planchat, Laurent Bopp, and Lester Kwiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-523, https://doi.org/10.5194/egusphere-2025-523, 2025
Short summary
Short summary
Disparities in ocean carbon sink estimates derived from observations and models raise questions about our ability to accurately assess its magnitude and trend. Essential for isolating the anthropogenic component of the total air-sea carbon flux estimated from observations, the pre-industrial air-sea carbon flux is a key source of uncertainty. Thus, we take a fresh look at this flux using the alkalinity budget, alongside the carbon budget which had previously been considered alone.
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev., 18, 211–237, https://doi.org/10.5194/gmd-18-211-2025, https://doi.org/10.5194/gmd-18-211-2025, 2025
Short summary
Short summary
We developed a 3D ocean model called the Hindcast of the Salish Sea (HOTSSea v1) that recreates physical conditions throughout the Salish Sea from 1980 to 2018. It was not clear that acceptable accuracy could be achieved because of computational and data limitations, but the model's predictions agreed well with observations. When we used the model to examine ocean temperature trends in areas that lack observations, it indicated that some seasons and areas are warming faster than others.
Paul J. Durack, Karl E. Taylor, Peter J. Gleckler, Gerald A. Meehl, Bryan N. Lawrence, Curt Covey, Ronald J. Stouffer, Guillaume Levavasseur, Atef Ben-Nasser, Sebastien Denvil, Martina Stockhause, Jonathan M. Gregory, Martin Juckes, Sasha K. Ames, Fabrizio Antonio, David C. Bader, John P. Dunne, Daniel Ellis, Veronika Eyring, Sandro L. Fiore, Sylvie Joussaume, Philip Kershaw, Jean-Francois Lamarque, Michael Lautenschlager, Jiwoo Lee, Chris F. Mauzey, Matthew Mizielinski, Paola Nassisi, Alessandra Nuzzo, Eleanor O’Rourke, Jeffrey Painter, Gerald L. Potter, Sven Rodriguez, and Dean N. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2024-3729, https://doi.org/10.5194/egusphere-2024-3729, 2025
Short summary
Short summary
CMIP6 was the most expansive and ambitious Model Intercomparison Project (MIP), the latest in a history, extending four decades. CMIP engaged a growing community focused on improving climate understanding, and quantifying and attributing observed climate change being experienced today. The project's profound impact is due to the combining the latest climate science and technology, enabling the latest-generation climate simulations and increasing community attention in every successive phase.
Enhui Liao, Laure Resplandy, Fan Yang, Yangyang Zhao, Sam Ditkovsky, Manon Malsang, Jenna Pearson, Andrew C. Ross, Robert Hallberg, and Charles Stock
EGUsphere, https://doi.org/10.5194/egusphere-2024-3646, https://doi.org/10.5194/egusphere-2024-3646, 2025
Short summary
Short summary
We introduce a regional ocean model of the northern Indian Ocean, a region central to the livelihoods and economies of countries that comprise about one-third of the world’s population. The model successfully represents the key physical and biogeochemical features of the region and is well suited for physical and biogeochemical studies on timescales ranging from weeks to decades, in addition to supporting marine resource applications and management in the northern Indian Ocean.
John Patrick Dunne, Helene T. Hewitt, Julie Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matthew Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O’Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-3874, https://doi.org/10.5194/egusphere-2024-3874, 2024
Short summary
Short summary
This manuscript provides the motivation and experimental design for the seventh phase of the Coupled Model Intercomparison Project (CMIP7) to coordinate community based efforts to answer key and timely climate science questions and facilitate delivery of relevant multi-model simulations for: prediction and projection, characterization, attribution and process understanding; vulnerability, impacts and adaptations analysis; national and international climate assessments; and society at large.
Vianney Guibourd de Luzinais, William W. L. Cheung, and Didier Gascuel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3696, https://doi.org/10.5194/egusphere-2024-3696, 2024
Short summary
Short summary
Marine heatwaves(MHWs) are becoming more frequent and intense, yet their impacts on marine ecosystems globally remain unclear.Using a novel ecological model, we show that MHWs significantly reduced marine ecosystem biomass between 1998 and 2021, especially in the North Pacific Ocean.Marine predators are impacted more than organisms lower in the food chain.This study underscores the urgent need to integrate MHWs into developing climate-resilient marine ecosystem management and conservation plans.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Morrison, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Remi Pages, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-195, https://doi.org/10.5194/gmd-2024-195, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers make decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature, and nutrient and oxygen levels, and can even reproduce metrics used by and important to ecosystem managers.
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
Ocean Sci., 20, 1631–1656, https://doi.org/10.5194/os-20-1631-2024, https://doi.org/10.5194/os-20-1631-2024, 2024
Short summary
Short summary
In this paper, we use a high-resolution regional ocean model to downscale seasonal ocean forecasts from the Seamless System for Prediction and EArth System Research (SPEAR) model of the Geophysical Fluid Dynamics Laboratory (GFDL). We find that the downscaled model has significantly higher prediction skill in many cases.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Alban Planchat, Laurent Bopp, Lester Kwiatkowski, and Olivier Torres
Earth Syst. Dynam., 15, 565–588, https://doi.org/10.5194/esd-15-565-2024, https://doi.org/10.5194/esd-15-565-2024, 2024
Short summary
Short summary
Ocean acidification is likely to impact all stages of the ocean carbonate pump. We show divergent responses of CaCO3 export throughout this century in earth system models, with anomalies by 2100 ranging from −74 % to +23 % under a high-emission scenario. While we confirm the limited impact of carbonate pump anomalies on 21st century ocean carbon uptake and acidification, we highlight a potentially abrupt shift in CaCO3 dissolution from deep to subsurface waters beyond 2100.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Fabian A. Gomez, Sang-Ki Lee, Charles A. Stock, Andrew C. Ross, Laure Resplandy, Samantha A. Siedlecki, Filippos Tagklis, and Joseph E. Salisbury
Earth Syst. Sci. Data, 15, 2223–2234, https://doi.org/10.5194/essd-15-2223-2023, https://doi.org/10.5194/essd-15-2223-2023, 2023
Short summary
Short summary
We present a river chemistry and discharge dataset for 140 rivers in the United States, which integrates information from the Water Quality Database of the US Geological Survey (USGS), the USGS’s Surface-Water Monthly Statistics for the Nation, and the U.S. Army Corps of Engineers. This dataset includes dissolved inorganic carbon and alkalinity, two key properties to characterize the carbonate system, as well as nutrient concentrations, such as nitrate, phosphate, and silica.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Andersen, K. H. and Beyer, J. E.: Asymptotic size determines species abundance in the marine size spectrum, Am. Nat., 168, 54–61, 2006.
Andersen, K. P. and Ursin, E.: A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorous circulation and primary production, Medd. Dan. Fisk. Havunders, N. S., 7, 319–345, 1977.
Anticamara, J. A., Watson, R., Gelchu, A., and Pauly, D.: Global fishing effort (1950–2010): Trends, gaps, and implications, Fish. Res., 107, 131–136, https://doi.org/10.1016/j.fishres.2010.10.016, 2011.
Arreguin-Sanchez, F.: Catchability: a key parameter for fish stock assessment, Rev. Fish Biol. Fish., 6, 221–242, 1996.
Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H., Allen, J. I., Holt, J., and Jennings, S.: Impacts of climate change on marine ecosystem production in societies dependent on fisheries, Nat. Clim. Chang., 4, 211–216, https://doi.org/10.1038/NCLIMATE2119, 2014.
Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.-I., and Williams, M.: Feeding 9 billion by 2050 – Putting fish back on the menu, Food Secur., 7, 261–274, https://doi.org/10.1007/s12571-015-0427-z, 2015.
Benoît, E. and Rochet, M. J.: A continuous model of biomass size spectra governed by predation and the effects of fishing on them, J. Theor. Biol., 226, 9–21, https://doi.org/10.1016/S0022-5193(03)00290-X, 2004.
Bernhardt, J. R. and Leslie, H. M.: Resilience to Climate Change in Coastal Marine Ecosystems, Ann. Rev. Mar. Sci., 5, 371–392, https://doi.org/10.1146/annurev-marine-121211-172411, 2013.
Blanchard, J. L., Jennings, S., Law, R., Castle, M. D., McCloghrie, P., Rochet, M. J., and Benoît, E.: How does abundance scale with body size in coupled size-structured food webs?, J. Anim. Ecol., 78, 270–280, https://doi.org/10.1111/j.1365-2656.2008.01466.x, 2009.
Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Holt, J., Dulvy, N. K., and Barange, M.: Potential consequences of climate change for primary production and fish production in large marine ecosystems, Philos. Trans. R. Soc. B Biol. Sci., 367, 2979–2989, https://doi.org/10.1098/rstb.2012.0231, 2012.
Blanchard, J. L., Andersen, K. H., Scott, F., Hintzen, N. T., Piet, G., and Jennings, S.: Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies size spectrum model, J. Appl. Ecol., 51, 612–622, https://doi.org/10.1111/1365-2664.12238, 2014.
Blanchard, J. L., Watson, R. A., Fulton, E. A., Cottrell, R. S., Nash, K. L., Bryndum-Buchholz, A., Büchner, M., Carozza, D. A., Cheung, W. W. L., Elliott, J., Davidson, L. N. K., Dulvy, N. K., Dunne, J. P., Eddy, T. D., Galbraith, E., Lotze, H. K., Maury, O., Müller, C., Tittensor, D. P., and Jennings, S.: Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture, Nat. Ecol. Evol., 1, 1240–1249, 2017.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Borgmann, U.: Models on the slope of, and biomass flow up, the biomass size spectrum, Can. J. Fish. Aquat. Sci., 44, s136–s140, https://doi.org/10.1139/f87-316, 1987.
Boudreau, P. R., Dickie, L. M., and Kerr, S. R.: Body-size spectra of production and biomass as system-level indicators of ecological dynamics, J. Theor. Biol., 152, 329–339, 1991.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.: Trichodesmium, a Globally Significant Marine Cyanobacterium, Science, 276, 1221–1229, 1997.
Carozza, D. A., Bianchi, D., and Galbraith, E. D.: The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry, Geosci. Model Dev., 9, 1545–1565, https://doi.org/10.5194/gmd-9-1545-2016, 2016.
Carozza, D. A., Bianchi, D., Galbraith, E. D., Da, C., Bianchi, D., Ed, G., and Bombardier, J.-A.: Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model, PLoS One, 12, 1–28, https://doi.org/10.1371/journal.pone.0169763, 2017.
Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D.: Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic, ICES J. Mar. Sci., 68, 1008–1018, https://doi.org/10.1093/icesjms/fsr012, 2011.
Cheung, W. W. L., Watson, R., and Pauly, D.: Signature of ocean warming in global fisheries catch, Nature, 497, 365–368, 2013.
Cheung, W. W. L., Frolicher, T. L., Asch, R. G., Jones, M. C., Pinsky, M. L., Reygondeau, G., Rodgers, K. B., Rykaczewski, R. R., Sarmiento, J. L., Stock, C., and Watson, J. R.: Building confidence in projections of the responses of living marine resources to climate change, ICES J. Mar. Sci., 73, 1283–1296, https://doi.org/10.1093/icesjms/fsv250, 2016a.
Cheung, W. W. L., Jones, M. C., Reygondeau, G., Stock, C. A., Lam, V. W. Y., and Frölicher, T. L.: Structural uncertainty in projecting global fisheries catches under climate change, Ecol. Modell., 325, 57–66, https://doi.org/10.1016/j.ecolmodel.2015.12.018, 2016b.
Christensen, V. and Walters, C. J.: Ecopath with Ecosim: methods, capabilities and limitations, Ecol. Modell., 172, 109–139, https://doi.org/10.1016/j.ecolmodel.2003.09.003, 2004.
Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and Walters, C. J.: Representing Variable Habitat Quality in a Spatial Food Web Model, Ecosystems, 17, 1397–1412, https://doi.org/10.1007/s10021-014-9803-3, 2014.
Christensen, V., Coll, M., Buszowski, J., Cheung, W. W. L., Frölicher, T., Steenbeek, J., Stock, C. A., Watson, R. A., and Walters, C. J.: The global ocean is an ecosystem: simulating marine life and fisheries, Global Ecol. Biogeogr., 24, 507–517, https://doi.org/10.1111/geb.12281, 2015.
Coll, M., Lotze, H. K., and Romanuk, T. N.: Structural Degradation in Mediterranean Sea Food Webs: Testing Ecological Hypotheses Using Stochastic and Mass-Balance Modelling, Ecosystems, 11, 939–960, https://doi.org/10.1007/s10021-008-9171-y, 2008.
Coll, M., Akoglu, E., Arreguín-Sánchez, F., Fulton, E. A., Gascuel, D., Heymans, J. J., Libralato, S., Mackinson, S., Palomera, I., Piroddi, C., Shannon, L. J., Steenbeek, J., Villasante, S., and Christensen, V.: Modelling dynamic ecosystems: venturing beyond boundaries with the Ecopath approach, Rev. Fish Biol. Fish., 25, 413–424, https://doi.org/10.1007/s11160-015-9386-x, 2015.
Colleter, M., Valls, A., Guitton, J., Gascuel, D., Pauly, D., and Christensen, V.: Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository, Ecol. Modell., 302, 42–53, 2015.
Dickie, L. M., Kerr, S. R., Boudreau, P. R., Monographs, E., and Sep, N.: Size-Dependent Processes Underlying Regularities in Ecosystem Structure, Ecol. Monogr., 57, 233–250, https://doi.org/10.2307/2937082, 1987.
Eddy, T., Bulman, C. M., Cheung, W., Coll, M., Fulton, E. A., Galbraith, E., Lotze, H. K., Mackinson, S., Niiranen, S., Oliveros-Ramos, R., Piroddi, C., Steenbeek, J., Tittensor, D. P., Walker, N. D., Schewe, J., Volkholz, J., and Büchner, M.: ISIMIP2a Simulation Data from Marine Ecosystems and Fisheries (regional) Sector, GFZ Data Services, https://doi.org/10.5880/PIK.2018.004, in review, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
FAO: The State of World Fisheries and Aquaculture 2014, Rome, United Nations Food and Agriculture Organization, 2014.
Fernandes, J. A., Cheung, W. W. L., Jennings, S., Butenschön, M., De Mora, L., Frölicher, T. L., Barange, M., and Grant, A.: Modelling the effects of climate change on the distribution and production of marine fishes: Accounting for trophic interactions in a dynamic bioclimate envelope model, Global Chang. Biol., 19, 2596–2607, https://doi.org/10.1111/gcb.12231, 2013.
Fernandes, J. A., Kay, S., Hossain, M. A. R., Ahmed, M., Cheung, W. W. L., Lazar, A. N., and Barange, M.: Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios, ICES J. Mar. Sci., 73, 1357–1369, https://doi.org/10.1093/icesjms/fsv217, 2016.
Fernandes, J. A., Papathanasopoulou, E., Hattam, C., Queirós, A. M., Cheung, W. W. W. L., Yool, A., Artioli, Y., Pope, E. C., Flynn, K. J., Merino, G., Calosi, P., Beaumont, N., Austen, M. C., Widdicombe, S., and Barange, M.: Estimating the ecological, economic and social impacts of ocean acidification and warming on UK fisheries, Fish Fish., 18, 389–411, https://doi.org/10.1111/faf.12183, 2017.
Field, C., Behrenfeld, M., Randerson, J., and Falkowski, P.: Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Fish-MIP: available at: https://www.isimip.org/gettingstarted/marine-ecosystems-fisheries/, last access: 28 March, 2018.
Fu, C., Perry, R. I., Shin, Y. J., Schweigert, J., and Liu, H.: An ecosystem modelling framework for incorporating climate regime shifts into fisheries management, Prog. Oceanogr., 115, 53–64, https://doi.org/10.1016/j.pocean.2013.03.003, 2013.
Fulton, E. A.: Approaches to end-to-end ecosystem models, J. Mar. Syst., 81, 171–183, https://doi.org/10.1016/j.jmarsys.2009.12.012, 2010.
Fulton, E. A. and Link, J. S.: Modeling Approaches for Marine Ecosystem-based Management, in: The Sea: Volume 16, Marine Ecosystem-Based Management, edited by: Fogarty, M. J. and McCarthy, J. J., Harvard University Press, 2014.
Fulton, E. A. and Smith, A. D. M.: Lessons learnt from a comparison of three ecosystem models for Port Phillip Bay, Australia, African J. Mar. Sci., 26, 219–243, https://doi.org/10.2989/18142320409504059, 2004.
Fulton, E. A., Smith, A., and Punt, A.: Which ecological indicators can robustly detect effects of fishing?, ICES J. Mar. Sci., 62, 540–551, https://doi.org/10.1016/j.icesjms.2004.12.012, 2005.
Fulton, E. A., Link, J. S., Kaplan, I. C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., Gorton, R., Gamble, R. J., Smith, A. D. M., and Smith, D. C.: Lessons in modelling and management of marine ecosystems: the Atlantis experience, Fish Fish., 12, 171–188, https://doi.org/10.1111/j.1467-2979.2011.00412.x, 2011.
Fulton, E. A., Smith, A. D. M., Smith, D. C., and Johnson, P.: An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation, PLoS One, 9, 1–16, https://doi.org/10.1371/journal.pone.0084242, 2014.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293–296, 2008.
Hamblin, J. D.: Oceanographers and the cold war, University of Washington Press, Seattle, 2005.
Harfoot, M. B. J., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J., Lyutsarev, V., Smith, M. J., Scharlemann, J. P. W., and Purves, D. W.: Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model, PLoS Biol., 12, e1001841, https://doi.org/10.1371/journal.pbio.1001841, 2014.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, Bull. Am. Meteorol. Soc., 90, 1095–1107, 2009.
Hollowed, A. B., Bax, N., Beamish, R., Collie, J., Fogarty, M., Livingston, P., Pope, J., and Rice, J. C.: Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems?, ICES J. Mar. Sci., 57, 707–719, 2000.
Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp, L., Butenschon, M., Fach, B. A., Harle, J., Pushpadas, D., Salihoglu, B., and Wakelin, S.: Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas, Prog. Oceanogr., 140, 91–115, https://doi.org/10.1016/j.pocean.2015.11.004, 2016.
Huber, V., Schellnhuber, H. J., Arnell, N. W., Frieler, K., Friend, A. D., Gerten, D., Haddeland, I., Kabat, P., Lotze-Campen, H., Lucht, W., Parry, M., Piontek, F., Rosenzweig, C., Schewe, J., and Warszawski, L.: Climate impact research: beyond patchwork, Earth Syst. Dynam., 5, 399–408, https://doi.org/10.5194/esd-5-399-2014, 2014.
ICES (International Council for the Exploration of the Sea): Report of the Working Group on Fish Distribution Shifts (WKFISHDISH), Copenhagen, Denmark, 2016.
ISIMIP: available at: https://www.isimip.org/protocol/#isimip2a, last access: 28 March, 2018.
ISIMIP: available at: https://www.isimip.org/gettingstarted/#how-to-join-isimip/, last access: 28 March, 2018.
Jennings, S. and Collingridge, K.: Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems, PLoS One, 10, e0133794, https://doi.org/10.1371/journal.pone.0133794, 2015.
Jennings, S., Kaiser, M. J., and Reynold, J. D.: Marine Fisheries Ecology, Blackwell, Oxford, 2001.
Jennings, S., Andersen, K. H., and Blanchard, J. L.: Marine ecology and fisheries, in: Metabolic ecology – a scaling approach, edited by: Sibly, R. M., Brown, J. H., and Kodric-Brown, A., p. 375, John Wiley, Chichester, 2012.
Jones, M. C. and Cheung, W. W. L.: Multi-model ensemble projections of climat change effects on global marine biodiversity, ICES J, 72, 741–752, 2015.
Jones, M. C., Dye, S. R., Fernandes, J. A., Frölicher, T. L., Pinnegar, J. K., Warren, R., and Cheung, W. W. L.: Predicting the Impact of Climate Change on Threatened Species in UK Waters, PLoS One, 8, 1–13, https://doi.org/10.1371/journal.pone.0054216, 2013.
Lehodey, P., Senina, I., and Murtugudde, R.: A spatial ecosystem and populations dynamics model (SEAPODYM) – Modeling of tuna and tuna-like populations, Prog. Oceanogr., 78, 304–318, https://doi.org/10.1016/j.pocean.2008.06.004, 2008.
Lehodey, P., Murtugudde, R., and Senina, I.: Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups, Prog. Oceanogr., 84, 69–84, https://doi.org/10.1016/j.pocean.2009.09.008, 2010.
Lehodey, P., Senina, I., Nicol, S., and Hampton, J.: Modelling the impact of climate change on South Pacific albacore tuna, Deep Sea Res. Part II Top. Stud. Oceanogr., 113, 246–259, https://doi.org/10.1016/j.dsr2.2014.10.028, 2015.
Maury, O.: An overview of APECOSM, a spatialized mass balanced “Apex Predators ECOSystem Model” to study physiologically structured tuna population dynamics in their ecosystem, Prog. Oceanogr., 84, 113–117, https://doi.org/10.1016/j.pocean.2009.09.013, 2010.
Maury, O. and Poggiale, J. C.: From individuals to populations to communities: A dynamic energy budget model of marine ecosystem size-spectrum including life history diversity, J. Theor. Biol., 324, 52–71, https://doi.org/10.1016/j.jtbi.2013.01.018, 2013.
Maury, O., Shin, Y. J., Faugeras, B., Ben Ari, T., and Marsac, F.: Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: Simulations, Prog. Oceanogr., 74, 500–514, https://doi.org/10.1016/j.pocean.2007.05.001, 2007.
Maury, O., Campling, L., Arrizabalaga, H., Aumont, O., Bopp, L., Merino, G., Squires, D., Cheung, W., Goujon, M., Guivarch, C., Lefort, S., Marsac, F., Monteagudo, P., Murtugudde, R., Österblom, H., Pulvenis, J. F., Ye, Y., and van Ruijven, B. J.: From shared socio-economic pathways (SSPs) to oceanic system pathways (OSPs): Building policy-relevant scenarios for global oceanic ecosystems and fisheries, Global Environ. Change, 45, 203–216, https://doi.org/10.1016/j.gloenvcha.2017.06.007, 2017.
Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I., Allison, E. H., Badjeck, M. C., Dulvy, N. K., Holt, J., Jennings, S., Mullon, C., and Rodwell, L. D.: Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate?, Global Environ. Change, 22, 795–806, https://doi.org/10.1016/j.gloenvcha.2012.03.003, 2012.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., and Worm, B.: How Many Species Are There on Earth and in the Ocean?, edited by: Mace, G. M., PLoS Biol., 9, e1001127, https://doi.org/10.1371/journal.pbio.1001127, 2011.
Mullon, C., Steinmetz, F., Merino, G., Fernandes, J. A., Cheung, W. W. L., Butenschön, M., and Barange, M.: Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological-economic and governance modelling scenarios, Ecol. Modell., 320, 273–291, https://doi.org/10.1016/j.ecolmodel.2015.09.027, 2016.
Nielsen, J. R., Thunberg, E., Holland, D. S., Schmidt, J. O., Fulton, E. A., Bastardie, F., Punt, A. E., Allen, I., Bartelings, H., Bertignac, M., Bethke, E., Bossier, S., Buckworth, R., Carpenter, G., Christensen, A., Christensen, V., Da-Rocha, J. M., Deng, R., Dichmont, C., Doering, R., Esteban, A., Fernandes, J. A., Frost, H., Garcia, D., Gasche, L., Gascuel, D., Gourguet, S., Groeneveld, R. A., Guillén, J., Guyader, O., Hamon, K. G., Hoff, A., Horbowy, J., Hutton, T., Lehuta, S., Little, L. R., Lleonart, J., Macher, C., Mackinson, S., Mahevas, S., Marchal, P., Mato-Amboage, R., Mapstone, B., Maynou, F., Merzéréaud, M., Palacz, A., Pascoe, S., Paulrud, A., Plaganyi, E., Prellezo, R., van Putten, E. I., Quaas, M., Ravn-Jonsen, L., Sanchez, S., Simons, S., Thébaud, O., Tomczak, M. T., Ulrich, C., van Dijk, D., Vermard, Y., Voss, R., and Waldo, S.: Integrated ecological-economic fisheries models-Evaluation, review and challenges for implementation, Fish Fish., 19, 1–29, https://doi.org/10.1111/faf.12232, 2017.
Niiranen, S., Yletyinen, J., Tomczak, M. T., Blenckner, T., Hjerne, O., Mackenzie, B. R., Müller-Karulis, B., Neumann, T., and Meier, H. E. M.: Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web., Global Chang. Biol., 19, 3327–3342, https://doi.org/10.1111/gcb.12309, 2013.
Payne, M. R., Barange, M., Cheung, W. W. L., MacKenzie, B. R., Batchelder, H. P., Cormon, X., Eddy, T. D., Fernandes, J. A., Hollowed, A. B., Jones, M. C., Link, J. S., Neubauer, P., Ortiz, I., Queirós, A. M., and Paula, J. R.: Uncertainties in projecting climate-change impacts in marine ecosystems, ICES J. Mar. Sci., 73, 1272–1282, https://doi.org/10.1093/icesjms/fsv231, 2016.
Pearson, R. G. and Dawson, T. P.: Predicting the impacts of climate change on the distribution of speces: are bioclimate envelope models useful?, Global Ecol. Biogeogr., 12, 361–371, https://doi.org/10.1046/j.1466-822X.2003.00042.x, 2003.
Peck, M. A., Arvanitidis, C., Butenschön, M., Canu, D. M., Chatzinikolaou, E., Cucco, A., Domenici, P., Fernandes, J. A., Gasche, L., Huebert, K. B., Hufnagl, M., Jones, M. C., Kempf, A., Keyl, F., Maar, M., Mahévas, S., Marchal, P., Nicolas, D., Pinnegar, J. K., Rivot, E., Rochette, S., Sell, A. F., Sinerchia, M., Solidoro, C., Somerfield, P. J., Teal, L. R., Travers-Trolet, M., and van de Wolfshaar, K. E.: Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS, Estuar. Coast. Shelf Sci., 201, 40–55, https://doi.org/10.1016/j.ecss.2016.05.019, 2016.
Plagányi, É. E.: Models for an ecosystem approach to fisheries, Rome, available at: http://www.fao.org/docrep/010/a1149e/a1149e00.htm (last ccess: 8 November 2015), 2007.
Plagányi, É. E., Bell, J. D., Bustamante, R. H., Dambacher, J. M., Dennis, D. M., Dichmont, C. M., Dutra, L. X. C., Fulton, E. A., Hobday, A. J., Ingrid van Putten, E., Smith, F., Smith, A. D. M., and Zhou, S.: Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications, Mar. Freshw. Res., 62, 1132, https://doi.org/10.1071/MF10279, 2011.
Plagányi, É. E., Punt, A. E., Hillary, R., Morello, E. B., Thébaud, O., Hutton, T., Pillans, R. D., Thorson, J. T., Fulton, E. A., Smith, A. D. M., Smith, F., Bayliss, P., Haywood, M., Lyne, V., and Rothlisberg, P. C.: Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity, Fish Fish., 15, 1–22, https://doi.org/10.1111/j.1467-2979.2012.00488.x, 2014.
Platt, T. and Denman, K.: The structure of pelagic marine ecosystems, Rapp. Procés-Verbaux des Réunions, Cons. Int. pour l'Exploration la Mer, 173, 60–65, 1978.
Polovina, J. J.: Model of a coral reef ecosystem, Coral Reefs, 3, 1–11, https://doi.org/10.1007/BF00306135, 1984.
Pope, J. G., Rice, J. C., Daan, N., Jennings, S., and Gislason, H.: Modelling an exploited marine fish community with 15 parameters – results from a simple size-based model, ICES J. Mar. Sci., 63, 1029–1044, https://doi.org/10.1016/j.icesjms.2006.04.015, 2006.
Pörtner, H.-O., Karl, D. M., Boyd, P. W., Cheung, W. W., Lluch-Cota, S. E., Nojiri, Y., Schmidt, D. N., and Zavialov, P. O.: Ocean Systems, in: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chagne, edited by: Drinkwater, K. F. and Polonsky, A., 411–484, Cambridge University Press, 2014.
Queirós, A. M., Huebert, K. B., Keyl, F., Fernandes, J. A., Stolte, W., Maar, M., Kay, S., Jones, M. C., Hamon, K. G., Hendriksen, G., Vermard, Y., Marchal, P., Teal, L. R., Somerfield, P. J., Austen, M. C., Barange, M., Sell, A. F., Allen, I., and Peck, M. A.: Solutions for ecosystem-level protection of ocean systems under climate change, Global Chang. Biol., 22, 3927–3936, https://doi.org/10.1111/gcb.13423, 2016.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate models and their evaluation, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007.
Ruane, A. C., Teichmann, C., Arnell, N. W., Carter, T. R., Ebi, K. L., Frieler, K., Goodess, C. M., Hewitson, B., Horton, R., Kovats, R. S., Lotze, H. K., Mearns, L. O., Navarra, A., Ojima, D. S., Riahi, K., Rosenzweig, C., Themessl, M., and Vincent, K.: The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, 2016.
Saba, V. S., Griffies, S. M., Anderson, W. G., Winton, M., Alexander, M. A., Delworth, T. L., Hare, J. A., Harrison, M. J., Rosati, A., Vecchi, G. A., and Zhang, R.: Enhanced warming of the Northwest Atlantic Ocean under climate change, J. Geophys. Res. Ocean., 121, 118–132, https://doi.org/10.1002/2015JC011346, 2016.
Schellnhuber, H. J., Frieler, K., and Kabat, P.: The elephant, the blind, and the intersectoral intercomparison of climate impacts., P. Natl. Acad. Sci. USA, 111, 1–3, 2013.
Sheldon, R. W. and Parsons, T. R.: A Continuous Size Spectrurn for Particulate Matter in the Sea, J. Fish. Board Canada, 24, 909–915, 1967.
Sheldon, R. W., Prakash, A., and Sutcliffe, H.: The size distribution of particles in the Ocean, Limnol. Oceanogr., 17, 327–340, 1972.
Sheldon, R. W., Sutcliffe Jr., W. H., and Paranjape, M. A.: Structure of pelagic food chain and relationship between plankton and fish production, J. Fish. Res. Board Canada, 34, 2344–2355, 1977.
Shin, Y.-J. and Cury, P.: Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing, Can. J. Fish. Aquat. Sci., 61, 414–431, 2004.
Shin, Y.-J., Shannon, L. J., and Cury, P. M.: Simulations of fishing effects on the southern Benguela fish community using an individual-based model: learning from a comparison with ECOSIM, African J. Mar. Sci., 26, 95–114, https://doi.org/10.2989/18142320409504052, 2004.
Smith, A. D. M., Brown, C. J., Bulman, C. M., Fulton, E. A., Johnson, P., Kaplan, I. C., Lozano-Montes, H., Mackinson, S., Marzloff, M., Shannon, L. J., Shin, Y.-J., and Tam, J.: Impacts of Fishing Low–Trophic Level Species on Marine Ecosystems, Science, 333, 1147–1150, 2011.
Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., and Christensen, V.: Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial-temporal data, Ecol. Modell., 263, 139–151, https://doi.org/10.1016/j.ecolmodel.2013.04.027, 2013.
Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K. M., Cheung, W. W. L., Curchitser, E. N., Delworth, T. L., Dunne, J. P., Griffies, S. M., Haltuch, M. A., Hare, J. A., Hollowed, A. B., Lehodey, P., Levin, S. A., Link, J. S., Rose, K. A., Rykaczewski, R. R., Sarmiento, J. L., Stouffer, R. J., Schwing, F. B., Vecchi, G. A., and Werner, F. E.: On the use of IPCC-class models to assess the impact of climate on Living Marine Resources, Prog. Oceanogr., 88, 1–27, https://doi.org/10.1016/j.pocean.2010.09.001, 2011.
Sumaila, U. R., Cheung, W., Dyck, A., Gueye, K., Huang, L., Lam, V., Pauly, D., Srinivasan, T., Swartz, W., Watson, R., and Zeller, D.: Benefits of Rebuilding Global Marine Fisheries Outweigh Costs, PLoS One, 7, e40542, https://doi.org/10.1371/journal.pone.0040542, 2012.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock, C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean biogeochemistry models simulate dissolved iron distributions?, Global Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289, 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Tittensor, D. P., Galbraith, E., Barange, M., Barrier, N., Blanchard, J., Bopp, L., Bryndum-Buchholz, A., Carozza, D., Cheung, W., Christensen, V., Coll, M., Eddy, T., Fernandes Salvador, J. A., Hobday, A., Jennings, S., Jones, M., Lehodey, P., Lotze, H. K., Maury, O., Steenbeek, J., Underwood, P. J., Watson, J., Schewe, J., Volkholz, J., and Büchner, M.: ISIMIP2a Simulation Data from Marine Ecosystems and Fisheries (global) Sector, GFZ Data Services, https://doi.org/10.5880/PIK.2018.005, in review, 2018.
Townsend, H. M., Link, J. S., Osgood, T., Gedamke, T., Watters, G. M., Polovina, J. J., Levin, P. S., Cyr, N., and Aydin, K. Y.: National Marine Fisheries Service Report of the National Ecosystem Modeling Workshop (NEMoW), US Department of Commerce, NOAA Technical Memorandum NMFS-F/SPO-87, Silver Spring, MD, 2008.
Travers, M., Shin, Y.-J., Shannon, L., and Cury, P.: Simulating and testing the sensitivity of ecosystem-based indicators to fishing in the southern Benguela ecosystem, Can. J. Fish. Aquat. Sci., 63, 943–956, 2006.
Travers, M., Shin, Y.-J., Jennings, S., and Cury, P.: Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems, Prog. Oceanogr., 75, 751–770, https://doi.org/10.1016/j.pocean.2007.08.001, 2007.
Travers, M., Shin, Y. J., Jennings, S., Machu, E., Huggett, J. A., Field, J. G., and Cury, P. M.: Two-way coupling versus one-way forcing of plankton and fish models to predict ecosystem changes in the Benguela, Ecol. Modell., 220, 3089–3099, https://doi.org/10.1016/j.ecolmodel.2009.08.016, 2009.
Travers, M., Watermeyer, K., Shannon, L. J., and Shin, Y. J.: Changes in food web structure under scenarios of overfishing in the southern Benguela: Comparison of the Ecosim and OSMOSE modelling approaches, J. Mar. Syst., 79, 101–111, https://doi.org/10.1016/j.jmarsys.2009.07.005, 2010.
Travers-Trolet, M., Shin, Y. J., Shannon, L. J., Moloney, C. L., and Field, J. G.: Combined fishing and climate forcing in the southern Benguela upwelling ecosystem: An end-to-end modelling approach reveals dampened effects, PLoS One, 9, 1–9, https://doi.org/10.1371/journal.pone.0094286, 2014.
UN: The first global integrated marine assessment: World Ocean Assessment I, New York, 2016.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter–Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework, P. Natl. Acad. Sci. USA, 1–5, https://doi.org/10.1073/pnas.1312330110, 2013.
Watson, J. R., Stock, C. A., and Sarmiento, J. L.: Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic – Size-based ecosystem model, Prog. Oceanogr., 138, 521–532, https://doi.org/10.1016/j.pocean.2014.09.001, 2015.
Watson, R. A.: A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014, Sci. Data, 4, 170039, https://doi.org/10.1038/sdata.2017.39, 2017.
Watson, R. A., Cheung, W. W. L., Anticamara, J. A., Sumaila, R. U., Zeller, D., and Pauly, D.: Global marine yield halved as fishing intensity redoubles, Fish Fish., 14, 493–503, https://doi.org/10.1111/J.1467-2979.2012.00483.X, 2013.
Short summary
Model intercomparison studies in the climate and Earth sciences communities have been crucial for strengthening future projections. Given the speed and magnitude of anthropogenic change in the marine environment, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. We describe the Fisheries and Marine Ecosystem Model Intercomparison Project, which brings together the marine ecosystem modelling community to inform long-term projections of marine ecosystems.
Model intercomparison studies in the climate and Earth sciences communities have been crucial...