Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1293-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1293-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0
Christina B. Zapata
Department of Civil and Environmental Engineering, University of California – Davis, Davis, California, USA
Chris Yang
Institute of Transportation Studies, University of California – Davis, Davis, California, USA
Sonia Yeh
Institute of Transportation Studies, University of California – Davis, Davis, California, USA
Joan Ogden
Institute of Transportation Studies, University of California – Davis, Davis, California, USA
Michael J. Kleeman
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of California – Davis, Davis, California, USA
Related authors
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Atmos. Chem. Phys., 18, 4817–4830, https://doi.org/10.5194/acp-18-4817-2018, https://doi.org/10.5194/acp-18-4817-2018, 2018
Short summary
Short summary
California's greenhouse gas reduction programs will require adoption of low-carbon energy sources across all economic sectors. We selected the least-cost portfolio of new energy sources using an energy–economic model. We then specified new air pollution emissions and simulated air quality with 4 km spatial resolution across the entire state. We find that the adoption of low-carbon energy reduced air pollution deaths 24–26 %, providing USD 11.4–20.4 billion per year of economic benefits.
Shenglun Wu, Hyung Joo Lee, Andrea Anderson, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys., 22, 4929–4949, https://doi.org/10.5194/acp-22-4929-2022, https://doi.org/10.5194/acp-22-4929-2022, 2022
Short summary
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
Xin Yu, Melissa Venecek, Anikender Kumar, Jianlin Hu, Saffet Tanrikulu, Su-Tzai Soon, Cuong Tran, David Fairley, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 14677–14702, https://doi.org/10.5194/acp-19-14677-2019, https://doi.org/10.5194/acp-19-14677-2019, 2019
Short summary
Short summary
Predictions and measurements of ultrafine particle number and mass concentrations were in overall good agreement at 14 sites across California in the years 2012, 2015, and 2016. On-road vehicles, food cooking, and aircraft were important sources of ultrafine particles as expected, but natural gas combustion was also a significant source at all locations across California. These results can be used to study the health effects of ultrafine particles.
Melissa A. Venecek, Xin Yu, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 9399–9412, https://doi.org/10.5194/acp-19-9399-2019, https://doi.org/10.5194/acp-19-9399-2019, 2019
Short summary
Short summary
Atmospheric ultrafine particles with a diameter < 100 nm are more toxic than larger particles. There are no measurement networks for ultrafine particles, but concentrations can be predicted using models. On-road vehicles, cooking, and aircraft are important sources of ultrafine particles as expected, but natural gas combustion was also found to be a significant source in cities across the United States. Results like this may support future health-effects studies on ultrafine particles.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Atmos. Chem. Phys., 18, 4817–4830, https://doi.org/10.5194/acp-18-4817-2018, https://doi.org/10.5194/acp-18-4817-2018, 2018
Short summary
Short summary
California's greenhouse gas reduction programs will require adoption of low-carbon energy sources across all economic sectors. We selected the least-cost portfolio of new energy sources using an energy–economic model. We then specified new air pollution emissions and simulated air quality with 4 km spatial resolution across the entire state. We find that the adoption of low-carbon energy reduced air pollution deaths 24–26 %, providing USD 11.4–20.4 billion per year of economic benefits.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Hsiang-He Lee, Shu-Hua Chen, Michael J. Kleeman, Hongliang Zhang, Steven P. DeNero, and David K. Joe
Atmos. Chem. Phys., 16, 8353–8374, https://doi.org/10.5194/acp-16-8353-2016, https://doi.org/10.5194/acp-16-8353-2016, 2016
Short summary
Short summary
A source-oriented CCN module was implemented in a source-oriented chemistry model to study the effect of aerosol mixing state on fog formation. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. The internal mixture model predicted greater CCN activation than the source-oriented model due to artificial coating of hydrophobic particles with hygroscopic components.
Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, and Anthony S. Wexler
Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, https://doi.org/10.5194/acp-16-3041-2016, 2016
Short summary
Short summary
Losses of vapors to walls of chambers can negatively bias SOA formation measurements, consequently leading to low predicted SOA concentrations in air quality models. Here, we show that accounting for such vapor losses leads to substantial increases in the predicted amount of SOA formed from VOCs and to notable increases in the O : C atomic ratio in two US regions. Comparison with a variety of observational data suggests generally improved model performance when vapor wall losses are accounted for.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Atmos. Chem. Phys., 16, 2309–2322, https://doi.org/10.5194/acp-16-2309-2016, https://doi.org/10.5194/acp-16-2309-2016, 2016
Short summary
Short summary
Multi-generational chemistry schemes applied in regional models do not increase secondary organic aerosol (SOA) mass production relative to traditional "two-product" schemes when both models are fitted to the same chamber data. The multi-generational chemistry schemes do change the predicted composition of SOA and the source attribution of SOA.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Geosci. Model Dev., 8, 2553–2567, https://doi.org/10.5194/gmd-8-2553-2015, https://doi.org/10.5194/gmd-8-2553-2015, 2015
Short summary
Short summary
Multi-generational oxidation of organic vapors can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA). Here, we implement a semi-explicit, constrained multi-generational oxidation model of Cappa and Wilson (2012) in a 3-D air quality model. When compared with results from a current-generation SOA model, we predict similar mass concentrations of SOA but a different chemical composition. O:C ratios of SOA are in line with those measured globally.
J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman
Atmos. Chem. Phys., 15, 3445–3461, https://doi.org/10.5194/acp-15-3445-2015, https://doi.org/10.5194/acp-15-3445-2015, 2015
Short summary
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
H. Zhang, S. P. DeNero, D. K. Joe, H.-H. Lee, S.-H. Chen, J. Michalakes, and M. J. Kleeman
Atmos. Chem. Phys., 14, 485–503, https://doi.org/10.5194/acp-14-485-2014, https://doi.org/10.5194/acp-14-485-2014, 2014
Related subject area
Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
RoadSurf 1.1: open-source road weather model library
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2)
A general comprehensive evaluation method for cross-scale precipitation forecasts
Implementation of a Simple Actuator Disk for Large-Eddy Simulation in the Weather Research and Forecasting Model (WRF-SADLES v1.2) for wind turbine wake simulation
WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework
Implementation and evaluation of diabatic advection in the Lagrangian transport model MPTRAC 2.6
An improved and extended parameterization of the CO2 15 µm cooling in the middle and upper atmosphere (CO2_cool_fort-1.0)
Development of a multiphase chemical mechanism to improve secondary organic aerosol formation in CAABA/MECCA (version 4.7.0)
Application of regional meteorology and air quality models based on the microprocessor without interlocked piped stages (MIPS) and LoongArch CPU platforms
Investigating ground-level ozone pollution in semi-arid and arid regions of Arizona using WRF-Chem v4.4 modeling
An objective identification technique for potential vorticity structures associated with African easterly waves
Importance of microphysical settings for climate forcing by stratospheric SO2 injections as modeled by SOCOL-AERv2
Assessment of surface ozone products from downscaled CAMS reanalysis and CAMS daily forecast using urban air quality monitoring stations in Iran
Open boundary conditions for atmospheric large-eddy simulations and their implementation in DALES4.4
Efficient and stable coupling of the SuperdropNet deep-learning-based cloud microphysics (v0.1.0) with the ICON climate and weather model (v2.6.5)
Three-dimensional variational assimilation with a multivariate background error covariance for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta)
FUME 2.0 – Flexible Universal processor for Modeling Emissions
DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties
Evaluation of multi-season convection-permitting atmosphere – mixed-layer ocean simulations of the Maritime Continent
RASCAL v1.0.0: An Open Source Tool for Climatological Time Series Reconstruction and Extension
Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling over Southeast Asia Using a Standardised Benchmarking Framework
Investigating the impact of coupling HARMONIE-WINS50 (cy43) meteorology to LOTOS-EUROS (v2.2.002) on a simulation of NO2 concentrations over the Netherlands
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Virve Eveliina Karsisto
Geosci. Model Dev., 17, 4837–4853, https://doi.org/10.5194/gmd-17-4837-2024, https://doi.org/10.5194/gmd-17-4837-2024, 2024
Short summary
Short summary
RoadSurf is an open-source library that contains functions from the Finnish Meteorological Institute’s road weather model. The evaluation of the library shows that it is well suited for making road surface temperature forecasts. The evaluation was done by making forecasts for about 400 road weather stations in Finland with the library. Accurate forecasts help road authorities perform salting and plowing operations at the right time and keep roads safe for drivers.
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024, https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary
Short summary
We present a Python software library for data-driven emission quantification (ddeq). It can be used to determine the emissions of hot spots (cities, power plants and industry) from remote sensing images using different methods. ddeq can be extended for new datasets and methods, providing a powerful community tool for users and developers. The application of the methods is shown using Jupyter notebooks included in the library.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024, https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Short summary
By directly analyzing the proximity of precipitation forecasts and observations, a precipitation accuracy score (PAS) method was constructed. This method does not utilize a traditional contingency-table-based classification verification; however, it can replace the threat score (TS), equitable threat score (ETS), and other skill score methods, and it can be used to calculate the accuracy of numerical models or quantitative precipitation forecasts.
Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah
Geosci. Model Dev., 17, 4447–4465, https://doi.org/10.5194/gmd-17-4447-2024, https://doi.org/10.5194/gmd-17-4447-2024, 2024
Short summary
Short summary
We developed a new wind turbine wake model, the Simple Actuator Disc for Large Eddy Simulation (SADLES), integrated with the widely used Weather Research and Forecasting (WRF) model. WRF-SADLES accurately simulates wind turbine wakes at resolutions of a few dozen meters, aligning well with idealized simulations and observational measurements. This makes WRF-SADLES a promising tool for wind energy research, offering a balance between accuracy, computational efficiency, and ease of implementation.
Changliang Shao and Lars Nerger
Geosci. Model Dev., 17, 4433–4445, https://doi.org/10.5194/gmd-17-4433-2024, https://doi.org/10.5194/gmd-17-4433-2024, 2024
Short summary
Short summary
This paper introduces and evaluates WRF-PDAF, a fully online-coupled ensemble data assimilation (DA) system. A key advantage of the WRF-PDAF configuration is its ability to concurrently integrate all ensemble states, eliminating the need for time-consuming distribution and collection of ensembles during the coupling communication. The extra time required for DA amounts to only 20.6 % per cycle. Twin experiment results underscore the effectiveness of the WRF-PDAF system.
Jan Clemens, Lars Hoffmann, Bärbel Vogel, Sabine Grießbach, and Nicole Thomas
Geosci. Model Dev., 17, 4467–4493, https://doi.org/10.5194/gmd-17-4467-2024, https://doi.org/10.5194/gmd-17-4467-2024, 2024
Short summary
Short summary
Lagrangian transport models simulate the transport of air masses in the atmosphere. For example, one model (CLaMS) is well suited to calculating transport as it uses a special coordinate system and special vertical wind. However, it only runs inefficiently on modern supercomputers. Hence, we have implemented the benefits of CLaMS into a new model (MPTRAC), which is already highly efficient on modern supercomputers. Finally, in extensive tests, we showed that CLaMS and MPTRAC agree very well.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024, https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary
Short summary
There is relatively limited research on the application of scientific computing on RISC CPU platforms. The MIPS architecture CPUs, a type of RISC CPUs, have distinct advantages in energy efficiency and scalability. The air quality modeling system can run stably on the MIPS and LoongArch platforms, and the experiment results verify the stability of scientific computing on the platforms. The work provides a technical foundation for the scientific application based on MIPS and LoongArch.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024, https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Short summary
This study presents a method for identifying and tracking 3-D potential vorticity structures within African easterly waves (AEWs). Each identified structure is characterized by descriptors, including its 3-D position and orientation, which have been validated through composite comparisons. A trough-centric perspective on the descriptors reveals the evolution and distinct characteristics of AEWs. These descriptors serve as valuable statistical inputs for the study of AEW-related phenomena.
Sandro Vattioni, Andrea Stenke, Beiping Luo, Gabriel Chiodo, Timofei Sukhodolov, Elia Wunderlin, and Thomas Peter
Geosci. Model Dev., 17, 4181–4197, https://doi.org/10.5194/gmd-17-4181-2024, https://doi.org/10.5194/gmd-17-4181-2024, 2024
Short summary
Short summary
We investigate the sensitivity of aerosol size distributions in the presence of strong SO2 injections for climate interventions or after volcanic eruptions to the call sequence and frequency of the routines for nucleation and condensation in sectional aerosol models with operator splitting. Using the aerosol–chemistry–climate model SOCOL-AERv2, we show that the radiative and chemical outputs are sensitive to these settings at high H2SO4 supersaturations and how to obtain reliable results.
Najmeh Kaffashzadeh and Abbas-Ali Aliakbari Bidokhti
Geosci. Model Dev., 17, 4155–4179, https://doi.org/10.5194/gmd-17-4155-2024, https://doi.org/10.5194/gmd-17-4155-2024, 2024
Short summary
Short summary
This paper assesses the capability of two state-of-the-art global datasets in simulating surface ozone over Iran using a new methodology. It is found that the global model data need to be downscaled for regulatory purposes or policy applications at local scales. The method can be useful not only for the evaluation but also for the prediction of other chemical species, such as aerosols.
Franciscus Liqui Lung, Christian Jakob, A. Pier Siebesma, and Fredrik Jansson
Geosci. Model Dev., 17, 4053–4076, https://doi.org/10.5194/gmd-17-4053-2024, https://doi.org/10.5194/gmd-17-4053-2024, 2024
Short summary
Short summary
Traditionally, high-resolution atmospheric models employ periodic boundary conditions, which limit simulations to domains without horizontal variations. In this research open boundary conditions are developed to replace the periodic boundary conditions. The implementation is tested in a controlled setup, and the results show minimal disturbances. Using these boundary conditions, high-resolution models can be forced by a coarser model to study atmospheric phenomena in realistic background states.
Caroline Arnold, Shivani Sharma, Tobias Weigel, and David S. Greenberg
Geosci. Model Dev., 17, 4017–4029, https://doi.org/10.5194/gmd-17-4017-2024, https://doi.org/10.5194/gmd-17-4017-2024, 2024
Short summary
Short summary
In atmospheric models, rain formation is simplified to be computationally efficient. We trained a machine learning model, SuperdropNet, to emulate warm-rain formation based on super-droplet simulations. Here, we couple SuperdropNet with an atmospheric model in a warm-bubble experiment and find that the coupled simulation runs stable and produces reasonable results, making SuperdropNet a viable ML proxy for droplet simulations. We also present a comprehensive benchmark for coupling architectures.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Michal Belda, Nina Benešová, Jaroslav Resler, Peter Huszár, Ondřej Vlček, Pavel Krč, Jan Karlický, Pavel Juruš, and Kryštof Eben
Geosci. Model Dev., 17, 3867–3878, https://doi.org/10.5194/gmd-17-3867-2024, https://doi.org/10.5194/gmd-17-3867-2024, 2024
Short summary
Short summary
For modeling atmospheric chemistry, it is necessary to provide data on emissions of pollutants. These can come from various sources and in various forms, and preprocessing of the data to be ingestible by chemistry models can be quite challenging. We developed the FUME processor to use a database layer that internally transforms all input data into a rigid structure, facilitating further processing to allow for emission processing from the continental to the street scale.
Bent Harnist, Seppo Pulkkinen, and Terhi Mäkinen
Geosci. Model Dev., 17, 3839–3866, https://doi.org/10.5194/gmd-17-3839-2024, https://doi.org/10.5194/gmd-17-3839-2024, 2024
Short summary
Short summary
Probabilistic precipitation nowcasting (local forecasting for 0–6 h) is crucial for reducing damage from events like flash floods. For this goal, we propose the DEUCE neural-network-based model which uses data and model uncertainties to generate an ensemble of potential precipitation development scenarios for the next hour. Trained and evaluated with Finnish precipitation composites, DEUCE was found to produce more skillful and reliable nowcasts than established models.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
Álvaro González-Cervera and Luis Durán
EGUsphere, https://doi.org/10.5194/egusphere-2024-958, https://doi.org/10.5194/egusphere-2024-958, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the Analog Method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities of broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-84, https://doi.org/10.5194/gmd-2024-84, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We apply a comprehensive approach to select a subset of CMIP6 that is suitable for dynamical downscaling over Southeast Asia by considering model performance, model independence, data availability, and future climate change spread. The standardised benchmarking framework is applied to identify a subset of models through two stages of assessment: statistical-based and process-based metrics. We finalize a sub-set of two independent models for dynamical downscaling over Southeast Asia.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Cited articles
Alleman, T. L., Eudy, L., Miyasato, M., Oshinuga, A., Allison, S., Corcoran, T., Chatterjee, S., Jacobs, T., Cherrillo, R. A., Clark, R., Virrels, I., Nine, R., Wayne, S., and Lansing, R.: Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters, SAE Technical Paper 2004-01-2959, https://doi.org/10.4271/2004-01-2959, 2004.
Alleman, T. L., Barnitt, R., Eudy, L., Miyasato, M., Oshinuga, A., Corcoran, T., Chatterjee, S., Jacobs, T., Cherrillo, R. A., Clark, N., and Wayne, W. S.: Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters, SAE Technical Paper 2005-01-3769, https://doi.org/10.4271/2005-01-3769, 2005.
Antanaitis, D. B.: Effect of Regenerative Braking on Foundation Brake Performance, SAE Int. J. Passeng. Cars – Mech. Syst., 3, 14–30, 2010.
Argonne National Laboratory Transportation Technology R&D Center: The VISION Model, available at: http://www.anl.gov/energy-systems/project/vision-model (last access: April 2013), 2012.
Argonne National Laboratory Transportation Technology R&D Center: GREET Model. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, available at: https://greet.es.anl.gov/ (last access:d June 2015), 2014.
Bollen, J., van der Zwaan, B., Brink, C., and Eerens, H.: Local air pollution and global climate change: A combined cost-benefit analysis, Resour. Energy Econ., 31, 161–181, 2009.
California Air Resouces Board: Documentation of California's 2000–2012 GHG Inventory, 2014.
California Air Resources Board: Final Regulation Order – Amendments to Sects. 1900 and 1961 and Adoption of New Sects. 1961.1, Title 13, California Code of Regulations as Approved by OAL and filed with the Secretary of the State on 15 September 2005, California Air Resources Board, Sacramento, CA, 2005.
California Air Resources Board: Updated Informative Digest: Adoption of the Regulation to Reduce Emissions from Diesel Auxiliary Engines on Ocean-going Vessels while at Berth, California Air Resources Board, Sacramento, CA, 2007.
California Air Resources Board: CA-GREET version 1.8b, California Air Resources Board, Sacramento, CA, 2009a.
California Air Resources Board: Executive Order R-10-002. Relating to the Adoption of the Amendments to New Passenger Motor Vehicle Greenhouse Gas Emission Standards, California Air Resources Board, Sacramento, CA, 2009b.
California Air Resources Board: Final Regulation Order – Amendments to the Low Carbon Fuel Standard Regulation. Adopt Sects. 95480.2, 95480.3, 95480.4, and 95480.5; Amend Sects. 95480.1, 95481, 95482, 95484, 95485, 95486, 95488, and 95490, title 17, California Code of Regulations, California Air Resources Board, Sacramento, CA, 2009c.
California Air Resources Board: Exhaust Emission Standards for Compression Ignition (Diesel) Engines and Equipment, Off-Road Compression-Ignition (Diesel) Engine Standards (NMHC + NOx∕CO∕PM in g kW h), California Air Resources Board, Sacramento, CA, 2010a.
California Air Resources Board: Final Regulation Order – Amendments to Title 13, California Code of Regulations. Rulemaking to Consider Proposed Amendments to New Passenger Motor Vehicle Greenhouse Gas Emission Standards for Model Years 2012–2016 to Permit Compliance based on Federal Greenhouse Gas Emission Standards, California Air Resources Board, Sacramento, CA, 2010b.
California Air Resources Board: Staff Report: Initial Statment of Reasons for Proposed Rulemaking. Regulation for Energy Efficiency and Co-Benefits Assessment of Large Industrial Facilities, in: Stationary Source Division Emissions Assessment Branch (Ed.), California Air Resources Board, Sacramento, CA, 2010c.
California Air Resources Board: EMFAC2011 Technical Documentation, California Air Resources Board, Sacramento, CA, 2011a.
California Air Resources Board: Facility Search Engine Tool. California Environmental Protection Agency Air Rersources Board, p. Find criteria and toxics pollutant emissions data for facilities in California, California Air Resources Board, Sacramento, CA, 2011b.
California Air Resources Board: Final Regulation Order – Adopt Sects. 95480.2, 95480.3, 95480.4, and 95480.5; Amend Sects. 95480.1, 95481, 95482, 95484, 95485, 95486, 95488, and 95490, title 17, California Code of Regulations, California Air Resources Board, Sacramento, CA, 2011c.
California Air Resources Board: Final Regulation Order – Subchapter 10 Climate Change, Article 5, Sects. 95800 to 96023, Title 17, California Code of Regulations, California Air Resources Board, Sacramento, CA, 2011d.
California Air Resources Board: Final Regulation Order. Fuel Sulfur and Other Operational Requirements for Ocean-going Vessels within California Waters and 24 Nautical Miles of the California Baseline, in: California Air Resources Board (Ed.), 13 CCR, Sect. 2299.2, California Air Resources Board, Sacramento, CA, 2011e.
California Air Resources Board: ARB Vision Model Documentation, Appendix to the June 27, 2012 Draft Vision for Clean Air: A Framework for Air Quality and Climate Planning, Sacramento, CA, 2012a.
California Air Resources Board: Final Regulation Order – Part 1: Final Regulation Order: Amend Sect. 1962.1, Title 13, California Code of Regulations. Zero-Emission Vehicle Standards for 2009 through 2017 Model Year Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles, California Air Resources Board, Sacramento, CA, 2012b.
California Air Resources Board: Final Regulation Order – Part 2: California Exhaust Emission Standards and Test Procedures for 2009 through 2017 Model Zero-Emission Vehicles and Hybrid Electric Vehicles, in the Passenger Car, Light-Duty Truck and Medium-Duty Vehicle Classes, Adopted 17 December 2008, as last amended 22 March 2012, California Air Resources Board, Sacramento, CA, 2012c.
California Air Resources Board: Final Regulation Order – Part 3: Final Regulation Order: Adopt 1962.2, Title 13, California Code of Regulations. Zero-emission Vehicle Standards for 2018 and Subsequent Model Year Passenger Cars, Light-duty Trucks, and Medium-Duty Vehicles, California Air Resources Board, Sacramento, CA, 2012d.
California Air Resources Board: Final Regulation Order – Part 4: California Exhaust Emission Standards and Test Procedures for 2018 and Subsequent Model Zero-Emission Vehicles and Hybrid Electric Vehicles and Hybrid Electric Vehicles, in the Passenger Car, Light-Duty Truck and Medium-Duty Vehicle Classes, California Air Resources Board, Sacramento, CA, 2012e.
California Air Resources Board: Final Regulation Order – Part 5: Final Regulation Order: Amend 1962.3, Title 13, California Code of Regulations. Electric Vehicle Charging Requirements, California Air Resources Board, Sacramento, CA, 2012f.
California Air Resources Board: Energy Efficiency and Co-Benefits Assessment of Large Industrial Sources. Hydrogen Sector Public Report, California Air Resources Board, Sacramento, CA, 2014.
California Air Resources Board: CA-GREET 2.0 Model and Documentation, California Air Resources Board, Sacramento, CA, 2015.
California Air Resources Board: Final Regulation Order – California Cap on Greenhouse Gas Emissions and Market-based Compliance Mechanisms, California Air Resources Board, Sacramento, CA, 2017.
California Department of Food and Agriculture: California Dairy Statistics 2010, in: California Department of Food and Agriculture (Ed.), 1220 N Street, Sacramento, CA 95814, 2011.
Cheung, K. L., Polidori, A., Ntziachristos, L., Tzamkiozis, T., Samaras, Z., Cassee, F. R., Gerlofs, M., and Sioutas, C.: Chemical Characteristics and Oxidative Potential of Particulate Matter Emissions from Gasoline, Diesel, and Biodiesel Cars, Environ. Sci. Technol., 43, 6334–6340, 2009.
Cheung, K. L., Ntziachristos, L., Tzamkiozis, T., Schauer, J. J., Samaras, Z., Moore, K. F., and Sioutas, C.: Emissions of Particulate Trace Elements, Metals and Organic Species from Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential, Aerosol Sci. Tech., 44, 500–513, 2010.
Cooper, E., Arioli, M., Carrigan, A., and Jain, U.: Exhaust Emissions of Transit Buses. Sustainable Urban transportation fuels and Vehicles, Working Paper, EMBARQ, EMBARQ Global, 10 G Street NE, Suite 800, Washington DC 20002, USA, 1(202)729-7600, 2012.
Delfino, R. J., Sioutas, C., and Malik, S.: Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health, Environ. Health Persp., 113, 934–946, 2005.
Donaldson, K., Stone, V., Clouter, A., Renwick, L., and MacNee, W.: Ultrafine particles, Occup. Environ. Med., 58, 211, https://doi.org/10.1136/oem.58.3.211, 2001.
Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., and Stone, V.: The pulmonary toxicology of ultrafine particles, J. Aerosol. Med., 15, 213–220, 2002.
Durbin, T. D., Cocker, D. R., Sawant, A. A., Johnson, K., Miller, J. W., Holden, B. B., Helgeson, N. L., and Jack, J. A.: Regulated emissions from biodiesel fuels from on/off-road applications, Atmos. Environ., 41, 5647–5658, 2007.
Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Finkelstein, J., and Oberdorster, G.: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Persp., 114, 1172–1178, 2006.
Environmental Protection Agency: Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2008, in: Environmental Protection Agency (Ed.), Office of Atmospheric Programs (6207J), 1200 Pennsylvania Avenue, N. W. Washington, DC 20460 USA, 2010.
Ferreira da Silva, M., Vicente de Assuncao, J., de Fatima Andrade, M., and Pesquero, C. R.: Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22 % of anhydrous ethanol, J. Toxicol. Env. Heal. A, 73, 901–909, 2010.
Frank, B. P., Tang, S., Lanni, T., Grygas, J., Rideout, G., Meyer, N., and Beregszaszy, C.: The Effect of Fuel Type and Aftertreatment Method on Ultrafine Particle Emissions from a Heavy-Duty Diesel Engine, Aerosol Sci. Tech., 41, 1029–1039, 2007.
Fripp, M.: Switch: a planning tool for power systems with large shares of intermittent renewable energy, Environ. Sci. Technol., 46, 6371–6378, 2012.
Garcia-Menendez, F., Saari, R. K., Monier, E., and Selin, N. E.: US Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation, Environ. Sci. Technol., 49, 7580–7588, 2015.
Gautam, M.: Testing of Volatile and Nonvolatile Emissions from Advanced Technology Natural Gas Vehicles. Final Report. Center for Alternative Fuels, Engines & Emissions West Virginia University, Prepared for John Collins State of California Air Resources Board, CARB Final Report for contract No. 07-430, Sacramento California, 2011.
Gilbreath, J., Rose, T., and Thong, F. F.: California Natural Gas Pipelines, in: Map of Major Natural Gas Pipelines in California (Ed.), California Energy Maps, California Energy Comission, Sacramento California, 2014.
Graboski, M. S., McCormick, R. L., Alleman, T. L., and Herring, A. M.: The Effect of Biodiesel Composition on Engine Emissions from a DDC Series 60 Diesel Engine: Final Report, Report 2 in a series of 6. National Renewable Energy Laboratory, Colorado Institute for Fuels and Engine Research, Colorado School of Mines, Golden Colorado, 2003.
Graham, L. A., Belisle, S. L., and Baas, C.-L.: Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos. Environ., 42, 4498–4516, 2008.
Hasegawa, M., Sakurai, Y., Kobayashi, Y., Oyama, N., Sekimoto, M., and Watanabe, H.: Effects of Fuel Properties (Content of FAME or GTL) on Diesel Emissions under Various Driving Modes, SAE International, https://doi.org/10.4271/2007-01-4041, 2007.
Haskew, H. M. and Liberty, T. F.: Exhaust and Evaporative Emissions Testing of Flexible-Fuel Vehicles, Coordinating Research Council, Inc., 3650 Mansell Road Suite 140 Alpharetta, GA 30022, p. 473, 2011.
Hays, M. D., Preston, W., George, B. J., Schmid, J., Baldauf, R., Snow, R., Robinson, J. R., Long, T., and Faircloth, J.: Carbonaceous aerosols emitted from light-duty vehicles operating on gasoline and ethanol fuel blends, Environ. Sci. Technol., 47, 14502–14509, 2013.
Hixson, M., Mahmud, A., Hu, J. L., Bai, S., Niemeier, D. A., Handy, S. L., Gao, S. Y., Lund, J. R., Sullivan, D. C., and Kleeman, M. J.: Influence of regional development policies and clean technology adoption on future air pollution exposure, Atmos. Environ., 44, 552–562, 2010.
Hoek, G., Boogaard, H., Knol, A., de Hartog, J., Slottje, P., Ayres, J. G., Borm, P., Brunekreef, B., Donaldson, K., Forastiere, F., Holgate, S., Kreyling, W. G., Nemery, B., Pekkanen, J., Stone, V., Wichmann, H. E., and van der Sluijs, J.: Concentration Response Functions for Ultrafine Particles and All-Cause Mortality and Hospital Admissions: Results of a European Expert Panel Elicitation, Environ. Sci. Technol., 44, 476–482, 2010.
Jayaram, V., Agrawal, H., Welch, W. A., Miller, J. W., and Cocker III, D. R.: Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel, Environ. Sci. Technol., 45, 2286–2292, 2011.
Johnston, J., Mileva, A., Nelson, J. H., and Kammen, D. M.: SWITCH-WECC. Data, Assumptions, and Model Formulation, Renewable and Appropriate Energy Laboratory, Berkeley, California, 2013.
Keshavarzmohammadian, A., Henze, D. K., and Milford, J. B.: Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections, Environ. Sci. Technol., 51, 6665–6673, 2017.
Knol, A. B., de Hartog, J. J., Boogaard, H., Slottje, P., van der Sluijs, J. P., Lebret, E., Cassee, F. R., Wardekker, J. A., Ayres, J. G., Borm, P. J., Brunekreef, B., Donaldson, K., Forastiere, F., Holgate, S. T., Kreyling, W. G., Nemery, B., Pekkanen, J., Stone, V., Wichmann, H. E., and Hoek, G.: Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways, Part. Fibre Toxicol., 6, 19, https://doi.org/10.1186/1743-8977-6-19, 2009.
Kreyling, W. G., Semmler, M., and Moller, W.: Dosimetry and toxicology of ultrafine particles, J. Aerosol Med., 17, 140–152, 2004.
Lobo, P., Hagen, D. E., and Whitefield, P. D.: Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels, Environ. Sci. Technol., 45, 10744–10749, 2011.
Lobo, P., Rye, L., Williams, P. I., Christie, S., Uryga-Bugajska, I., Wilson, C. W., Hagen, D. E., Whitefield, P. D., Blakey, S., Coe, H., Raper, D., and Pourkashanian, M.: Impact of alternative fuels on emissions characteristics of a gas turbine engine – part 1: gaseous and particulate matter emissions, Environ. Sci. Technol., 46, 10805–10811, 2012.
Loughlin, D. H., Benjey, W. G., and Nolte, C. G.: ESP v1.0: methodology for exploring emission impacts of future scenarios in the United States, Geosci. Model Dev., 4, 287–297, https://doi.org/10.5194/gmd-4-287-2011, 2011.
Loulou, R., Goldstein, G., Kanudia, A., Lettila, A., and Remme, U.: Documentation for the TIMES Model. Part I: Times Concepts and Theory, in: (IEA-ETSAP), I.E.A.-E.T.S.A.P. (Ed.), Energy Technology Systems Analysis Programme, available at: http://www.iea-etsap.org/web/Documentation.asp (last access: September 2017), 2016.
Lundqvist, R. G.: The IGCC demonstration plant at Värnamo, Bioresource Technol., 46, 49–53, 1993.
Mann, M. K. and Spath, P. L.: Life Cycle Assessment of a Biomass Gasifiction Combined-Cycle System. National Renewable Energy Laboratory, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, 303-275-3000, 1997.
McCollum, D., Yang, C., Yeh, S., and Ogden, J.: Deep greenhouse gas reduction scenarios for California – Strategic implications from the CA-TIMES energy-economic systems model, Energy Strateg. Rev., 1, 19–32, 2012.
Nelson, D. J., Mileva, A., Johnston, J., and Kammen, P. D.: Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Power Electric Power Sector Planning Model. California's Carbon Challenge Phase II, in: California Energy Commission (Ed.). Renewable and Appropriate Energy Laboratory Energy and Resources Group, 310 Barrows Hall Berkeley, CA 94720-3050, University of California, Berkeley, p. 142, 2013.
Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., and Cox, C.: Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats, J. Toxicol. Env. Heal. A, 65, 1531–1543, 2002.
Osborne, D., Fritz, S., and Glenn, D.: The Effects of Biodiesel Fuel Blends on Exhaust Emissions from a General Electric Tier 2 Line-Haul Locomotive, ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASME, San Antonio, Texas, USA, 2010.
Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., and Kleeman, M. J.: Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California Teachers Study Cohort, Environ. Health Persp., 123, 549–556, 2015.
Parker, N.: Spatially Explicit Projection of Biofuel Supply for Meeting Renewable Fuel Standard, Transport Res. Rec.: J. Transport. Res. Board, 2287, 72–79, 2012.
Petzold, A., Lauer, P., Fritsche, U., Hasselbach, J., Lichtenstern, M., Schlager, H., and Fleischer, F.: Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects, Environ. Sci. Technol., 45, 10394–10400, 2011.
Rafaj, P., Schöpp, W., Russ, P., Heyes, C., and Amann, M.: Co-benefits of post-2012 global climate mitigation policies, Mitig. Adapt. Strat. Gl., 18, 801–824, 2012.
Ran, L., Loughlin, D. H., Yang, D., Adelman, Z., Baek, B. H., and Nolte, C. G.: ESP v2.0: enhanced method for exploring emission impacts of future scenarios in the United States – addressing spatial allocation, Geosci. Model Dev., 8, 1775–1787, https://doi.org/10.5194/gmd-8-1775-2015, 2015.
Rounce, P., Tsolakis, A., and York, A. P. E.: Speciation of particulate matter and hydrocarbon emissions from biodiesel combustion and its reduction by aftertreatment, Fuel, 96, 90–99, 2012.
Rudokas, J., Miller, P. J., Trail, M. A., and Russell, A. G.: Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions, Environ. Sci. Technol., 49, 5170–5177, 2015.
Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.: Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 335, 183, 2012.
Ståhl, K. and Neergaard, M.: IGCC power plant for biomass utilisation, Värnamo, Sweden, Biomass Bioenerg., 15, 205–211, 1998.
Starcrest Consulting Group, L.: San Pedro Bay Ports Clean Air Action Plan: 2010 Update. Appendix A: San Pedro Bay Ports Emissions Forecasting Methodology & Results. The Port of Los Angeles, The Port of Long Beach, P. O. Box 434, Poulsbo, WA 98370, 2009.
State of California, D.o. F.: Report P-1 (County): State and County Total Population Projections, 2010–2060, Sacramento, California, 2013.
Szybist, J. P., Youngquist, A. D., Barone, T. L., Storey, J. M., Moore, W. R., Foster, M., and Confer, K.: Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions, Energ. Fuel., 25, 4977–4985, 2011.
The Port of Los Angeles, The Port of Long Beach: San Pedro Bay Ports Clean Air Action Plan: 2010 Update, The Port of Los Angeles, Los Angeles, CA, USA, 2010.
Tittmann, P. W., Parker, N. C., Hart, Q. J., and Jenkins, B. M.: A spatially explicit techno-economic model of bioenergy and biofuels production in California, J. Transp. Geogr., 18, 715–728, 2010.
Trail, M. A., Tsimpidi, A. P., Liu, P., Tsigaridis, K., Hu, Y., Rudokas, J. R., Miller, P. J., Nenes, A., and Russell, A. G.: Impacts of potential CO2-reduction policies on air quality in the United States, Environ. Sci. Technol., 49, 5133–5141, 2015.
US Department of Agriculture Rural Development Agency: Cooperative Approaches for Implementation of Dairy Manure Digesters, in: Agency, R. D. (Ed.), STOP 3252, 1400 Independence Ave., S.W, Washington, DC 20250-3252, 2009.
US Department of Energy National Energy Technology Laboratory: Archived 2010 Worldwide Gasification Database, available at: www.netl.doe.gov/research/coal/energy-systems/gasification/gasification-plant-databases/2010-archive (last access: June 2015), 2010.
US Department of Energy National Energy Technology Laboratory: United States Proposed Gasification Plant Database, March 2015. ed. US Department of Energy, National Energy Technology Laboratory, available at: www.netl.doe.gov/File%20Library/Research/Coal/energy%20systems/gasification/worldwide%20database/US-Gasification-Database.xlsx, last access: June, 2015.
US Energy Information Administration Independent Statistics and Analysis: Electricity. Form EIA-860 detailed data, available at: www.eia.gov/electricity/data/eia860/ (last access: February 2014), 2012.
US Environmental Protection Agency AgSTAR Program: Market Opportunities for Biogas Recovery Systems at US Livestock Facilities, in: US Environmental Protection Agency (Ed.), US Environmental Protection Agency, Washington DC, USA, 2011.
US Environmental Protection Agency: eGRID. Nineth edition with year 2010 data (Version 1.0), 9th ed. Environmental Protection Agency, p. The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States, US Environmental Protection Agency, Washington DC, USA, 2014.
van Aardenne, J., Dentener, F., Van Dingenen, R., Maenhout, G., Marmer, E., Vignati, E., Russ, P., Szabo, L., and Raes, F.: Climate and air quality impacts of combined climate change and air pollution policy scenarios., JRC Scientific and Technical Reports. European Commission. Joint Research Centre. Institute for Environment and Sustainability, Luxembourg: Publications Office of the European Union, 2010.
West, J. J., Smith, S. J., Silva, R. A., Naik, V., Zhang, Y., Adelman, Z., Fry, M. M., Anenberg, S., Horowitz, L. W., and Lamarque, J. F.: Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health, Nat. Clim. Change, 3, 885–889, 2013.
Yang, C., Yeh, S., Ramea, K., Zakerinia, S., McCollum, D., Bunch, D., and Ogden, J.: Modeling Optimal Transition Pathways to a Low Carbon Economy in California: California TIMES (CA-TIMES) Model, Institute of Transportation Studies, University of California, Davis, CA, 2014.
Yang, C., Yeh, S., Zakerinia, S., Ramea, K., and McCollum, D.: Achieving California's 80 % greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model, Energ. Policy, 77, 118–130, 2015.
Yoon, S., Hu, S., Kado, N. Y., Thiruvengadam, A., Collins, J. F., Gautam, M., Herner, J. D., and Ayala, A.: Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies, Atmos. Environ., 83, 220–228, 2014.
Zhang, H., Chen, G., Hu, J., Chen, S. H., Wiedinmyer, C., Kleeman, M., and Ying, Q.: Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States, Sci. Total Environ., 473–474, 275–285, 2014.
Zhang, Y., Bowden, J. H., Adelman, Z., Naik, V., Horowitz, L. W., Smith, S. J., and West, J. J.: Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050, Atmos. Chem. Phys., 16, 9533–9548, https://doi.org/10.5194/acp-16-9533-2016, 2016.
Short summary
The CA-REMARQUE emissions model translates policies designed for climate change mitigation into inputs needed for air pollution analysis in California. The model captures the complicated trade-offs associated with changing fuels and technologies that sometimes increase air pollution emissions in some areas while decreasing emissions in other areas. These detailed calculations are needed in highly populated regions like California where simple emissions controls have already been applied.
The CA-REMARQUE emissions model translates policies designed for climate change mitigation into...