Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1293-2018
https://doi.org/10.5194/gmd-11-1293-2018
Development and technical paper
 | 
11 Apr 2018
Development and technical paper |  | 11 Apr 2018

Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman

Related authors

Low-carbon energy generates public health savings in California
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Atmos. Chem. Phys., 18, 4817–4830, https://doi.org/10.5194/acp-18-4817-2018,https://doi.org/10.5194/acp-18-4817-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary

Cited articles

Alleman, T. L., Eudy, L., Miyasato, M., Oshinuga, A., Allison, S., Corcoran, T., Chatterjee, S., Jacobs, T., Cherrillo, R. A., Clark, R., Virrels, I., Nine, R., Wayne, S., and Lansing, R.: Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters, SAE Technical Paper 2004-01-2959, https://doi.org/10.4271/2004-01-2959, 2004.
Alleman, T. L., Barnitt, R., Eudy, L., Miyasato, M., Oshinuga, A., Corcoran, T., Chatterjee, S., Jacobs, T., Cherrillo, R. A., Clark, N., and Wayne, W. S.: Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters, SAE Technical Paper 2005-01-3769, https://doi.org/10.4271/2005-01-3769, 2005.
Antanaitis, D. B.: Effect of Regenerative Braking on Foundation Brake Performance, SAE Int. J. Passeng. Cars – Mech. Syst., 3, 14–30, 2010.
Argonne National Laboratory Transportation Technology R&D Center: The VISION Model, available at: http://www.anl.gov/energy-systems/project/vision-model (last access: April 2013), 2012.
Argonne National Laboratory Transportation Technology R&D Center: GREET Model. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, available at: https://greet.es.anl.gov/ (last access:d June 2015), 2014.
Download
Short summary
The CA-REMARQUE emissions model translates policies designed for climate change mitigation into inputs needed for air pollution analysis in California. The model captures the complicated trade-offs associated with changing fuels and technologies that sometimes increase air pollution emissions in some areas while decreasing emissions in other areas. These detailed calculations are needed in highly populated regions like California where simple emissions controls have already been applied.
Share