Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4443-2017
https://doi.org/10.5194/gmd-10-4443-2017
Model description paper
 | 
06 Dec 2017
Model description paper |  | 06 Dec 2017

A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

Matthias Forkel, Wouter Dorigo, Gitta Lasslop, Irene Teubner, Emilio Chuvieco, and Kirsten Thonicke

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Matthias Forkel on behalf of the Authors (27 Sep 2017)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (06 Oct 2017) by Gerd A. Folberth
RR by Gerd A. Folberth (20 Oct 2017)
ED: Publish subject to technical corrections (20 Oct 2017) by Gerd A. Folberth
AR by Matthias Forkel on behalf of the Authors (24 Oct 2017)  Manuscript 
Download
Short summary
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how fires should be accurately represented in global vegetation models. We introduce here a new flexible data-driven fire modelling approach that allows us to explore sensitivities of burned areas to satellite and climate datasets. Our results suggest combining observations with data-driven and process-oriented fire models to better understand the role of fires in the Earth system.